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Pair Wigner crystal in Mysterious bosonic mode in
Ca,_,Na,CuO,Cls YBa;Cu3O¢. 4

(Davis et. al, 2004] [Taillefer et. al, cond-mat/0606645]
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Cooper pair Wigner crystal in underdoped cuprates
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Cooper pair Wigner crystal in underdoped cuprates
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Checkerboard pattern in LDOS of
Scanning Tunneling NaCCOC

Microscopy [Hanaguri et. al, Nature 2004]
-images topography and
local density of states
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... more checkerboards

Checkerboard pattern in LDOS of
BISCCO at finite T’
[Vershinin et al. Nature 2004]
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... more checkerboards

Checkerboard pattern in LDOS of
BiSCCO at finite T’

= In Magnetic vortices
[Vershinin et al. Nature 2004]

[Hoffman et al. Science 2002]
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Checkerboard patterns In
electron LDOS appear to be
universal: encountered outside
the superconducting dome in the
underdoped region.
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PIEROG ey it it TPl Checkerboard patterns  in
Magnotic field > electron LDOS appear to be

universal: encountered outside
the superconducting dome in the
underdoped region.
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What is pair Wigner crystal?

Simple explanation: upon phase disordering Copper pairs in a superconductor
can minimize their interaction energy by forming a crystal.

Number-phase uncertainty relation AN - Ay > 1 also applies locally, e.g. in a
lattice model of a superconductor,



(3+1)D DuALITY

What is pair Wigner crystal?

Simple explanation: upon phase disordering Copper pairs in a superconductor

can minimize their interaction energy by forming a crystal.

Number-phase uncertainty relation AN - Ay > 1 also applies locally, e.g. in a

lattice model of a superconductor,

phase ordered < number uncertain



(3+1)D DuALITY 5

What is pair Wigner crystal?
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Vortex-boson duality in (2+1)D
[Fisher & Lee, PRB 39, 2756 (1989)]

Maps a Lagrangian for 2d phase-fluctuating superconductor

1 1
L= K]0, — 2iedy) | + a| U + ib\\ll\‘l
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Vortex-boson duality in (2+1)D
[Fisher & Lee, PRB 39, 2756 (1989)]

Maps a Lagrangian for 2d phase-fluctuating superconductor

1 1
£ = oK, |9 — 2ieA,) U + U + b T

onto the fictitious dual superconductor

1 . 271 1
'Cdual = 5‘(0,u — 27TZA§)X‘2 ol V(‘XD — (}#OA 0 ((9 X Ad) + ﬁ(a X Ad)/%

In fictitious
Bd — ((9 X Ad)O = P,

with p(r) the density of Cooper pairs.
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When the average density p of Cooper pairs is non-zero then the pair Wigner
crystal emerges as the

Abrikosov vortex lattice of the dual superconductor.
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When the average density p of Cooper pairs is non-zero then the pair Wigner
crystal emerges as the

Abrikosov vortex lattice of the dual superconductor.

B,: dual magnetic field
Y. dual order parameter

Aq. dual penetration depth
¢4. dual coherence length

Dual vortex lattice
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Dual order parameter

-describes In the original superconductor.

(x) = 0: vortices uncondensed — superconductor

Two phases: : i i
Wo p S (x) % 0: — insulating pair crystal
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Dual order parameter

-describes In the original superconductor.

(x) = 0: vortices uncondensed — superconductor

T h ;
WO phases (x) % 0: — insulating pair crystal
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Physical essence of vortex-boson duality

On encircling a vortex, a Cooper pair
acquires phase 2.

Thus, in the presence of
vortices Cooper pairs can propagate
coherently.
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Physical essence of vortex-boson duality

On encircling a vortex, a Cooper pair
acquires phase 2.

cooper pair

vortex

Thus, in the presence of
vortices Cooper pairs can propagate
coherently.

If a vortex Cooper pair acquires

phase that is

L] cooper pair

vortex

Coherent propagation of pairs is
frustrated, superconducting order is
suppressed.

Vortices and pairs cannot both propagate coherently.
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Two possibilities:
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Duality implies there is either a coherent superconductor with only bound
vortex-antivortex pairs, or an insulating with unbound
vortex-antivortex excitations.
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Two possibilities:

e )

. _ _ anfivortex

superconductor pair crystal

Duality implies there is either a coherent superconductor with only bound
vortex-antivortex pairs, or an insulating with unbound
vortex-antivortex excitations.

A key formal point in vortex-boson duality is that vortices can be thought of as
point particles with bosonic statistics.
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Duality applied to cuprates
[Tesanovic, PRL 2004]
This is more complicated because of the underlying lattice and the d-wave

symmetry of the order parameter. Nevertheless, one obtains checkerboard
patterns in qualitative agreement with experiment.
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Duality applied to cuprates
[Tesanovic, PRL 2004]
This is more complicated because of the underlying lattice and the d-wave

symmetry of the order parameter. Nevertheless, one obtains checkerboard
patterns in qualitative agreement with experiment.

experiment
[Hanaguri et al. 2004]

theory
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The bosonic mode in underdoped YBCO

[Doiron-Leyraud et al., cond-mat 2006]

Thermal conductivity measurements reveal extra bosonic mode with 7
temperature dependence.
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The bosonic mode in underdoped YBCO

[Doiron-Leyraud et al., cond-mat 2006]

Thermal conductivity measurements reveal extra bosonic mode with 7
temperature dependence.
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Hypothesis:

The T contribution is due to
of the pair Wigner crystal

Analysis of such vibrational modes shows contribution to thermal conductivity
x(T") of correct order of magnitude [Pereg-Barnea and MF, PRB 2006].



(3+1)D DuALITY 13

Hypothesis:

The T contribution is due to
of the pair Wigner crystal

Analysis of such vibrational modes shows contribution to thermal conductivity
x(T") of correct order of magnitude [Pereg-Barnea and MF, PRB 2006].

Important consequence: Since for bosonic modes
k(T) ~ T

the vibrations propagate in

PWC is three dimensional!
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Question:

How does fundamentally two-dimensional vortex-boson duality
account for 3d pair crystal?

Is it possible to reformulate the duality for a 3d superconductor?
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Question:

How does fundamentally two-dimensional vortex-boson duality
account for 3d pair crystal?

Is it possible to reformulate the duality for a 3d superconductor?

This is nontrivial since in 3d vortices form loops: the dual theory is not a
theory of particles but a =iring theory.,

Abrikosov vortex Vortex loop
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Duality in 3 dimensions

Generalize the 2d concepit:

2d: point-like vortices
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Duality in 3 dimensions

Generalize the 2d concepit:

]
~
N
’r }

O‘ - vortex loop

2d: point-like vortices 3d: vortex loops

The idea is clear, need to find mathematical formulation of (3+1)D
vortex-boson duality. In fact, it will turn out to be a

vortex-loop — string duality
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Formalism of the (3+1)D duality
[Franz, cond-mat/0607310]

Begin with a Lagrangian for 3d phase-fluctuating superconductor

1 - 1
L= §K“ (0, — 2ieA,) | + a|¥|* + 55\‘11’4»

where ¥ = |U|e? is the order parameter.
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Formalism of the (3+1)D duality
[Franz, cond-mat/0607310]

Begin with a Lagrangian for 3d phase-fluctuating superconductor

1 - 1
L= §K“ (0, — 2ieA,) | + a|¥|* + ib\‘wl»

where ¥ = |U|e? is the order parameter. Consider London approximation,
U (z) ~ Woelt@),
1
L=K (9,0~ 2eA,)°,
where K = K P2 represents the phase stiffness.

Write 0 = ©) + 0,, where 6, Is the smooth part of the phase, and
. Now decouple the quadratic term with a real auxiliary field, W,
using the familiar Hubbard-Stratonovich transformation, obtaining

1
L= ﬁwi +iW, (9,0 — 2eA,,) + iW,(0,0s).
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Gaussian integration over 6, leads to a constraint
oW, =0,

which reflects conservation of electric charge.
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Gaussian integration over 6, leads to a constraint
oW, =0,
which reflects conservation of electric charge. In (2+1)D we would enforce

this constraint by expressing W, as a curl of a dual gauge field A¢,
W, = €u~0,AS.

However,

. In (3+1)D we may
enforce the constraint by writing

W,LL — E,ul/ozB(?VBozﬁa

where €,z IS the totally antisymmetric tensor and B, IS antisymmetric
rank-2 tensor gauge field.
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The Lagrangian becomes

H2
By iBaﬁ<€aﬁuyauaV@> _ Qie(elﬂ/aﬁa’/Baﬁ)A“’

L=3K

where H.z, = 0oBgy + 03B~a + 0 Bqg IS the tensorial field strength.
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The Lagrangian becomes

H2
Sc;fﬂ — i Bag(€apu0,0,0) — 2ie(€4yap0yBag) Ay,

[ —

where H.z, = 0.Bg, + 03B,a + 0yBag Is the tensorial field strength.

The above Lagrangian possesses invariance under the gauge transformation
Bafg — Bag —+ c‘%/\m

for an arbitrary smooth vector function A,; and 8,,Ag = 8.3 — IsAa.
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The Lagrangian becomes

H2
By iBaﬁ<€aﬁuyauaV@> _ Qie(elﬂ/aﬁa’/Baﬁ)A“’

L=3K

where H.z, = 0oBgy + 03B~a + 0 Bqg IS the tensorial field strength.

The above Lagrangian possesses invariance under the gauge transformation
Baﬁ — Bag —+ c‘?[aA@]

for an arbitrary smooth vector function A,; and 8,,Ag = 8.3 — IsAa.

The Is related to B, by . The charge
density, in particular, can be written as

p = jo = 2e(€;;10iBji),

where Roman indices run over spatial components only.
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B,,,, is minimally coupled to the “vortex loop current”

00(T) = €apur0,,0,0(x).
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B,,,, is minimally coupled to the “vortex loop current”
0ap(T) = €080,0,0(T).

This is only non-zero when O(z) is

In 3d single valuedness of /%) permits line singularities in ©(x) such that it
varies by an integer multiple of 27 along any line that encircles the singularity.
These are the vortex loops.
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Connection to string theory

Today t, t =15 billion years

Life on earth
Solar system

Quasars

Galaxy formation
Epach of gravitational collapse

Recombination
Relic radiation decouples (CBR)
Matter domination
Onset of gravitational ins tahility

Nucleosynthesis |
Lightelements created - 0, He, Li | t=1 second

Quark-hadron transition
Hadrans form - protons & neutrons

Electroweak phase transition | . _ 4g10
Electromagnetic & weak nuclear )
forces become differsntiated: | T=10"GeV ||
SU3)xSU2)xU(1) > SU(E)xU(1) || |

The Particle D esert ‘
Axions, supersymmeiry? |

Grand unification transition
G > H-> SU3JSU(2)xU(1)
Inflation, baryogenesis,
monopoles, cosmic strings, etc.?

The Planck epoch

The quantum gravity barrier

IAYATATA
Theory of everything ...
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Connection to string theory

Today t, t =15 billion years

Life on earth
Solar system

Quasars

Galaxy formation
Epach of gravitational collapse

... but Zwiebach comes to rescue:

Recombination
Relic radiation decouples (CBR)
Matter domination
Onset of gravitational ins tahility

t=3minutes
Nucleosynthesis \ f
; .} t=1second |
Lightelements created - 0, He, Li |

T=1MeV |
|

t=10""s

Quark-hadron transition
Hadrans form - protons & neutrons

Electroweak phase transition | . _ 4g10
Electromagnetic & weak nuclear )
forces become differsntiated: | T=10"GeV ||
SU3)xSU2)xU(1) > SU(E)xU(1) || |

The Particle D esert ‘
Axions, supersymmeiry? |

A First Course
in String Theory

Barton Zwiebach

Grand unification transition
G > H-> SU3JSU(2)xU(1)
Inflation, baryogenesis,
monopoles, cosmic strings, etc.?

The Planck epoch

The quantum gravity barrier

IAYATATA
Theory of everything ...
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The worldsheet construction

In string theory strings are described by worldsheets.
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The worldsheet construction

In string theory strings are described by worldsheets.

can be
parametrized by 3-vector X(7,0)
where 7 is the (imaginary) time
and again o = (0, 2m).

In 3d space a piece of static
string can be described by a 3-
vector X(o) where ¢ = (0,2n)
parametrizes the string.

A Lorentz invariant description of a relativistic string is obtained by using a
Lorentz 4-vector

where o Is time-like and o5 spacelike parameter.

21

SLIDES CREATED USING FoIlTEX & pp4



(3+1)D DuALITY 22

A surface element of a worldsheet is characterized by a rank-2 antisymmetric
tensor
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A surface element of a worldsheet is characterized by a rank-2 antisymmetric
tensor

It is straightforward to show that the loop current is related to the worldsheet

by
o(T) = QWZ / d20§]<”)5 ) :E) .

This relation allows us to rewrite the partition function as a functional integral
over the vortex loop worldsheets be"‘). We thus have Z = | D[ X|exp(—S)

with
> [e|r |

1
3—K / d4xH257 + Smt + SJac
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A surface element of a worldsheet is characterized by a rank-2 antisymmetric
tensor

It is straightforward to show that the loop current is related to the worldsheet

by
0y (7 _QWZ/CF B8 (X — z).

This relation allows us to rewrite the partition function as a functional integral
over the vortex loop worldsheets X,S”). We thus have Z = | D[ X|exp(—S)

with
> / d’o [T ]
1 4 2
3—K d*zH oy + Smt + SJac

Nambu-Goto action for bosonic string minimally coupled to Kalb-Ramond
rank-2 tensor gauge field B, .
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String condensation

The second-quantized string action takes the form

/ D[X / dovh[|(8/6%,, — 2miB,,)®

d*zHZ 5., + Sy

SK

Here ®|X| is the string annihilation operator.

X]|* + M2 |®[X

1]
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String condensation

The second-quantized string action takes the form

/ DX / dovh[|(8/6%,, — 2miB,,)®

d*zHZ 5., + Sy

SK

Here ®|X| is the string annihilation operator.

23

X" + M2 |0[X]|"]

occurs when M?Z. becomes negative and ®[X] acquires

finite vacuum expectation value:

(®[X]) # 0.
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The simplest ansatz of “uniform string condensate”
(®|X]) = Py = const.

leads to “Meissner state” for Kalb-Ramond gauge field: B,,,, = 0 in the interior
meaning that the charge is expelled from the sample.
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The simplest ansatz of “uniform string condensate”
(®|X]) = Py = const.

leads to “Meissner state” for Kalb-Ramond gauge field: B,,,, = 0 in the interior
meaning that the charge is expelled from the sample.

We seek the analog of for B,,. Consider the ansatz

(B[X]) = Bgexp { / do[¢(VX721n f(X) + 2miX), QM(X)]} .

Substituting this to the action we get

P2 1
L= 70 [W2f2(3[MQV] - ZBMV)2 + CQ(auf)2 +V(f )} + 3—KH2
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Last page with formulas ...

Configurations with monopoles in the spatial part
of 2 = (QQ, Q),

VA(VXxQ) =) Qad®(x—x,),

a

where x, and @), label the position and the charge
of the a-th monopole.
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25

Last page with formulas ...

Configurations with monopoles in the spatial part
of 2 = (QQ, Q),

(V x Q) ZQ5(3)X—X)

where x, and @), label the position and the charge
of the a-th monopole. V x Q

Minimizing the action with respect to B;; leads to a London-like equation for
the Cooper pair charge density

p—A2V?p=2eV - (V x Q)

with A = 27202 K a dual “penetration depth”.
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In 2d the analogous dual London equation is

p— A3V3p = 2 Z 6P (x — x,)

and leads to Abrikosov lattice of dual vortices (Cooper pairs) — Cooper pair
Wigner crystal.
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In 2d the analogous dual London equation is
p— A3V3p = 2 Z 6P (x — x,)

and leads to Abrikosov lattice of dual vortices (Cooper pairs) — Cooper pair
Wigner crystal.

In essence the lattice forms because of
between dual vortices mediated by
the dual superflow.

[The lattice would be triangular in continuum; the square

lattice can arise due to square anisotropies inherent to © O
Cooper pair crystal

cuprates (band structure, d-wave order parameter...)] e
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(3+1)D DuALITY

In 3d the London equation is

p— AV =2eY, 60 (x —x,)

and can be analyzed by similar means.
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(3+1)D DuALITY

In 3d the London equation is

27

p— AV =2eY, 60 (x —x,)

and can be analyzed by similar means.

Dual vortices interact by a repulsive Yukawa-type interaction, ~ e~"/*d/r, and

will form a a 3d crystal

— Pair Wigner Crystal in 3 space dimensions
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(3+1)D DUALITY

Testable prediction

The detalls of PWC crystalline structure depend on various second order
effects (e.g., anisotropies in the material, pining to the ionic lattice, ...).
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(3+1)D DUALITY

Testable prediction

The detalls of PWC crystalline structure depend on various second order
effects (e.g., anisotropies in the material, pining to the ionic lattice, ...).

However, once the {x,} are fixed then duality gives a universal prediction for
the charge distribution,

o~ x—xal/Aq

p(x) = 2e Z Qo

ATAZ|X — Xq|
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Testable prediction

The detalls of PWC crystalline structure depend on various second order
effects (e.g., anisotropies in the material, pining to the ionic lattice, ...).

However, once the {x,} are fixed then duality gives a universal prediction for
the charge distribution,

o~ x—xal/Aq

p(x) =2¢ ) Qa

ATAZ|X — Xq|

This could be, at least in principle, extracted from STM or X-ray scattering
data.
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(3+1)D DuALITY

Summary

This work answers an experimentally motivated question:

How does a Cooper pair Wigner crystal form in 3 space dimensions?
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Summary

This work answers an experimentally motivated question:

How does a Cooper pair Wigner crystal form in 3 space dimensions?

The mechanism is similar in spirit to conventional 2d vortex-boson duality but
Instead of a simple bosonic theory leads to a representation of vortex loops as
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Summary

This work answers an experimentally motivated question:

How does a Cooper pair Wigner crystal form in 3 space dimensions?

The mechanism is similar in spirit to conventional 2d vortex-boson duality but
Instead of a simple bosonic theory leads to a representation of vortex loops as

Condensation of strings leads to quantization and localization of charge in
units of 2e and formation of Cooper pair Wigner crystal in 3d.
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Summary

This work answers an experimentally motivated question:

How does a Cooper pair Wigner crystal form in 3 space dimensions?

The mechanism is similar in spirit to conventional 2d vortex-boson duality but
Instead of a simple bosonic theory leads to a representation of vortex loops as

Condensation of strings leads to quantization and localization of charge in
units of 2e and formation of Cooper pair Wigner crystal in 3d.
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