Quantum oscillations without <u>b=0, B=0</u> b <u>b=0, B21</u> c <u>field</u> <u>d b=3.2T, B=3.2T</u>

M. Franz, Anffany Chen, Tianyu Liu and D.I. Pikulin

Stewart Blusson Quantum Matter Institute University of British Columbia

arXiv:1608.04678, arXiv:1607.01810

Quantum oscillations

20

36784 G

Quantum oscillations normally require magnetic field B

... except when B can be replaced by b.

b = strain-induced pseudomagnetic field

<u>Main result</u>: in Dirac and Weyl semimetals quantum oscillations can be generated by elastic strain in complete absence of magnetic field B

Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering

F. Guinea^{1*}, M. I. Katsnelson² and A. K. Geim^{3*}

Figure 1 | **Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a**, Distortion of a graphene disc which is required to generate uniform *B*₅. The original shape is shown in blue. **b**, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or compressed along equivalent crystallographic directions (100). Two graphene sublattices are shown in red and green. **c**, Distribution of the forces applied at the disc's perimeter (arrows) that would create the strain required in **a**. The uniform colour inside the disc indicates strictly uniform pseudomagnetic field. **d**, The shown shape allows uniform *B*₅ to be generated only by normal forces applied at the sample's perimeter. The length of the arrows indicates the required local stress.

Figure 2 | **Stretching graphene samples along (100) axes always generates a pseudomagnetic field that is fairly uniform at the centre. a**, Distribution of B_S for a regular hexagon stretched by its three sides oriented perpendicular to (100). Other examples are given in the Supplementary Information. **b**, Normalized density of states for the hexagon in **a** with L = 30 nm and $\Delta_m = 1\%$. The black curve is for the case of no strain and no magnetic field. The peak at zero *E* is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B = 10 T. The pseudomagnetic field with $B_S \approx 7$ T near the hexagon's centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the pseudo-Landau levels is mostly due to the finite broadening $\Gamma = 2$ meV used in the tight-binding calculations (Γ corresponds to submicrometre mean free paths attainable in graphene devices). The inhomogeneous B_S plays little role in the broadening of the first few pseudo-Landau levels (see Supplementary Fig. S4).

Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles

N. Levy,^{1,2}*† S. A. Burke,¹*‡ K. L. Meaker,¹ M. Panlasigui,¹ A. Zettl,^{1,2} F. Guinea,³ A. H. Castro Neto,⁴ M. F. Crommie^{1,2}§

Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states through the creation of a pseudo-magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry ($C_{3\nu}$). Here, we present experimental spectroscopic measurements by scanning tunneling microscopy of highly strained nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo-magnetic fields greater than 300 tesla. This demonstration of enormous pseudo-magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called "strain engineering."

Back to 3D: Model for Cd₃As₂ and Na₃Bi

In the basis of spin-orbit coupled states

$$|P_{\frac{3}{2}}, \frac{3}{2}\rangle, |S_{\frac{1}{2}}, \frac{1}{2}\rangle, |S_{\frac{1}{2}}, -\frac{1}{2}\rangle, |P_{\frac{3}{2}}, -\frac{3}{2}\rangle$$

 ι

the tight-binding model reads:

$$H^{\text{latt}} = \epsilon_{\mathbf{k}} + \begin{pmatrix} h^{\text{latt}} & 0\\ 0 & -h^{\text{latt}} \end{pmatrix}$$

$$h^{\text{latt}}(\boldsymbol{k}) = m_{\boldsymbol{k}}\tau^{z} + \Lambda(\tau^{x}\sin a_{x}k_{x} + \tau^{y}\sin a_{y}k_{y}),$$
$$m_{\boldsymbol{k}} = t_{0} + t_{1}\cos ak_{z} + t_{2}(\cos ak_{x} + \cos ak_{y})$$

Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, PRB 88, 125427 (2013) Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, PRB 85, 195320 (2012)

Effect of elastic strain on tunnelling amplitudes

The most important effect of elastic strain is incorporated by

$$t_1\tau^z \to t_1(1-u_{33})\tau^z + i\Lambda \sum_{j\neq 3} u_{3j}\tau^j,$$

where $u_{ij} = \frac{1}{2}(\partial_i u_j + \partial_j u_i)$ is the strain tensor and **u** is the displacement field.

H. Shapourian, T. L. Hughes, and S. Ryu, PRB 92, 165131 (2015) A.Cortijo, Y. Ferreiro´s, K. Landsteiner, and M. A. H. Vozmediano, PRL 115, 177202 (2015) H. Sumiyoshi and S. Fujimoto, PRL 116, 166601 (2016)

Strain = chiral gauge potential at low energies

Derive low-energy theory by expanding $h^{
m latt}(m{k})$ near Dirac points $m{k} = m{K}_{\pm} + m{q}$

$$h_{\eta}(\mathbf{q}) = v_{\eta}^{j} \tau^{j} \left(\hbar q_{j} - \eta \frac{e}{c} \mathcal{A}_{j} \right), \quad \eta = \pm$$

Here $v_{\eta} = \hbar^{-1}a(\Lambda, \Lambda, -\eta t_1 \sin aQ)$ and

$$\vec{\mathcal{A}} = -\frac{\hbar c}{ea} \left(u_{13} \sin aQ, u_{23} \sin aQ, u_{33} \cot aQ \right).$$

$$\mathbf{K}_{\pm} = (0, 0, \pm Q)$$

Components u_{3j} of the strain tensor act on Dirac fermions as chiral gauge field.

and pseudomagnetic tield

$$\mathbf{b} = \nabla \times \vec{\mathcal{A}} = \hat{y} \left(\frac{2\alpha}{d}\right) \frac{\hbar c}{ea} \cot aQ \simeq \hat{y}\alpha \times 246\mathrm{T}$$

 $\alpha = u_{\rm max}/a$

for Cd_3As_2 parameters with $aQ \simeq 0.132$.

What is the maximum strain Cd₃As₂ film can sustain?

Cai-Zhen Li^{1,*}, Li-Xian Wang^{1,*}, Haiwen Liu², Jian Wang^{2,3}, Zhi-Min Liao^{1,3} & Da-Peng Yu^{1,3}

From the radius R of the bend and diameter d of nanowires we estimate that distortion α of several percent can be achieved. This gives maximum estimated pseudomagnetic field of 10-15T in Cd₃As₂.

This should be sufficient to observe strain-induced quantum oscillations.

Dirac Landau levels:

$$E_n(k_y) = \pm \hbar \sqrt{v_y^2 k_y^2 + 2nv_x v_z \frac{e|B|}{\hbar c}}, \quad n = 1, 2, \dots,$$

Lifshitz-Onsager quantization:

 $S(E_n) = 2\pi n (eB/\hbar c)$

Equivalence of B and b for low-energy electrons

$$\partial_t
ho_5 +
abla \cdot oldsymbol{j}_5 \;=\; rac{e^2}{2\pi^2 \hbar^2 c} (oldsymbol{E} \cdot oldsymbol{B} + oldsymbol{e} \cdot oldsymbol{b}), \ \partial_t
ho +
abla \cdot oldsymbol{j} \;=\; rac{e^2}{2\pi^2 \hbar^2 c} (oldsymbol{E} \cdot oldsymbol{b} + oldsymbol{e} \cdot oldsymbol{B}).$$

C.-X. Liu, P. Ye, and X.-L. Qi, Phys. Rev. B 87, 235306 (2013).

Conclusions

- Similar to graphene elastic strain in Dirac and Weyl semimetals acts as chiral gauge potential
- This gives rise to quantum oscillations in complete absence of magnetic field
- Also generates an interesting novel manifestation of the chiral anomaly

