Quasiparticle interference in the pseudogap phase of cuprate superconductors

M. Franz University of British Columbia franz@physics.ubc.ca

March 25, 2004

In collaboration with: T. Pereg-Barnea (KITP & UBC)

Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and *d*-wave superconductor.

Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and *d*-wave superconductor.

Phase diagram of cuprates. [For exp. review see Timusk and Statt, Rep. Prog. Phys. **62**, 61 (1999).]

Pseudogap: the key mystery

Pseudogap is a nonsuperconducting phase intermediate between the AF insulator and *d*-wave superconductor.

Phase diagram of cuprates. [For exp. review see Timusk and Statt, Rep. Prog. Phys. **62**, 61 (1999).]

Gap in the single-particle DOS above T_c [tunneling data from Renner *et al.*, PRL **80**, **149** (1998)]

Two schools of thought on the origin of pseudogap

Ascribe the pseudogap phenomenon to:

Remnants of superconducting order

- ★ Emery and Kivelson, Nature **374**, 434 (1995).
- ★ Franz and Millis, PRB **58**, 14572 (1998)
- ★ Balents, Fisher and Nayak, PRB 60, 1654 (1999)
- ★ Laughlin, cond-mat/0209269

Two schools of thought on the origin of pseudogap

Ascribe the pseudogap phenomenon to:

Remnants of superconducting order

- ★ Emery and Kivelson, Nature **374**, 434 (1995).
- ★ Franz and Millis, PRB **58**, 14572 (1998)
- ★ Balents, Fisher and Nayak, PRB **60**, 1654 (1999)
- ★ Laughlin, cond-mat/0209269

Static or fluctuating competing order in p-h channel (SDW, CDW, DDW, ...)

- ★ Zhang, Science **275**, 1089 (1997)
- ★ Varma, PRL 83, 3538 (1999)
- ★ Vojta, Zhang, and Sachdev, PRB **62**, 6721 (2000)
- ★ Chakravarty, Laughlin, Morr, and Nayak, PRB 63, 094503 (2001)

Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.

Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.

Need a decisive "smoking gun" experiment

Who is right?

Experimental determination of the origin of the pseudogap phase has proven elusive. At present believable experiments can be found to support either scenario.

Need a decisive "smoking gun" experiment

Our proposal: use the recently developed technique of Fourier Transform scanning tunneling spectroscopy (FT-STS).

- Pereg-Barnea and Franz, PRB **68**, 180506(R) (2003)
- Pereg-Barnea and Franz, cond-mat/0401594

STM Basics

[http://people.ccmr.cornell.edu/~jcdavis/stm]

STM measures differential conductance

$$n(\mathbf{r},\omega) \simeq \left(\frac{dI(\mathbf{r},eV)}{dV}\right)_{eV=\omega},$$

with potentially atomic resolution.

To reasonable approximation $n(\mathbf{r}, \omega)$ is proportional to the Local Density of States (LDOS) of the sample at point \mathbf{r} directly under the STM tip.

Tunneling spectroscopy in cuprates

Topography of BiSCCO:

Tunneling spectroscopy in cuprates

Topography of BiSCCO:

Spectroscopy of Ni impurities:

Tunneling spectroscopy in cuprates

Topography of BiSCCO:

Spectroscopy of Ni impurities:

LDOS inhomogeneity:

Slides created with FoilT_EX & ${\rm PP}^4$

FT-STS: "Fourier Transform Scanning Tunneling Spectroscopy"

Periodic patterns in LDOS at fixed energy are sometimes observed:

FT-STS: "Fourier Transform Scanning Tunneling Spectroscopy"

FT

Periodic patterns in LDOS at fixed energy are sometimes observed:

6

Slides created with FoilT_EX & PP 4

FT-STS peaks disperse as a function of applied bias

- K. McElroy *et al.*, Nature **422**, 592 (2003).
- J.E. Hoffman *et al.*, Science **297**, 1148 (2002).

The "Octet Model"

The octet model asserts that the peaks in FT-STS are due to quasiparticle scattering between the regions of high DOS.

The "Octet Model"

The octet model asserts that the peaks in FT-STS are due to quasiparticle scattering between the regions of high DOS.

Slides created with FoilTeX & PP 4

The octet model, although simple and appealing, is not quite right.

The octet model, although simple and appealing, is not quite right.

• DOS itself *cannot* explain the peaks in the FT-STS data

The octet model, although simple and appealing, is not quite right.

- DOS itself cannot explain the peaks in the FT-STS data
- The interference patterns depend crucially on the electron *wavefunctions*, i.e. they are sensitive to BCS coherence factors.

The octet model, although simple and appealing, is not quite right.

- DOS itself cannot explain the peaks in the FT-STS data
- The interference patterns depend crucially on the electron *wavefunctions*, i.e. they are sensitive to BCS coherence factors.
- Systems with *identical DOS* but different type of electron order will exhibit qualitatively different FT-STS patterns.

The octet model, although simple and appealing, is not quite right.

- DOS itself cannot explain the peaks in the FT-STS data
- The interference patterns depend crucially on the electron *wavefunctions*, i.e. they are sensitive to BCS coherence factors.
- Systems with *identical DOS* but different type of electron order will exhibit qualitatively different FT-STS patterns.

\longrightarrow IDENTIFICATION OF PSEUDOGAP ORDER

Slides created with Foiltex & PP^4

Theory of FT-STS

STM measures the quantity [Wang and Lee, PRB 67, 020511(2003)]

$$n(\mathbf{r},\omega) = -\frac{1}{\pi} \operatorname{Im}[G_{11}(\mathbf{r},\mathbf{r},\omega) + G_{22}(\mathbf{r},\mathbf{r},-\omega)],$$

where $G(\mathbf{r}, \mathbf{r}', \omega)$ is a full electron propagator. In the presence of disorder potential V we can write

$$G(\mathbf{k}, \mathbf{k}', \omega) = G^{0}(\mathbf{k}, \omega)\delta_{\mathbf{k}, \mathbf{k}'} + G^{0}(\mathbf{k}, \omega)\hat{T}_{\mathbf{k}\mathbf{k}'}(\omega)G^{0}(\mathbf{k}', \omega),$$

with $G^0(\mathbf{k}, \omega) = [\omega - \sigma_3 \epsilon_{\mathbf{k}} - \sigma_1 \Delta_{\mathbf{k}}]^{-1}$ the bare Green's function and $\hat{T}_{\mathbf{k}\mathbf{k}'}(\omega)$ the T-matrix that satisfies the Lippman-Schwinger equation

$$\hat{T}_{\mathbf{k}\mathbf{k}'}(\omega) = \hat{V}_{\mathbf{k}\mathbf{k}'} + \sum_{\mathbf{q}} \hat{V}_{\mathbf{k}\mathbf{q}} G^0(\mathbf{q},\omega) \hat{T}_{\mathbf{q}\mathbf{k}'}(\omega).$$

Slides created with Foiltex & PP^4

QP INTERFERENCE

FT-STS measures $n(\mathbf{q}, \omega)$, a spatial Fourier transform of $n(\mathbf{r}, \omega)$.

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can express the non-uniform part $\delta n(\mathbf{q}, \omega)$ [Capriotti *et al.* PRB **68**, 014508 (2003)]

$$\delta n(\mathbf{q},\omega) = -\frac{1}{\pi} |V_{\mathbf{q}}| \operatorname{Im} \left[\Lambda_{11}(\mathbf{q},\omega) + \Lambda_{22}(\mathbf{q},-\omega) \right],$$

where, for scattering in the charge channel,

$$\Lambda(\mathbf{q},\omega) = \sum_{\mathbf{k}} G^0(\mathbf{k},\omega) \sigma_3 G^0(\mathbf{k}-\mathbf{q},\omega).$$

 $\Lambda(\mathbf{q},\omega)$ is a response function of the clean system.

QP INTERFERENCE

FT-STS measures $n(\mathbf{q}, \omega)$, a spatial Fourier transform of $n(\mathbf{r}, \omega)$.

It is useful to consider a limit of weak disorder (i.e. Born limit) in which one can express the non-uniform part $\delta n(\mathbf{q}, \omega)$ [Capriotti *et al.* PRB **68**, 014508 (2003)]

$$\delta n(\mathbf{q},\omega) = -\frac{1}{\pi} |V_{\mathbf{q}}| \operatorname{Im} \left[\Lambda_{11}(\mathbf{q},\omega) + \Lambda_{22}(\mathbf{q},-\omega) \right],$$

where, for scattering in the charge channel,

$$\Lambda(\mathbf{q},\omega) = \sum_{\mathbf{k}} G^0(\mathbf{k},\omega) \sigma_3 G^0(\mathbf{k}-\mathbf{q},\omega).$$

 $\Lambda(\mathbf{q},\omega)$ is a response function of the clean system.

For weak disorder FT-STS provides information about the underlying electron order

SLIDES CREATED WITH FOILTEX & PP^4

Nodal approximation: importance of coherence factors

One finds

$$\Lambda(\mathbf{q}, i\omega) = \frac{1}{L^2} \sum_{\mathbf{k}} \frac{(i\omega + \epsilon_+)(i\omega + \epsilon_-) - \Delta_+ \Delta_-}{(\omega^2 + E_+^2)(\omega^2 + E_-^2)}$$

with $\epsilon_{\pm} = \epsilon_{\mathbf{k}\pm\mathbf{q}/2}$, $\Delta_{\pm} = \Delta_{\mathbf{k}\pm\mathbf{q}/2}$ and $E_{\pm} = \sqrt{\epsilon_{\pm}^2 + \Delta_{\pm}^2}$. Linearize near the nodes to obtain

$$\Lambda_{\rm lin} = \frac{1}{v_F v_\Delta} \int \frac{d^2 k}{(2\pi)^2} \frac{-\omega^2 + (k_1^2 - k_2^2) - (\tilde{q}_1^2 - \tilde{q}_2^2)}{[\omega^2 + (\mathbf{k} + \tilde{\mathbf{q}})^2][\omega^2 + (\mathbf{k} - \tilde{\mathbf{q}})^2]}$$

Slides created with FoilT_EX & PP^4

For intranodal scattering we thus get

Magnetic and non-magnetic scattering differ only in the coherence factors, DOS is exactly the same. Yet, the FT-STS patterns are *qualitatively different!*.

Slides created with FoilT_EX & PP^4

The full picture

One can analyze various intranode processes similarly in the linearized approximation to obtain the full picture.

The full picture

One can analyze various intranode processes similarly in the linearized approximation to obtain the full picture.

Alternately, one can evaluate $\Lambda(\mathbf{q},\omega)$ exactly using numerical techniques:

Slides created with FoilT_X & PP^4

 We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.
- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c .

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.
- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c .
- If the pseudogap is primarily due to some p-h order then we expect a fundamentally different patterns above T_c .

- We have established that FT-STS patterns depend critically on the quasiparticle coherence factors.
- If the pseudogap is dominated by SC fluctuations then the FT-STS patterns above T_c should be qualitatively similar to those below T_c .
- If the pseudogap is primarily due to some p-h order then we expect a fundamentally different patterns above T_c .
- In the following we illustrate this general thesis on the comparison between QED₃ theory of phase disordered dSC and d-density wave (DDW) scenario for pseudogap.

QED_3

[Franz and Tešanović, PRL 87, 257003 (2001)]

This theory describes fermionic excitations in a phase-disordered *d*-wave superconductor. The electron propagator reads

$$G^{0}(\mathbf{k}, i\omega) = \lambda^{-\eta} \frac{i\omega + \epsilon_{\mathbf{k}}\sigma_{3}}{[\omega^{2} + \epsilon_{\mathbf{k}}^{2} + \Delta_{\mathbf{k}}^{2}]^{1-\eta/2}},$$

where λ is a high energy cutoff and η is the anomalous dimension exponent which encodes the physics of phase fluctuations. η is a small positive number, whose precise value is still under debate.

DDW

[Chakravarty, Laughlin, Morr, and Nayak PRB 63, 094503 (2001)]

Also known as the "flux phase", this theory describes the pseudogap as a mean-field state with staggered pattern of currents, breaking the translational symmetry of the square lattice. We have

$$G^{0}(\mathbf{k}, i\omega) = [(i\omega - \epsilon_{\mathbf{k}}') - \epsilon_{\mathbf{k}}''\sigma_{3} - D_{\mathbf{k}}\sigma_{2}]^{-1},$$

with $\epsilon'_{\mathbf{k}} = \frac{1}{2}(\epsilon_{\mathbf{k}} + \epsilon_{\mathbf{k}+\mathbf{Q}}), \ \epsilon''_{\mathbf{k}} = \frac{1}{2}(\epsilon_{\mathbf{k}} - \epsilon_{\mathbf{k}+\mathbf{Q}})$, and the DDW gap $D_{\mathbf{k}} = \frac{1}{2}D_0(\cos k_x - \cos k_y)$. At half filling $(\mu = 0)$ and with nn dispersion (t' = 0) DDW has the same DOS as the *d*SC.

Reality check: FT-STS at 100K in BiSCCO

Vershinin *et al.*, Science Express, 12 Feb. 2004

Reality check: FT-STS at 100K in BiSCCO

Vershinin et al., Science Express, 12 Feb. 2004

Slides created with FoilT_EX & PP^4

FT-STS in strongly underdoped BiSCCO at 100mK

McElroy et al., unpublished

Slides created with FoilT $_{\!E\!X}$ & PP 4

Several theoretical proposals:

 Density wave of Cooper pairs [H.-D. Chen, O. Vafek, A. Yazdani, S.-C. Zhang, cond-mat/0402323]

Several theoretical proposals:

- Density wave of Cooper pairs [H.-D. Chen, O. Vafek, A. Yazdani, S.-C. Zhang, cond-mat/0402323]
- Wigner crystal of doped holes [H.C. Fu, J.C. Davis, D.-H. Lee, cond-mat/0403001]

Several theoretical proposals:

- Density wave of Cooper pairs [H.-D. Chen, O. Vafek, A. Yazdani, S.-C. Zhang, cond-mat/0402323]
- Wigner crystal of doped holes [H.C. Fu, J.C. Davis, D.-H. Lee, cond-mat/0403001]

Several theoretical proposals:

- Density wave of Cooper pairs [H.-D. Chen, O. Vafek, A. Yazdani, S.-C. Zhang, cond-mat/0402323]
- Wigner crystal of doped holes [H.C. Fu, J.C. Davis, D.-H. Lee, cond-mat/0403001]

Several theoretical proposals:

- Density wave of Cooper pairs [H.-D. Chen, O. Vafek, A. Yazdani, S.-C. Zhang, cond-mat/0402323]
- Wigner crystal of doped holes [H.C. Fu, J.C. Davis, D.-H. Lee, cond-mat/0403001]

Slides created with Foiltex & PP^4

Conclusions

- By analyzing the quasiparticle interference patterns in the nodal approximation we gained some crucial insights into FT-STS in the superconducting state.
- FT-STS is sensitive to both the quasiparticle DOS and the coherence factors.
- This sensitivity can be used to determine the nature of the condensate responsible for the pseudogap phenomenon in the cuprates.
- Several experimental groups are now actively pursuing related projects.