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FIG. 2: Boson and fermion contributions to the thermal
conductivity of YBa2Cu3Oy vs hole concentration p. Upper
panel: coefficient β of bosonic conductivity, κb = βT 3. The
full line and data points (black dots) are the resistive Tc(p).
For p ! 5.0 %, a finite resistive Tc is observed, from which p
is determined [13]. For p < 5.0 %, no Tc is observed and we
use a method described in the text to estimate p. The inset
shows the superconducting transition seen in susceptibility at
p = 5.4 %. Lower panel: coefficient a ≡ κ0/T of the fermionic
conductivity, κf = aT . Dashed lines are guides to the eye.

esting to note that the fermion sector of the same theory
([17, 18] and references therein) is qualitatively consistent
with other aspects of our study, as we shall see below, in
the sense that charge is localized in the Wigner-crystal
state, but spin can remain mobile, in the form of neutral
fermionic spin excitations with a Dirac spectrum.

Fermions. We now turn to the part of the thermal
conductivity associated with delocalized fermionic exci-
tations, namely κf = aT , obtained from the T = 0 in-
tercept κ0/T . For sample L at 5.4 %, a power-law fit
to κ/T = a + bT α−1 up to 0.6 K yields a ≡ κ0/T =
40 ± 1 µW K−2 cm−1, with α = 2.0. As already men-
tioned, the difference ∆κ/T between κ/T at 4.7 % and
κ/T at either 5.0 or 5.4 % yields a negligible intercept.
This demonstrates that κ0/T for L does not change with
doping upon crossing pSC , as shown in the lower panel
of Fig. 2. The data for the five other samples are also
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FIG. 3: Electrical resistivity ρ of non-superconducting
YBa2Cu3O6.33 at p = 4.7 (open triangles) and 5.0 % (full
triangles) in H = 0 and 10 T, respectively. The correspond-
ing fermionic thermal resistivity is plotted in the same units,
as L0T/κ0 (open and closed circles). Inset: ρ(T ) at p = 4.7 %
(H = 0 T) on a logarithmic scale, with linear fit.

displayed, obtained using the same procedure: a power-
law fit for p ! 5.3 % and a T 2 fit to the difference for
p < 5.3 %. It is remarkable that all six samples measured
at p " 5.3% gave values within 10 % of each other: κ0/T
= 38 ± 3 µW K−2 cm−1. This highly reproducible find-
ing confirms the presence of fermionic excitations below
pSC , as reported recently [19]. We note that a magnetic
field up to 10 T has negligible effect on κ for all samples
and dopings.

The fact that κ0/T is, within error bars, constant
across the boundary between superconducting and nor-
mal states suggests that the spectrum of nodal quasipar-
ticles associated with the d-wave superconducting gap
does not change when superconducting order vanishes.
Therefore, the normal state of YBa2Cu3Oy close to pSC

is a thermal metal which may well be a “nodal” metal.
Measurements on samples with y = 6.31 and 6.32 show
that κ0/T eventually becomes negligible as p approaches
4 %, so that fairly soon this thermal metal phase either
comes to an end (e.g., through the appearance of a gap
at the nodes) or its fermions become localized.

Sun et al. recently measured the thermal conductivity
of underdoped YBa2Cu3Oy near pSC [20], in separate
crystals at a single value of p each. κ0/T for their y =
6.45 sample (Tc = 20 K) agrees well with our data, but it
becomes negligible in their non-superconducting y = 6.35
sample. The discrepancy may come from an overestimate
of p, quite likely in the absence of a Tc or in the presence
of filamentary superconductivity. This is supported by
the fact that the resistivity of their 6.35 sample is higher

Mysterious bosonic mode in
YBa2Cu3O6+x

[Taillefer et. al, cond-mat/0606645]
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Cooper pair Wigner crystal in underdoped cuprates

Scanning Tunneling
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-images topography and
local density of states
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dSC

Checkerboard pattern in LDOS of
NaCCOC

[Hanaguri et. al, Nature 2004]
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Checkerboard pattern in LDOS of
BiSCCO at finite T

[Vershinin et al. Nature 2004]
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... more checkerboards

Checkerboard pattern in LDOS of
BiSCCO at finite T

[Vershinin et al. Nature 2004]
In Magnetic vortices

[Hoffman et al. Science 2002]
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[MF, Science 2004]

Checkerboard patterns in
electron LDOS appear to be
universal: encountered outside
the superconducting dome in the
underdoped region.

Q: What is their origin?

A: Cooper pair Wigner crystal.
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What is pair Wigner crystal?

Simple explanation: upon phase disordering Copper pairs in a superconductor
can minimize their interaction energy by forming a crystal.

Number-phase uncertainty relation ∆N ·∆ϕ ≥ 1 also applies locally, e.g. in a
lattice model of a superconductor,

∆ni ·∆ϕj ≥ δij.
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Simple explanation: upon phase disordering Copper pairs in a superconductor
can minimize their interaction energy by forming a crystal.

Number-phase uncertainty relation ∆N ·∆ϕ ≥ 1 also applies locally, e.g. in a
lattice model of a superconductor,

∆ni ·∆ϕj ≥ δij.

superconductor

phase ordered ↔ number uncertain

normal

phase disordered ↔ number certain
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Maps a Lagrangian for 2d phase-fluctuating superconductor

L =
1
2
Kµ |(∂µ − 2ieAµ) Ψ|2 + a|Ψ|2 +

1
2
b|Ψ|4,
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Vortex-boson duality in (2+1)D
[Fisher & Lee, PRB 39, 2756 (1989)]

Maps a Lagrangian for 2d phase-fluctuating superconductor

L =
1
2
Kµ |(∂µ − 2ieAµ) Ψ|2 + a|Ψ|2 +

1
2
b|Ψ|4,

onto the fictitious dual superconductor

Ldual =
1
2
|(∂µ − 2πiAµ

d)χ|2 + V(|χ|)− 2πi

Φ0
A · (∂ ×Ad) +

1
2K

(∂ ×Ad)2µ

in fictitious dual magnetic field

Bd = (∂ ×Ad)0 = ρ,

with ρ(r) the density of Cooper pairs.
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When the average density ρ of Cooper pairs is non-zero then the pair Wigner
crystal emerges as the

Abrikosov vortex lattice of the dual superconductor.
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When the average density ρ of Cooper pairs is non-zero then the pair Wigner
crystal emerges as the

Abrikosov vortex lattice of the dual superconductor.

Dual vortex lattice

Bd: dual magnetic field
χ: dual order parameter

λd: dual penetration depth
ξd: dual coherence length
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Dual order parameter χ

-describes vortex condensate in the original superconductor.

Two phases:
• 〈χ〉 = 0: vortices uncondensed → superconductor
• 〈χ〉 6= 0: vortices condensed → insulating pair crystal
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Dual order parameter χ

-describes vortex condensate in the original superconductor.

Two phases:
• 〈χ〉 = 0: vortices uncondensed → superconductor
• 〈χ〉 6= 0: vortices condensed → insulating pair crystal

vortex-antivortex pair

Vortices: Superconducting order
parameter Ψ is a complex scalar
field,

Ψ(r) = |Ψ(r)|eiθ(r).

Vortices in the phase θ(r) are
important topological excitations
of the 2d superconductor.
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Physical essence of vortex-boson duality

On encircling a vortex, a Cooper pair
acquires phase 2π.

Thus, in the presence of static
vortices Cooper pairs can propagate
coherently.
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Physical essence of vortex-boson duality

On encircling a vortex, a Cooper pair
acquires phase 2π.

Thus, in the presence of static
vortices Cooper pairs can propagate
coherently.

If a vortex moves Cooper pair acquires
phase that is uncertain.

Coherent propagation of pairs is
frustrated, superconducting order is
suppressed.

Vortices and pairs cannot both propagate coherently.
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Duality implies there is either a coherent superconductor with only bound
vortex-antivortex pairs, or an insulating pair Wigner crystal with unbound
vortex-antivortex excitations.
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Two possibilities:

antivortex

Cooper pair

vortex

superconductor

antivortex

Cooper pair

vortex

pair crystal

Duality implies there is either a coherent superconductor with only bound
vortex-antivortex pairs, or an insulating pair Wigner crystal with unbound
vortex-antivortex excitations.

A key formal point in vortex-boson duality is that vortices can be thought of as
point particles with bosonic statistics.
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Duality applied to cuprates
[Tesanovic, PRL 2004]

This is more complicated because of the underlying lattice and the d-wave
symmetry of the order parameter. Nevertheless, one obtains checkerboard
patterns in qualitative agreement with experiment.
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Duality applied to cuprates
[Tesanovic, PRL 2004]

This is more complicated because of the underlying lattice and the d-wave
symmetry of the order parameter. Nevertheless, one obtains checkerboard
patterns in qualitative agreement with experiment.
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[Hanaguri et al. 2004]
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The bosonic mode in underdoped YBCO
[Doiron-Leyraud et al., cond-mat 2006]

Thermal conductivity measurements reveal extra bosonic mode with T 3

temperature dependence.

2

in time to find the initial hole concentration of our 6.33
samples).

Measurements were performed in a dilution refrigera-
tor using a four-contact AC method for electrical resis-
tivity and a one-heater-two-thermometer technique for
thermal conductivity [14]. Great care was taken to en-
sure a uniform current distribution: very thin samples
were used (thickness ! 4–10 µm, length ! 1000–2000
µm) with contacts made by evaporating and diffusing
gold pads down the sides of each sample.

The thermal conductivity of samples L and B is shown
in Fig. 1, plotted as κ/T vs T . One can readily identify
three contributions to κ: 1) a residual linear term κ0/T ,
due to fermions, present in both samples; 2) an additional
T 3 term, due to bosons, present below p = 5.3 % but
not above, revealed by plotting the difference between
successive anneals (see upper inset); and 3) a phonon
background which goes as T α with α < 3. We discuss
each contribution in detail.

Bosons. The evolution of κ/T with doping is at
the center of our study. The data displayed in Fig. 1
shows a generic feature of 6.33 samples: there is a large
drop in κ with increasing p, by as much as 30 % at
0.6 K. When plotted on a T 2 scale, as shown in the
upper inset, the difference κ/T (4.7%) − κ/T (5.4%) is
linear below 450 mK and a fit to ∆κ/T = ∆a + βT 2

gives β = 476 µW K−4 cm−1 and a negligible intercept
(∆a = 0). The same fit applied to the intermediate dif-
ference, κ/T (5.0%)− κ/T (5.4%), yields a similar result,
with β = 283 µW K−4 cm−1 and ∆a = 0. Measure-
ments on more underdoped samples, with y = 6.31 and
6.32, show that this T 3 contribution to κ persists at lower
doping. In striking contrast, however, this term is no
longer present above 5.3 %. This is shown in the lower
inset of Fig. 1, where sample B exhibits negligible change
in κ as its doping varies from 5.2 to 5.7 %. Collecting all
samples at all dopings in Fig. 2 reveals a highly repro-
ducible behaviour with increasing p: β decreases roughly
linearly until 5.3 %, at which point it stops evolving. We
thus conclude that β = 0 for p > 5.3 %.

A pure T 3 term in c(T ) as T → 0 is the standard
signature of 3D bosonic excitations. For this T 3 term
to be reflected in κ(T ), the mean free path needs to be
independent of T , as in the ballistic regime where it is
limited only by sample boundaries. In an anisotropic sys-
tem like cuprates, one can expect κ ∼ LT 3/v⊥v, where
L is the sample size and v (v⊥) is the in-plane (out-of-
plane) acoustic boson velocity. Such ballistic acoustic
bosons offer the most natural interpretation for the βT 3

contribution to κ observed in YBa2Cu3Oy.
The appearance of a new boson mode below pSC sug-

gests that a state with long range spin or charge order sets
in where superconductivity vanishes [15]. Two scenarios
come to mind. In the first one, the βT 3 term is ascribed
to the magnons of an antiferromagnetic state that devel-
ops below pSC . This scenario is motivated in part by

0.0 0.6
0.0

0.5

 

 

 

 

0.0 0.1 0.2 0.3
0.00

0.05

0.10

0.15

  

 

T
2
 [K

2
]

0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

YBa
2
Cu

3
O

y

5.7 %
5.2 %

y = 6.33

4.7 % - 5.4 %

y = 6.0

5.4 %

4.7 %

 

!
 /
 T

 [
 m

W
 K

-2
 c

m
-1
 ]

T [ K ]

y = 6.35y = 6.33

FIG. 1: Temperature dependence of κ/T for three crystals
of YBa2Cu3Oy with different oxygen content y. Main panel:
y = 6.33 (sample L) at p = 4.7 % (open circles) and 5.4 %
(full circles), with a power-law fit to κ/T = a + bT α−1 (solid
line), giving α = 2.0; y = 6.0 (p = 0) (full squares), with
the same fit (dashed line), giving α = 2.4 (κ/T is limited
to T < 0.3 K and scaled by 1/4 for clarity). Upper inset:
difference between κ/T (4.7%) and κ/T (5.4%), vs T 2, with a
linear fit. Lower inset: y = 6.35 (sample B) at p = 5.2 %
(open triangles) and 5.7 % (full triangles), with a fit to the
5.2% curve that yields α = 2.4.

the striking similarity with the well-understood antifer-
romagnet Nd2CuO4 [12]. Comparing the two cuprates,
we note that the ballistic regime where κb ∝ T 3 is nearly
the same: up to 0.5 K for Nd2CuO4 and up to 0.45 K
for YBa2Cu3Oy. Moreover, the value of β is of the same
order of magnitude, when considering the difference in
sample size. Indeed, although β in Nd2CuO4 is 30 times
larger than the value reached in YBa2Cu3Oy at 4.7 %,
the three 6.33 samples are 10-15 times thinner. In further
support of this scenario, we note that recent neutron scat-
tering measurements on YBa2Cu3Oy show the in-plane
spin correlation length growing rapidly as p → pSC (from
above) [16], and µSR measurements show that the Néel
temperature of low-doped YBa2Cu3Oy declines rapidly
as p → 0.05 (from below) [6].

The second scenario is a transition to a Wigner crystal
of Cooper pairs. According to duality arguments, phase
fluctuations of the d-wave superconducting order param-
eter can lead to such order [17] and recent STM exper-
iments on cuprates (e.g., [8]) have been interpreted as
evidence for its existence. Pereg-Barnea and Franz [18]
recently showed that a Wigner crystal of Cooper pairs
supports gapless transverse modes of vibration that con-
tribute a T 3 term to the thermal conductivity, whose
coefficient they estimate to be in broad agreement with
the experimental value of β reported here. It is inter-

AF
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T
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drop in κ with increasing p, by as much as 30 % at
0.6 K. When plotted on a T 2 scale, as shown in the
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with β = 283 µW K−4 cm−1 and ∆a = 0. Measure-
ments on more underdoped samples, with y = 6.31 and
6.32, show that this T 3 contribution to κ persists at lower
doping. In striking contrast, however, this term is no
longer present above 5.3 %. This is shown in the lower
inset of Fig. 1, where sample B exhibits negligible change
in κ as its doping varies from 5.2 to 5.7 %. Collecting all
samples at all dopings in Fig. 2 reveals a highly repro-
ducible behaviour with increasing p: β decreases roughly
linearly until 5.3 %, at which point it stops evolving. We
thus conclude that β = 0 for p > 5.3 %.

A pure T 3 term in c(T ) as T → 0 is the standard
signature of 3D bosonic excitations. For this T 3 term
to be reflected in κ(T ), the mean free path needs to be
independent of T , as in the ballistic regime where it is
limited only by sample boundaries. In an anisotropic sys-
tem like cuprates, one can expect κ ∼ LT 3/v⊥v, where
L is the sample size and v (v⊥) is the in-plane (out-of-
plane) acoustic boson velocity. Such ballistic acoustic
bosons offer the most natural interpretation for the βT 3

contribution to κ observed in YBa2Cu3Oy.
The appearance of a new boson mode below pSC sug-
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to the magnons of an antiferromagnetic state that devel-
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the striking similarity with the well-understood antifer-
romagnet Nd2CuO4 [12]. Comparing the two cuprates,
we note that the ballistic regime where κb ∝ T 3 is nearly
the same: up to 0.5 K for Nd2CuO4 and up to 0.45 K
for YBa2Cu3Oy. Moreover, the value of β is of the same
order of magnitude, when considering the difference in
sample size. Indeed, although β in Nd2CuO4 is 30 times
larger than the value reached in YBa2Cu3Oy at 4.7 %,
the three 6.33 samples are 10-15 times thinner. In further
support of this scenario, we note that recent neutron scat-
tering measurements on YBa2Cu3Oy show the in-plane
spin correlation length growing rapidly as p → pSC (from
above) [16], and µSR measurements show that the Néel
temperature of low-doped YBa2Cu3Oy declines rapidly
as p → 0.05 (from below) [6].

The second scenario is a transition to a Wigner crystal
of Cooper pairs. According to duality arguments, phase
fluctuations of the d-wave superconducting order param-
eter can lead to such order [17] and recent STM exper-
iments on cuprates (e.g., [8]) have been interpreted as
evidence for its existence. Pereg-Barnea and Franz [18]
recently showed that a Wigner crystal of Cooper pairs
supports gapless transverse modes of vibration that con-
tribute a T 3 term to the thermal conductivity, whose
coefficient they estimate to be in broad agreement with
the experimental value of β reported here. It is inter-
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FIG. 2: Boson and fermion contributions to the thermal
conductivity of YBa2Cu3Oy vs hole concentration p. Upper
panel: coefficient β of bosonic conductivity, κb = βT 3. The
full line and data points (black dots) are the resistive Tc(p).
For p ! 5.0 %, a finite resistive Tc is observed, from which p
is determined [13]. For p < 5.0 %, no Tc is observed and we
use a method described in the text to estimate p. The inset
shows the superconducting transition seen in susceptibility at
p = 5.4 %. Lower panel: coefficient a ≡ κ0/T of the fermionic
conductivity, κf = aT . Dashed lines are guides to the eye.

esting to note that the fermion sector of the same theory
([17, 18] and references therein) is qualitatively consistent
with other aspects of our study, as we shall see below, in
the sense that charge is localized in the Wigner-crystal
state, but spin can remain mobile, in the form of neutral
fermionic spin excitations with a Dirac spectrum.

Fermions. We now turn to the part of the thermal
conductivity associated with delocalized fermionic exci-
tations, namely κf = aT , obtained from the T = 0 in-
tercept κ0/T . For sample L at 5.4 %, a power-law fit
to κ/T = a + bT α−1 up to 0.6 K yields a ≡ κ0/T =
40 ± 1 µW K−2 cm−1, with α = 2.0. As already men-
tioned, the difference ∆κ/T between κ/T at 4.7 % and
κ/T at either 5.0 or 5.4 % yields a negligible intercept.
This demonstrates that κ0/T for L does not change with
doping upon crossing pSC , as shown in the lower panel
of Fig. 2. The data for the five other samples are also
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FIG. 3: Electrical resistivity ρ of non-superconducting
YBa2Cu3O6.33 at p = 4.7 (open triangles) and 5.0 % (full
triangles) in H = 0 and 10 T, respectively. The correspond-
ing fermionic thermal resistivity is plotted in the same units,
as L0T/κ0 (open and closed circles). Inset: ρ(T ) at p = 4.7 %
(H = 0 T) on a logarithmic scale, with linear fit.

displayed, obtained using the same procedure: a power-
law fit for p ! 5.3 % and a T 2 fit to the difference for
p < 5.3 %. It is remarkable that all six samples measured
at p " 5.3% gave values within 10 % of each other: κ0/T
= 38 ± 3 µW K−2 cm−1. This highly reproducible find-
ing confirms the presence of fermionic excitations below
pSC , as reported recently [19]. We note that a magnetic
field up to 10 T has negligible effect on κ for all samples
and dopings.

The fact that κ0/T is, within error bars, constant
across the boundary between superconducting and nor-
mal states suggests that the spectrum of nodal quasipar-
ticles associated with the d-wave superconducting gap
does not change when superconducting order vanishes.
Therefore, the normal state of YBa2Cu3Oy close to pSC

is a thermal metal which may well be a “nodal” metal.
Measurements on samples with y = 6.31 and 6.32 show
that κ0/T eventually becomes negligible as p approaches
4 %, so that fairly soon this thermal metal phase either
comes to an end (e.g., through the appearance of a gap
at the nodes) or its fermions become localized.

Sun et al. recently measured the thermal conductivity
of underdoped YBa2Cu3Oy near pSC [20], in separate
crystals at a single value of p each. κ0/T for their y =
6.45 sample (Tc = 20 K) agrees well with our data, but it
becomes negligible in their non-superconducting y = 6.35
sample. The discrepancy may come from an overestimate
of p, quite likely in the absence of a Tc or in the presence
of filamentary superconductivity. This is supported by
the fact that the resistivity of their 6.35 sample is higher
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Hypothesis:

The T 3 contribution is due to
vibrational modes of the pair Wigner crystal

Analysis of such vibrational modes shows contribution to thermal conductivity
κ(T ) of correct order of magnitude [Pereg-Barnea and MF, PRB 2006].

Important consequence: Since for bosonic modes

κ(T ) ∼ T d

the vibrations propagate in 3 dimensions.

PWC is three dimensional!
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Question:
How does fundamentally two-dimensional vortex-boson duality

account for 3d pair crystal?

Is it possible to reformulate the duality for a 3d superconductor?

This is nontrivial since in 3d vortices form loops: the dual theory is not a
theory of particles but a string theory.

Abrikosov vortex Vortex loop
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Duality in 3 dimensions
Generalize the 2d concept:

2! n

Cooper pair

vortex

2d: point-like vortices

2! n

Cooper pair

vortex loop

3d: vortex loops

The idea is clear, need to find mathematical formulation of (3+1)D
vortex-boson duality. In fact, it will turn out to be a

vortex-loop – string duality
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where Ψ = |Ψ|eiθ is the order parameter.
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Formalism of the (3+1)D duality
[Franz, cond-mat/0607310]

Begin with a Lagrangian for 3d phase-fluctuating superconductor

L =
1
2
K̃µ |(∂µ − 2ieAµ) Ψ|2 + a|Ψ|2 +

1
2
b|Ψ|4,

where Ψ = |Ψ|eiθ is the order parameter. Consider London approximation,
Ψ(x) ' Ψ0e

iθ(x),

L =
1
2
K (∂µθ − 2eAµ)2 ,

where K = K̃Ψ2
0 represents the phase stiffness.

Write θ = Θ + θs, where θs is the smooth part of the phase, and Θ contains
vortex loops. Now decouple the quadratic term with a real auxiliary field, Wµ,
using the familiar Hubbard-Stratonovich transformation, obtaining

L =
1

2K
W 2

µ + iWµ(∂µΘ− 2eAµ) + iWµ(∂µθs).
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Gaussian integration over θs leads to a constraint

∂µWµ = 0,

which reflects conservation of electric charge. In (2+1)D we would enforce
this constraint by expressing Wµ as a curl of a dual gauge field Ad

µ,
Wµ = εµνγ∂νA

d
γ.

However, curl operation is only meaningful in 3 dimensions. In (3+1)D we may
enforce the constraint by writing

Wµ = εµναβ∂νBαβ,

where εµναβ is the totally antisymmetric tensor and Bαβ is antisymmetric
rank-2 tensor gauge field.
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where Hαβγ = ∂αBβγ + ∂βBγα + ∂γBαβ is the tensorial field strength.
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The Lagrangian becomes

L =
H2

αβγ

3K
− iBαβ(εαβµν∂µ∂νΘ)− 2ie(εµναβ∂νBαβ)Aµ,

where Hαβγ = ∂αBβγ + ∂βBγα + ∂γBαβ is the tensorial field strength.

The above Lagrangian possesses invariance under the gauge transformation

Bαβ → Bαβ + ∂[αΛβ]

for an arbitrary smooth vector function Λµ; and ∂[αΛβ] = ∂αΛβ − ∂βΛα.

The electric four-current is related to Bµν by jµ = 2e(εµναβ∂νBαβ). The charge
density, in particular, can be written as

ρ = j0 = 2e(εijk∂iBjk),

where Roman indices run over spatial components only.
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Bµν is minimally coupled to the “vortex loop current”

σαβ(x) = εαβµν∂µ∂νΘ(x).

This is only non-zero when Θ(x) is multiply valued.

In 3d single valuedness of eiΘ(x) permits line singularities in Θ(x) such that it
varies by an integer multiple of 2π along any line that encircles the singularity.
These are the vortex loops.
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Connection to string theory

Theory of everything ...

... but Zwiebach comes to rescue:
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The worldsheet construction

In string theory strings are described by worldsheets.

In 3d space a piece of static
string can be described by a 3-
vector X(σ) where σ = (0, 2π)
parametrizes the string.

X (!)
string

A moving string can be
parametrized by 3-vector X(τ, σ)
where τ is the (imaginary) time
and again σ = (0, 2π).

A Lorentz invariant description of a relativistic string is obtained by using a
Lorentz 4-vector

Xµ(σ1, σ2) = [X0(σ1, σ2),Xµ(σ1, σ2)]

where σ1 is time-like and σ2 spacelike parameter.
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A surface element of a worldsheet is characterized by a rank-2 antisymmetric
tensor

Σ(n)
µν =

∂X
(n)
[µ

∂σ1

∂X
(n)
ν]

∂σ2
.

It is straightforward to show that the loop current is related to the worldsheet
by

σµν(x) = 2π
∑

n

∫
d2σΣ(n)

µν δ
(
X(n) − x

)
.

This relation allows us to rewrite the partition function as a functional integral
over the vortex loop worldsheets X

(n)
µ . We thus have Z =

∫
D[X] exp(−S)

with

S =
∑

n

∫
d2σ

[
T

√
Σ(n)

µν Σ(n)
µν − 2πiΣ(n)

µν Bµν(X(n))
]

+
1

3K

∫
d4xH2

αβγ + Sint + SJac.

Nambu-Goto action for bosonic string minimally coupled to Kalb-Ramond
rank-2 tensor gauge field Bµν.
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Here Φ[X] is the string annihilation operator.
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String condensation

The second-quantized string action takes the form

S =
∫
D[X]

∫
dσ
√

h
[∣∣(δ/δΣµν − 2πiBµν)Φ[X]

∣∣2 +M2
eff

∣∣Φ[X]
∣∣2]

+
1

3K

∫
d4xH2

αβγ + S ′int.

Here Φ[X] is the string annihilation operator.

String condensation occurs when M2
eff becomes negative and Φ[X] acquires

finite vacuum expectation value:

〈Φ[X]〉 6= 0.
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The simplest ansatz of “uniform string condensate”

〈Φ[X]〉 = Φ0 = const.

leads to “Meissner state” for Kalb-Ramond gauge field: Bµν = 0 in the interior
meaning that the charge is expelled from the sample.

We seek the analog of “Abrikosov state” for Bµν. Consider the ansatz

〈Φ[X]〉 = Φ0 exp
{∫

dσ[ζ
√

X ′2 ln f(X) + 2πiX ′
µ · Ωµ(X)]

}
.

Substituting this to the action we get

L =
Φ2

0

2
[
π2f2(∂[µΩν] − 2Bµν)2 + ζ2(∂µf)2 + V(f2)

]
+

1
3K

H2
αβγ.
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Last page with formulas ...

Configurations with monopoles in the spatial part
of Ω = (Ω0,Ω),

∇ · (∇×Ω) =
∑

a

Qaδ
(3)(x− xa),

where xa and Qa label the position and the charge
of the a-th monopole. ∇×Ω

Minimizing the action with respect to Bij leads to a London-like equation for
the Cooper pair charge density

ρ− λ2
d∇2ρ = 2e∇ · (∇×Ω)

with λ−2
d = 2π2Φ2

0K a dual “penetration depth”.
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In 2d the analogous dual London equation is

ρ− λ2
d∇2ρ = 2e

∑
a

δ(2)(x− xa)

and leads to Abrikosov lattice of dual vortices (Cooper pairs) → Cooper pair
Wigner crystal.

In essence the lattice forms because of repulsive
interactions between dual vortices mediated by
the dual superflow.

[The lattice would be triangular in continuum; the square
lattice can arise due to square anisotropies inherent to
cuprates (band structure, d-wave order parameter...)]

Cooper pair crystal
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In 3d the London equation is

ρ− λ2
d∇2ρ = 2e

∑
a δ(3)(x− xa)

and can be analyzed by similar means.

Dual vortices interact by a repulsive Yukawa-type interaction, ∼ e−r/λd/r, and
will form a a 3d crystal

→ Pair Wigner Crystal in 3 space dimensions
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Testable prediction

The details of PWC crystalline structure depend on various second order
effects (e.g., anisotropies in the material, pining to the ionic lattice, ...).

However, once the {xa} are fixed then duality gives a universal prediction for
the charge distribution,

ρ(x) = 2e
∑

a

Qa
e−|x−xa|/λd

4πλ2
d|x− xa|

.

This could be, at least in principle, extracted from STM or X-ray scattering
data.
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=⇒
⊕
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