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FIG. 2: Tight-binding model simulations of a Weyl semimetal wire under torsional strain and applied magnetic field B = ẑB.
Top row of figures shows the band structure of the lattice Hamiltonian defined by Eqs. (2.4) and (2.9) computed for a wire
with a rectangular cross section of 30 ⇥ 30 sites and a lattice constant a = 40Å. (We use larger lattice constant here and in
subsequent simulations than in real Cd

3

As
2

in order to be able to model nanowires and films of realistic cross sections with
available computational resources. Note that this does not a↵ect the physics at low energies because the lattice Hamiltonian
is designed to reproduce the relevant k · p theory independent of a.) Open boundary conditions are imposed along x and y,
periodic along z. Parameters appropriate for Cd

3

As
2

are used. Middle and bottom rows show spectral functions A

bulk(k,!)
and A

surf(k,!). The former is obtained by averaging the full spectral function Aj(k,!) over sites j in the central 10 ⇥ 10
portion of the wire while the latter averages over the sites located at the perimeter of the wire. The torsion applied in columns
c and d corresponds to the maximum displacement at the perimeter of 0.5a, or '

0

' 2o between consecutive layers.

µ occurs because under adiabatic evolution an electron
initially in the quantum state with momentum k in the
nth band remains in that state as the band energy E

n

(k)
evolves in response to strain.

From the point of view of the low-energy theory the
lateral shift of the chiral branches is consistent with the
e↵ect of the uniform chiral gauge potential a

z

which
according to our discussion below Eq. (2.8) moves the
Weyl points closer together for ↵ > 0. From Eqs. (2.10)
and (2.11) we can estimate the amount of this shift
�Q ' (e/~c)a

z

= �u
33

cot aQ/a. This in turn gives an
estimate for the required change in the chemical potential

�µ = µ0 � µ
0

= �~v�Q, or

�µ = �v

c
ea

z

= ↵
~v
a

cot aQ. (3.1)

For Cd
3

As
2

parameters including the particle-hole sym-
metry breaking terms in ✏k we have ~v ' 1.94eVÅ which
implies �µ = 3.75meV for ↵ = 0.03. This estimate com-
pares favorably with the value �µ

num

= 3.46meV ob-
tained from our lattice model simulation presented in Fig.
3a.
If we continue focusing solely on the low energy de-

grees of freedom we would conclude that a change �µ in
the chemical potential in a linearly dispersing band with
degeneracy (B/�

0

) brings about a change in the electron
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 de Haas – van Alphen effect 

• If a Landau level crosses εF at field B2, energy of the electron 
system is higher than at B1 or B3. 
⇒ oscillations of the electronic energy in external field B 
     (magneto-oscillatory effects in metals at low T) 

• De Haas-van Alphen effect observes the oscillating magnetic 
moment µ of a free electron gas 
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1+= , i.e. period B∆  measures directly the 

enclosed area nS  in k space at εF 
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Quantum oscillations normally require magnetic field B 

… except when B can be replaced by b. 

b = strain-induced pseudomagnetic field
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Main result: in Dirac and Weyl semimetals quantum oscillations can be 
generated by elastic strain in complete absence of magnetic field B
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Energy gaps and a zero-field quantum Hall effect
in graphene by strain engineering
F. Guinea1*, M. I. Katsnelson2 and A. K. Geim3*
Among many remarkable qualities of graphene, its electronic
properties attract particular interest owing to the chiral
character of the charge carriers, which leads to such unusual
phenomena as metallic conductivity in the limit of no carriers
and the half-integer quantum Hall effect observable even
at room temperature1–3. Because graphene is only one atom
thick, it is also amenable to external influences, including
mechanical deformation. The latter offers a tempting prospect
of controlling graphene’s properties by strain and, recently,
several reports have examined graphene under uniaxial
deformation4–8. Although the strain can induce additional
Raman features7,8, no significant changes in graphene’s band
structure have been either observed or expected for realistic
strains of up to ⇠15% (refs 9–11). Here we show that a
designed strain aligned along three main crystallographic
directions induces strong gauge fields12–14 that effectively
act as a uniform magnetic field exceeding 10 T. For a finite
doping, the quantizing field results in an insulating bulk and
a pair of countercirculating edge states, similar to the case
of a topological insulator15–20. We suggest realistic ways of
creating this quantum state and observing the pseudomagnetic
quantum Hall effect. We also show that strained superlattices
can be used to open significant energy gaps in graphene’s
electronic spectrum.

If a mechanical strain � varies smoothly on the scale of
interatomic distances, it does not break the sublattice symmetry
but rather deforms the Brillouin zone in such a way that the Dirac
cones located in graphene at points K and K0 are shifted in the
opposite directions2. This is reminiscent of the effect induced on
charge carriers by magnetic field B applied perpendicular to the
graphene plane2,12–14. The strain-induced, pseudomagnetic field BS
or, more generally, gauge-field vector potential A has opposite
signs for graphene’s two valleys K and K0, which means that elastic
deformations, unlikemagnetic field, do not violate the time-reversal
symmetry of a crystal as a whole12–14,21,22.

On the basis of this analogy between strain andmagnetic field, we
ask the following question. Is it possible to create such a distribution
of strain that it results in a strong uniform pseudomagnetic field BS
and, accordingly, leads to a ‘pseudo-quantum Hall effect (QHE)’
observable in zero B? The previous attempts to engineer energy
gaps by applying strain5–7 seem to suggest a negative answer.
Indeed, the hexagonal symmetry of the graphene lattice generally
implies a highly anisotropic distribution of BS (refs 21, 22).
Therefore, the strain is expected to contribute primarily in the
phenomena that do not average out in a random magnetic field,
such as weak localization13,14. Furthermore, a strong gauge field
implies the opening of energy gaps owing to Landau quantization,
�E ⇡ 400K

p
B (>0.1 eV for BS = 10 T), whereas no gaps were
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University Nijmegen, Heijendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands, 3Manchester Centre for Mesoscience and Nanotechnology, University of
Manchester, M13 9PL, Manchester, UK. *e-mail: paco.guinea@icmm.csic.es; geim@man.ac.uk.

theoretically found for uniaxial strain as large as ⇡25% (ref. 4).
The only way to induce significant gaps known so far is to spatially
confine carriers (�E ⇡ 0.1 eV requires 10-nm-wide ribbons)1,2.
Contrary to these expectations, we have found that by applying
stresses with triangular symmetry it is possible to generate a uniform
quantizing BS equivalent to tens of Tesla so that the corresponding
gaps exceed 0.1 eV and are observable at room temperature.

A two-dimensional strain fieldu
ij

(x,y) leads to a gauge field23,24

A= �
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!

(1)

where a is the lattice constant, � = �@ ln t/@ lna ⇡ 2 and t the
nearest-neighbour hopping parameter, and the x-axis is chosen
along a zigzag direction of the graphene lattice. In the following,
we consider valley K, unless stated otherwise. We can immediately
see that BS can be created only by non-uniform shear strain. Indeed,
for dilation (isotropic strain), equation (1) leads to A= 0 and, for
the uniform strain previously considered in refs 4–6, to A= const,
which also yields zero BS.

Using polar coordinates (r,✓), equation (1) can be rewritten as
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In the radial representation, it is easy to show that uniform BS is
achieved for the following displacements:

u

r

= cr

2 sin3✓ , u✓ = cr

2cos3✓ (2)

where c is a constant. The strain described by (2) and its
crystallographic alignment are shown in Fig. 1a,b, respectively.
This yields uniform BS = 8�c/a (given in units ¯h/e ⌘ 1). For a
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Figure 1 | Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a, Distortion of a graphene disc which is required to
generate uniform BS. The original shape is shown in blue. b, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or
compressed along equivalent crystallographic directions h100i. Two graphene sublattices are shown in red and green. c, Distribution of the forces applied
at the disc’s perimeter (arrows) that would create the strain required in a. The uniform colour inside the disc indicates strictly uniform pseudomagnetic
field. d, The shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The length of the arrows indicates the
required local stress.
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Figure 2 | Stretching graphene samples along h100i axes always generates a pseudomagnetic field that is fairly uniform at the centre. a, Distribution of
BS for a regular hexagon stretched by its three sides oriented perpendicular to h100i. Other examples are given in the Supplementary Information.
b, Normalized density of states for the hexagon in a with L= 30 nm and �m = 1%. The black curve is for the case of no strain and no magnetic field. The
peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B= 10 T. The pseudomagnetic field
with BS ⇡ 7 T near the hexagon’s centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the
pseudo-Landau levels is mostly due to the finite broadening � = 2 meV used in the tight-binding calculations (� corresponds to submicrometre mean free
paths attainable in graphene devices). The inhomogeneous BS plays little role in the broadening of the first few pseudo-Landau levels (see
Supplementary Fig. S4).

disc of diameter D, which experiences a maximum strain �m at
its perimeter, we find c = �m/D. For non-ambitious �m = 10%
and D= 100 nm, we find BS ⇡ 40 T, the effective magnetic length
lB = p

aD/8��m ⇡ 4 nm and the largest Landau gap of ⇡0.25 eV.
Note that distortions (2) are purely shear and do not result in any
changes in the area of a unit cell, which means that there is no
effective electrostatic potential generated by such strain23.

The lattice distortions in Fig. 1a can be induced by in-plane
forces F applied only at the perimeter and, for the case of a disc,
they are given simply by

F

x

(✓)/ µsin(2✓), F

y

(✓)/ µcos(2✓)

where µ is the shear modulus. Figure 1c shows the required force
pattern. It is difficult to create such strain experimentally because
this involves tangential forces and both stretching and compression.
To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).

A strong pseudomagnetic field should lead to Landau quan-
tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K0 and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s�1. Our approach exploits the

NATURE PHYSICS | VOL 6 | JANUARY 2010 | www.nature.com/naturephysics 31



(T1 ¼ 1=g ∼ d2 for d ≫ A2
⊥). Experimental data

confirm this behavior (Fig. 3B). This dependence
also explains why quantum jumps were not ob-
served in previous experiments with NV centers
performed at low magnetic fields [similar mag-
netic field–enabled decoupling of nuclear spin
was proposed recently for alkaline earth metal
ions (10, 22)]. The dominance of flip-flop pro-
cesses is also visible in the quantum state tra-
jectory of the nuclear spin shown in Fig. 3C (top).
Here, jumps obey the selection rule DmI ¼ T1
imposed by the flip-flop term HA. From analyz-
ing the whole quantum state trajectory, a matrix
showing the transition probabilities can be
obtained (Fig. 3C, bottom).

Single-shot measurement of a single nuclear
spin places diamond among leading quantum
computer technologies. The high readout fidelity
(92%) demonstrated in this work is already close
to the threshold for enabling error correction (23),
although the experiments were carried out in a
moderate­strength magnetic field. Even though
the optical excitation induces complex dynamics
in the NV center (including passage into singlet
electronic state), the nuclear spin relaxation rates
are defined solely by electron-nuclear flip-flop
processes induced by hyperfine interaction. There-
fore, we expect improvement of T1 by two orders
of magnitude (reaching seconds under illumina-
tion) when a magnetic field of 5 T is used. This
will potentially allow readout fidelities compara-
ble with that achieved for single ions in traps
(24). The present technique can be applied to
multiqubit quantum registers (5, 6, 25), enabling

tests of nonclassical correlations. Finally, single-
shot measurements open new perspectives for
solid-state sensing technologies. Spins in diamond
are considered to be among the promising candi-
dates for nanoscale magnetic field sensing (26, 27).
Currently their performance is limited by photon
shot noise (26): “Digital” QND will provide im-
provement over conventional photon counting in
the case of short acquisition time. This requires
that the electron spin state used for magnetic field
sensing can bemapped onto the nuclear spin with
high accuracy, but this was already shown to be
practical in NV diamond (5).
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Strain-Induced Pseudo–Magnetic
Fields Greater Than 300 Tesla in
Graphene Nanobubbles
N. Levy,1,2*† S. A. Burke,1*‡ K. L. Meaker,1 M. Panlasigui,1 A. Zettl,1,2 F. Guinea,3

A. H. Castro Neto,4 M. F. Crommie1,2§

Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states
through the creation of a pseudo–magnetic field. This effect is unique to graphene because of its
massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Here, we present
experimental spectroscopic measurements by scanning tunneling microscopy of highly strained
nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles
exhibit Landau levels that form in the presence of strain-induced pseudo–magnetic fields greater
than 300 tesla. This demonstration of enormous pseudo–magnetic fields opens the door to both
the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate
mechanical control over electronic structure in graphene or so-called “strain engineering.”

Graphene, a single atomic layer of carbon,
displays remarkable electronic and me-
chanical properties (1, 2). Many of gra-

phene’s distinctive properties arise from a linear
band dispersion at low carrier energies (3) that
leads to Dirac-like behavior within the two-
dimensional (2D) honeycomb lattice—charge
carriers travel as if their effective mass is zero

(1). An intriguing recent prediction is that a dis-
tortion of the graphene lattice should create large,
nearly uniform pseudo–magnetic fields and give
rise to a pseudo–quantum Hall effect (4). Where-
as an elastic strain can be expected to induce a
shift in the Dirac point energy from local changes
in electron density, it is also predicted to induce
an effective vector potential that arises from

changes in the electron-hopping amplitude be-
tween carbon atoms (5). This strain-induced gauge
field can give rise to large pseudo–magnetic
fields (Bs) for appropriately selected geometries
of the applied strain (1, 6). In such situations, the
charge carriers in graphene are expected to cir-
culate as if under the influence of an applied out-
of-plane magnetic field (7–10). It has recently
been proposed that a modest strain field with
triangular symmetry will give approximately uni-
form, quantizing Bs upward of tens of tesla (4).

Here, we report the measurement of Landau
levels (LLs) arising from giant strain-induced
pseudo–magnetic fields in highly strained graphene
nanobubbles grown on the Pt(111) surface. Lan-
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(T1 ¼ 1=g ∼ d2 for d ≫ A2
⊥). Experimental data

confirm this behavior (Fig. 3B). This dependence
also explains why quantum jumps were not ob-
served in previous experiments with NV centers
performed at low magnetic fields [similar mag-
netic field–enabled decoupling of nuclear spin
was proposed recently for alkaline earth metal
ions (10, 22)]. The dominance of flip-flop pro-
cesses is also visible in the quantum state tra-
jectory of the nuclear spin shown in Fig. 3C (top).
Here, jumps obey the selection rule DmI ¼ T1
imposed by the flip-flop term HA. From analyz-
ing the whole quantum state trajectory, a matrix
showing the transition probabilities can be
obtained (Fig. 3C, bottom).

Single-shot measurement of a single nuclear
spin places diamond among leading quantum
computer technologies. The high readout fidelity
(92%) demonstrated in this work is already close
to the threshold for enabling error correction (23),
although the experiments were carried out in a
moderate­strength magnetic field. Even though
the optical excitation induces complex dynamics
in the NV center (including passage into singlet
electronic state), the nuclear spin relaxation rates
are defined solely by electron-nuclear flip-flop
processes induced by hyperfine interaction. There-
fore, we expect improvement of T1 by two orders
of magnitude (reaching seconds under illumina-
tion) when a magnetic field of 5 T is used. This
will potentially allow readout fidelities compara-
ble with that achieved for single ions in traps
(24). The present technique can be applied to
multiqubit quantum registers (5, 6, 25), enabling

tests of nonclassical correlations. Finally, single-
shot measurements open new perspectives for
solid-state sensing technologies. Spins in diamond
are considered to be among the promising candi-
dates for nanoscale magnetic field sensing (26, 27).
Currently their performance is limited by photon
shot noise (26): “Digital” QND will provide im-
provement over conventional photon counting in
the case of short acquisition time. This requires
that the electron spin state used for magnetic field
sensing can bemapped onto the nuclear spin with
high accuracy, but this was already shown to be
practical in NV diamond (5).
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Fields Greater Than 300 Tesla in
Graphene Nanobubbles
N. Levy,1,2*† S. A. Burke,1*‡ K. L. Meaker,1 M. Panlasigui,1 A. Zettl,1,2 F. Guinea,3

A. H. Castro Neto,4 M. F. Crommie1,2§

Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states
through the creation of a pseudo–magnetic field. This effect is unique to graphene because of its
massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Here, we present
experimental spectroscopic measurements by scanning tunneling microscopy of highly strained
nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles
exhibit Landau levels that form in the presence of strain-induced pseudo–magnetic fields greater
than 300 tesla. This demonstration of enormous pseudo–magnetic fields opens the door to both
the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate
mechanical control over electronic structure in graphene or so-called “strain engineering.”

Graphene, a single atomic layer of carbon,
displays remarkable electronic and me-
chanical properties (1, 2). Many of gra-

phene’s distinctive properties arise from a linear
band dispersion at low carrier energies (3) that
leads to Dirac-like behavior within the two-
dimensional (2D) honeycomb lattice—charge
carriers travel as if their effective mass is zero

(1). An intriguing recent prediction is that a dis-
tortion of the graphene lattice should create large,
nearly uniform pseudo–magnetic fields and give
rise to a pseudo–quantum Hall effect (4). Where-
as an elastic strain can be expected to induce a
shift in the Dirac point energy from local changes
in electron density, it is also predicted to induce
an effective vector potential that arises from

changes in the electron-hopping amplitude be-
tween carbon atoms (5). This strain-induced gauge
field can give rise to large pseudo–magnetic
fields (Bs) for appropriately selected geometries
of the applied strain (1, 6). In such situations, the
charge carriers in graphene are expected to cir-
culate as if under the influence of an applied out-
of-plane magnetic field (7–10). It has recently
been proposed that a modest strain field with
triangular symmetry will give approximately uni-
form, quantizing Bs upward of tens of tesla (4).

Here, we report the measurement of Landau
levels (LLs) arising from giant strain-induced
pseudo–magnetic fields in highly strained graphene
nanobubbles grown on the Pt(111) surface. Lan-

1Department of Physics, University of California Berkeley,
Berkeley, CA 94720, USA. 2Materials Science Division, Lawrence
Berkeley National Laboratory, Berkeley, CA 94720, USA. 3Instituto
de Ciencia de Materiales de Madrid (CSIC), Madrid 28049,
Spain. 4Department of Physics, Boston University, Boston, MA
02215, USA.

*These authors contributed equally to this work.
†Present address: Center for Nanoscale Science and Technology,
National Institute of Standards and Technology, Gaithersburg,
MD 20899, USA.
‡Present address: Department of Physics and Astronomy and
Department of Chemistry, University of British Columbia, Van-
couver, BC V6T 121, Canada.
§To whom correspondence should be addressed. E-mail:
crommie@berkeley.edu

30 JULY 2010 VOL 329 SCIENCE www.sciencemag.org544

REPORTS

 o
n 

A
ug

us
t 1

6,
 2

01
6

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d 
fr

om
 

dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.

2nm
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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Quantum oscillations without magnetic field

Tianyu Liu, D. I. Pikulin, and M. Franz
Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 and

Quantum Matter Institute, University of British Columbia, Vancouver BC, Canada V6T 1Z4
(Dated: July 25, 2016)

When magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations
periodic in 1/B. Such quantum oscillations reflect the fundamental reorganization of electron states
into Landau levels as a canonical response of the metal to the applied magnetic field. We predict
here that, remarkably, in the recently discovered Dirac and Weyl semimetals quantum oscillations
can occur in the complete absence of magnetic field. These zero-field quantum oscillations are
driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge
potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can
generate pseudomagnetic field b as large as 15T and demonstrate the resulting de Haas-van Alphen
and Shubnikov-de Haas oscillations periodic in 1/b.

Dirac and Weyl semimetals [1–3] are known to exhibit
a variety of exotic behaviors owing to their unusual elec-
tronic structure comprised of linearly dispersing electron
bands at low energies. This includes the pronounced
negative magnetoresistance [4–11] attributed to the phe-
nomenon of the chiral anomaly [12–14], theoretically pre-
dicted nonlocal transport [15, 16], Majorana flat bands
[17], as well as an unusual type of quantum oscillations
(QO) that involve both bulk and topologically protected
surface states [18, 19]. In this theoretical study we estab-
lish a completely new mechanism for QO in Dirac and
Weyl semimetals that requires no magnetic field. These
zero-field oscillations occur as a function of the applied
elastic strain and, similar to the canonical de Haas-van
Alphen and Shubnikov-de Haas oscillations [20], mani-
fest themselves as oscillations periodic in 1/b, where b is
the strain-induced pseudomagnetic field, in all measur-
able thermodynamic and transport properties. To the
best of our knowledge this is the first instance of such
zero-field quantum oscillations in any known substance.

Materials with linearly dispersing electrons respond in
peculiar ways to the externally imposed elastic strain.
In graphene, for instance, the e↵ect of curvature is fa-
mously analogous to a pseudomagnetic field [21] that can
be quite large and is known to generate pronounced Lan-
dau levels observed in the tunneling spectroscopy [22].
Recent theoretical work [23–27] showed that similar ef-
fects can be anticipated in three-dimensional Dirac and
Weyl semimetals, although the estimated field strengths
in the geometries that have been considered are rather
small (below 1 Tesla in Ref. [26]). Ordinary quantum
oscillations, periodic in 1/B, have already been observed
in Dirac semimetals Cd

3

As
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and Na
3

Bi [19, 28–30] but
the magnetic field required is B & 2T. This, then, would
seem to rule out the observation of strain-induced QO
in geometries considered previously. We make a key ad-
vance in this work by devising a new geometry in which
pseudomagnetic field b as large as 15T can be achieved.
The proposed setup consists of a thin film (or a nanowire)
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When magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations
periodic in 1/B. Such quantum oscillations reflect the fundamental reorganization of electron states
into Landau levels as a canonical response of the metal to the applied magnetic field. We predict
here that, remarkably, in the recently discovered Dirac and Weyl semimetals quantum oscillations
can occur in the complete absence of magnetic field. These zero-field quantum oscillations are
driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge
potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can
generate pseudomagnetic field b as large as 15T and demonstrate the resulting de Haas-van Alphen
and Shubnikov-de Haas oscillations periodic in 1/b.
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tronic structure comprised of linearly dispersing electron
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Alphen and Shubnikov-de Haas oscillations [20], mani-
fest themselves as oscillations periodic in 1/b, where b is
the strain-induced pseudomagnetic field, in all measur-
able thermodynamic and transport properties. To the
best of our knowledge this is the first instance of such
zero-field quantum oscillations in any known substance.

Materials with linearly dispersing electrons respond in
peculiar ways to the externally imposed elastic strain.
In graphene, for instance, the e↵ect of curvature is fa-
mously analogous to a pseudomagnetic field [21] that can
be quite large and is known to generate pronounced Lan-
dau levels observed in the tunneling spectroscopy [22].
Recent theoretical work [23–27] showed that similar ef-
fects can be anticipated in three-dimensional Dirac and
Weyl semimetals, although the estimated field strengths
in the geometries that have been considered are rather
small (below 1 Tesla in Ref. [26]). Ordinary quantum
oscillations, periodic in 1/B, have already been observed
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seem to rule out the observation of strain-induced QO
in geometries considered previously. We make a key ad-
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The proposed setup consists of a thin film (or a nanowire)
in which pseudomagnetic field b is generated by a simple

z

x

y

umaxa

x

z

b
b

B

FIG. 1: Proposed setup for strain-induced quantum oscilla-
tion observation in Dirac and Weyl semimetals. a) Bent film
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strained film subject to magnetic field B. b) Detail of the
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The Hamiltonian (2.4) exhibits a single pair of Weyl

nodes at K
⌘

= (0, 0, ⌘Q) and Q given by cos(aQ) =
�(t

0

+2t
2

)/t
1

which coincides with Eq. (2.2) in the limit
aQ ⌧ 1. In the vicinity of the nodes we can expand
hlatt(K± + q) in q to obtain the Weyl Hamiltonian

h
⌘

(q) = ~vj
⌘

⌧ jq
j

, (2.5)

with the velocity vector

v
⌘

= ~�1a(⇤,⇤,�⌘t
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sin aQ). (2.6)

For Cd
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3

parameters and a physical lattice constant
a = 4Å this gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. From
Eq. (2.6) we can read o↵ the chiral charge of the Weyl
node located at valley ⌘

�
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= sgn(vx
⌘

vy
⌘

vz
⌘

) = �⌘. (2.7)

The e↵ect of strain on the lattice Hamiltonian (2.4) is
implemented using the method developed in Refs. [6, 27].
The key observation is that certain tunneling amplitudes
that are prohibited by symmetry in the unstrained crys-
tal become allowed when the strain is applied because
of the displacement and rotation of the relevant orbitals
in the neighboring atoms. For our purposes the most
important modification of the Hamiltonian (2.4) comes
from the replacement of the hopping amplitude along the
ẑ-direction [6, 27]
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⌧ j , (2.8)
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) is the symmetrized strain ten-
sor and u = (u

1

, u
2

, u
3

) represents the displacement vec-
tor. Physically, Eq. (2.8) modifies the existing hopping
strength (first term) and generates hopping processes
along the ẑ-direction between di↵erent orbitals which are
prohibited in the unstrained crystal due to their s- and
p- symmetry (second term).

As a simple example consider stretching the crystal
along the ẑ-direction. This is represented by a displace-
ment field u = (0, 0,↵z) where ↵ = �L/L measures the
elongation of the crystal. The only nonzero component
of the strain tensor is u

33

= ↵ and Eq. (2.8) thus gives
t
1

! t
1

(1� ↵). It is easy to deduce that for small ↵ this
changes the value of Q ! Q�↵Q/(aQ)2 thus moving the
Weyl nodes closer together or farther apart depending on
the sign of ↵ . We see that stretching the crystal has the
same e↵ect on the Weyl fermions as the z-component of
the chiral gauge field a.

More generally elastic distortion expressed through Eq.
(2.8) generates additional terms in the lattice Hamilto-
nian (2.4) of the form
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Expanding again in the vicinity of K± we obtain the
linearized Hamiltonian of the distorted crystal
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where the gauge potential is given by
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and cot aQ ' 1/aQ.
We thus conclude that in a Weyl semimetal with nodes

located on the k
z

axis components u
j3

of the strain field
act on the low-energy fermions as a gauge potential. a
represents a chiral gauge field because it couples with the
opposite sign to the Weyl fermions with di↵erent chirality
�.
We saw above that a

3

⇠ u
33

can be generated by
stretching or compressing the crystal along its ẑ axis.
Time-dependent distortion of this type will thus produce
a pseudoelectric field e = � 1

c

@
t

a directed along ẑ. In
combination with an applied magnetic field B k ẑ this
will generate nonzero e · B term and, as we discuss be-
low, allow to test the second chiral anomaly equation
(1.3). It is also possible to generate the pseudomagnetic
field by applying torsion to the crystal prepared in a wire
geometry. To see this consider the displacement field u
that results from twisting a wire-shaped crystal of length
L by angle ⌦. As illustrated in Fig. 1c we have

u = ⌦
z

L
(r ⇥ ẑ), (2.12)

where r denotes the position relative to the origin located
on the axis of the wire. Nonzero components of the strain
field are u

13

= (⌦/2L)y and u
23

= �(⌦/2L)x. Via Eq.
(2.11) we then get the pseudomagnetic field

b = r⇥ a = b
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= ⌦
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2Lae
sin aQ. (2.13)

To close this Section we estimate the magnitude of the
strain-induced field b that can be achieved in a typical
Cd

3

As
2

nanowire described in Ref. [24]. We consider
a cylindrical wire with a diameter d = 100nm, length
L = 1µm and lattice parameter a = 4Å. Eq. (2.2) gives
Q = 0.033Å�1 so the the condition aQ ⌧ 1 is satis-
fied and we may expand the sine in Eq. (2.13). Recall-
ing further that �

0

= hc/e ' 4.12 ⇥ 105TÅ2 we find
b
0

⇡ 1.8⇥ 10�3T per angular degree of twist. The maxi-
mum attainable field strength in a given wire will depend
on how much torsion can the wire sustain before break-
ing. While we were unable to find any data on the me-
chanical properties of Cd

3

As
2

we note that Ref. [24] char-
acterized the nanowires as “greatly flexible”. We take
this to imply that they can withstand substantial tor-
sion. Based on this, a twist angle ⌦ ' 180o would appear
sustainable and will produce b

0

⇡ 0.3T. For the wire un-
der consideration such a twist translates to a maximum
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FIG. 1. (Color online) (a) Crystal structure of Na3Bi with
P 63/mmc symmetry. Na(1) is at 2b position ±(0,0, 1

4 ), and Bi is at 2c

position ±( 1
3 , 2

3 , 1
4 ). They form honeycomb lattice layers. Na(2) is at

4f position ±( 1
3 , 2

3 ,u) and ±( 2
3 , 1

3 , 1
2 + u) with u = 0.583, threading

Bi along the c axis. (b) Brillouin zone of bulk and the projected
surface Brillouin zones of (001) and (010) planes.

III. RESULTS AND DISCUSSIONS

A. Electronic structures: Fermi points and Fermi arcs

The calculated electronic structures shown in Fig. 2 suggest
that the valence and conduction bands are dominated by Bi-6p
and Na-3s states. Very close to the Fermi level, the top valence
band is mostly from Bi-6px,y states, while the conduction
band with very strong dispersion is mostly from Na(1)-3s
states. All these pictures are similar to that of Na3Sb,23 but
with the key difference that at the ! point the Na-3s band

FIG. 2. (Color online) The calculated electronic structures of
Na3Bi. (a) The total and partial density of states. (b) and (c) The
band structures without and with spin-orbit coupling, respectively.
The red circles indicate the projection to the Na-3s states. The orbital
characters of wave functions at the ! point are labeled in the inset
(see Sec. III B for details).

is lower than Bi-6px,y by about 0.3 eV, and it is further
enhanced to be 0.7 eV in the presence of SOC, resulting
in a metal with an inverted band structure, rather than the
normal narrow gap semiconductor like Na3Sb.23 The band
inversion is mostly due to the heavier Bi, which has higher
6p states and larger SOC compared to Sb. Considering the
possible underestimation of the band gap by GGA, the band
inversion can be further confirmed by the following evidences:
(1) calculation using hybrid functional HSE gives a band
inversion around 0.5 eV, still reasonably strong; and (2) the
earlier calculations for normal semiconductor K3Sb25 suggest
that its experimental gap can be reasonably reproduced by
GGA. With the same method, we calculate the band structures
for K3Bi and Rb3Bi and find that the band inversions are
0.33 and 0.42 eV, respectively. Because of the similar band
structures and the same outcomes of the analysis, we mainly
investigate Na3Bi for details in the following.

Having the inverted band structure, however, Na3Bi is not
gapped, different from topological insulators like Bi2Te3 and
Bi2Se3.6 It is a semimetal with two nodes (band crossings)
exactly at the Fermi level (Fig. 2). In other words, its Fermi
surface consists of two isolated Fermi points, which are located
at (0, 0, kc

z ≈ ±0.26 × π
c

) along the !-A line. Since both
time-reversal and inversion symmetries are present, there is
fourfold degeneracy at each Fermi point, around which the
band dispersions can be linearized, resulting in a 3D massless
Dirac semimetal. It is different from that in graphene not only
in dimensionality, but also in its robustness, because the Fermi
points here survive in the presence of SOC. This fact also
makes a difference from other proposals.26,27

The 4 × 4 Dirac fermion here is massless because
the two bands which cross each other along the !-A line
belong to different irreducible representations under threefold
rotational symmetry. Breaking of this symmetry will introduce
interaction between them and make the system insulating. For
example, 1% compression along the y axis will open up a gap
of ≈5.6 meV. This insulating state, however, is topologically
nontrivial with Z2 = 13,4 due to the inverted band structure
around the ! point. This fact makes Na3Bi unique, because
both bulk 3D Dirac points and nontrivial surface states (a
single pair) should coexist (see Fig. 3) as long as the crystal
symmetry stands. Furthermore, the surface states are different
from that of topological insulators,6 in the sense that their
Fermi surfaces has Fermi arc structures. As shown in Fig. 3(b)
for the [010] surface of stoichiometry Na3Bi, although the
entire Fermi surface is closed, its derivative and Fermi velocity
are ill defined at the two singular points (corresponding
to the projection of bulk Dirac points to the surface). The
spin texture of surface states has a helical structure (also
similar to topological insulators), but the magnitude of spin
vanishes at the singular points. This kind of Fermi surface has
never been found before, and it can be understood following
the discussions for Weyl semimetal.10,11 If we split the
4 × 4 Dirac point into two separated 2 × 2 Weyl points
in momentum space by breaking time-reversal or inversion
symmetry,12,13 the Fermi surface of surface states will also
split into open segments which are Fermi arcs discussed
in Weyl semimetal [as shown in Fig. 3(d)].10,11 All these
characters in contrast to conventional metals and topological
insulators should be experimentally measurable by modern
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
Cd

3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t
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)/t
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. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd

3

As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to
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) is the symmetrized strain
tensor and u = (u
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, u
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) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]
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with the velocity vector
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sin aQ). (5)

For Cd
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As
3

parameters and lattice constant a = 4Å this
gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by

~A = �~c
ea
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u
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sin aQ, u
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sin aQ, u
33

cot aQ
�
. (6)

We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field
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cot aQ. (7)

Noting that �
0

= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can

The most important effect of elastic strain is incorporated by 
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[20] that give rise to QO periodic in 1/B.
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(q) = vj
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, (4)

with the velocity vector
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= ~�1a(⇤,⇤,�⌘t
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sin aQ). (5)

For Cd
2

As
3

parameters and lattice constant a = 4Å this
gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by

~A = �~c
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sin aQ, u
23

sin aQ, u
33

cot aQ
�
. (6)

We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field

b = r⇥ ~A = ŷ
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◆
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ea

cot aQ. (7)

Noting that �
0

= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
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3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t
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)/t
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. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd

3

As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
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the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
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small lies in the fact that it originates from the A
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Eq. (6) these are suppressed relative to the strain com-
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the A
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lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K
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has a nonzero projection onto
the surface of the film or on the long direction for the
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films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
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When magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations
periodic in 1/B. Such quantum oscillations reflect the fundamental reorganization of electron states
into Landau levels as a canonical response of the metal to the applied magnetic field. We predict
here that, remarkably, in the recently discovered Dirac and Weyl semimetals quantum oscillations
can occur in the complete absence of magnetic field. These zero-field quantum oscillations are
driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge
potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can
generate pseudomagnetic field b as large as 15T and demonstrate the resulting de Haas-van Alphen
and Shubnikov-de Haas oscillations periodic in 1/b.

Dirac and Weyl semimetals [1–3] are known to exhibit
a variety of exotic behaviors owing to their unusual elec-
tronic structure comprised of linearly dispersing electron
bands at low energies. This includes the pronounced
negative magnetoresistance [4–11] attributed to the phe-
nomenon of the chiral anomaly [12–14], theoretically pre-
dicted nonlocal transport [15, 16], Majorana flat bands
[17], as well as an unusual type of quantum oscillations
(QO) that involve both bulk and topologically protected
surface states [18, 19]. In this theoretical study we estab-
lish a completely new mechanism for QO in Dirac and
Weyl semimetals that requires no magnetic field. These
zero-field oscillations occur as a function of the applied
elastic strain and, similar to the canonical de Haas-van
Alphen and Shubnikov-de Haas oscillations [20], mani-
fest themselves as oscillations periodic in 1/b, where b is
the strain-induced pseudomagnetic field, in all measur-
able thermodynamic and transport properties. To the
best of our knowledge this is the first instance of such
zero-field quantum oscillations in any known substance.

Materials with linearly dispersing electrons respond in
peculiar ways to the externally imposed elastic strain.
In graphene, for instance, the e↵ect of curvature is fa-
mously analogous to a pseudomagnetic field [21] that can
be quite large and is known to generate pronounced Lan-
dau levels observed in the tunneling spectroscopy [22].
Recent theoretical work [23–27] showed that similar ef-
fects can be anticipated in three-dimensional Dirac and
Weyl semimetals, although the estimated field strengths
in the geometries that have been considered are rather
small (below 1 Tesla in Ref. [26]). Ordinary quantum
oscillations, periodic in 1/B, have already been observed
in Dirac semimetals Cd

3

As
2

and Na
3

Bi [19, 28–30] but
the magnetic field required is B & 2T. This, then, would
seem to rule out the observation of strain-induced QO
in geometries considered previously. We make a key ad-
vance in this work by devising a new geometry in which
pseudomagnetic field b as large as 15T can be achieved.
The proposed setup consists of a thin film (or a nanowire)
in which pseudomagnetic field b is generated by a simple

z

x

y

umaxa

x

z

b
b

B

FIG. 1: Proposed setup for strain-induced quantum oscilla-
tion observation in Dirac and Weyl semimetals. a) Bent film
is analogous, in terms of its low-energy properties, to an un-
strained film subject to magnetic field B. b) Detail of the
atomic displacements in the bent film. Displacements have
been exaggerated for clarity.

bend as illustrated in Fig. 1.
For simplicity and concreteness we focus in the fol-

lowing on Dirac semimetal Cd
3

As
2

[28, 31–35] which is
the best characterized representative of this class of ma-
terials. Our results are directly applicable also to Na

3

Bi
[36–38] whose low-energy description is identical, and are
easily extended to other Dirac and Weyl semimetals [39–
43]. We start from the tight-binding model formulated
in Refs. [31, 36] which describes the low-energy physics
of Cd

3

As
2

by including the band inversion of its atomic
Cd-5s and As-4p levels near the � point. In the basis
of the spin-orbit coupled states |P 3
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i, |S 1
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i
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i the model is defined by a 4 ⇥ 4 matrix
Hamiltonian
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, where
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). For the ana-
lytic calculations below we will assume a
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
Cd

3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t

0

+2t
2

)/t
1

. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd

3

As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to

t
1
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1
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j 6=3

u
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⌧ j , (3)

where u
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u
j
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u
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) is the symmetrized strain
tensor and u = (u

1

, u
2

, u
3

) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]

h
⌘

(q) = vj
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⌧ j
⇣
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e

c
A
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⌘
, (4)

with the velocity vector

v
⌘

= ~�1a(⇤,⇤,�⌘t
1

sin aQ). (5)

For Cd
2

As
3

parameters and lattice constant a = 4Å this
gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by

~A = �~c
ea

�
u
13

sin aQ, u
23

sin aQ, u
33

cot aQ
�
. (6)

We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field

b = r⇥ ~A = ŷ
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d

◆
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cot aQ. (7)

Noting that �
0

= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can

Components         of the strain tensor act on Dirac fermions as chiral gauge field.
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.
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in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
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located at crystal momenta K
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and has
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(p-h) asymmetry present in Cd
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(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
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and
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components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
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has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd
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films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
Cd

3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t

0

+2t
2

)/t
1

. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd

3

As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to

t
1

⌧z ! t
1

(1� u
33

)⌧z + i⇤
X

j 6=3

u
3j

⌧ j , (3)

where u
ij

= 1

2

(@
i

u
j

+ @
j

u
i
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tensor and u = (u

1

, u
2

, u
3

) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]
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parameters and lattice constant a = 4Å this
gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by
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We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field
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Noting that �
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= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can
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semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.
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. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K
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Eq. (1) describes the spin-down sector in Cd
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and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd
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2

.
Following Refs. [23–26] the most important e↵ect of
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by modifying the electron tunneling amplitude along the
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) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
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parameters and lattice constant a = 4Å this
gives ~v
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= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by
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We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A
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component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13
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. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd
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To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u
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= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field
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tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
Cd

3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t
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. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd
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As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to
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tensor and u = (u
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) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]
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parameters and lattice constant a = 4Å this
gives ~v
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= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by
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We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A
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component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
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. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd
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As
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.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
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3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K
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= (0, 0, ⌘Q) with Q given
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Eq. (1) describes the spin-down sector in Cd
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and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd
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As
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.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to
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) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]
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= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by
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We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd
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(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
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and
A
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components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
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erating large b than u
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. Specifically, for the same
amount of strain the field strength is enhanced by a factor
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To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
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lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K
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has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd
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films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
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tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.
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. Various tunneling amplitudes and ✏k are given
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trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K
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and has
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leading order we obtain the linearized Hamiltonian of the
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We see that elements u
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of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field

b = r⇥ ~A = ŷ

✓
2↵

d

◆
~c
ea

cot aQ. (7)

Noting that �
0

= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can
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interesting to note that there is a negative MR as B//E. To verify
the experimental results, we have measured 410 samples. The
results of negative MR are repeatable in the nanowires with dif-
ferent diameters (up to B450 nm, Supplementary Fig. 5) and in
the nanoplate with thickness B540 nm (Supplementary Fig. 6).

Negative MR under B//E. Typical results of the negative MR
from the nanowire device with diameter B 200 nm (Sample 1)
are presented in Fig. 2. The low field behaviours of the MR under
B//E and at different temperatures are shown in Fig. 2a. At zero B,
an obvious dip of the MR is exhibited at 1.5 K, and then gradually
disappears with increasing temperature to 10 K. This MR dip is
ascribed to the weak anti-localization effect as a result of strong
spin–orbit interactions in Cd3As2. Nevertheless, the negative MR
under low magnetic field is very robust against temperature. To
study the negative MR in more details, the MR curves at various
temperatures under B//E are given in Fig. 2b,c. The maximum
magnitude of the negative MR is up to ! 63% at 60 K and 7 T. A
negative MR B! 11% is still observed at 300 K. Because the
negative MR is rather robust and survives at room temperature,
the weak localization effect due to the quantum interference is
not the origin of the observed negative MR. Recently, negative
MR has been observed in Dirac semimetal ZrTe5 (ref. 25), Na3Bi
(ref. 26) and Bi1! xSbx (ref. 27) and Weyl semimetal TaAs
(refs 28,29) systems, which was ascribed to the chiral anomaly
induced charge pumping effect. Cd3As2, as 3D Dirac semimetal,
its Dirac point described by four-component Dirac equations is
composed by two Weyl nodes with opposite chirality (right
handed or left handed). Applying a magnetic field, these two
Weyl nodes would be separated in momentum space along with
the direction of the magnetic field19,27. For the Cd3As2 system,
there are a pair of Dirac points along kz direction and located at
±kD near the high symmetric point G, as marked by red dots in
Fig. 2d. The magnetic field applied in [112] direction splits the

Dirac points into Weyl nodes along the direction of magnetic
field, as marked by the green and blue dots in Fig. 2d, leading to
the formation of Weyl fermions. Initially the right- and left-
handed fermions in the different Weyl nodes have equal chemical
potential mR¼mL. In the presence of parallel electric field, there
would be an imbalance (mRamL) between two Weyl nodes with
opposite chirality, which induces a charge pumping from one
Weyl node to another with opposite chirality, corresponding to
the chiral anomaly as illustrated in Fig. 2e. In such a case, the
continuity equation of right- or left-handed Weyl node takes the
form of r # jR;Lþ @trR;L¼ % e3

4p2‘ 2c E # B (ref. 30). The chiral
charge at a single Weyl node is not conserved, which is the
so-called chiral anomaly. The charge depleted at one Weyl node
will be generated at the other node with opposite chirality (charge
pumping) and thus the charge is conserved over all the system.
There is a net current generation as a result of chiral imbalance in
the form of jc ¼ jR

c ! jL
c ¼ e2B

4p2‘ 2c
ðmR! mLÞ, where jc is named as

chiral current. Since the chiral current is in the direction of
electric field, a negative MR will be induced.

It is worth to note that the MR curves at low temperatures have
two minima at the critical magnetic field BC1 and BC2, as shown
in Fig. 2b,c and summarized in Fig. 2f. The first minimum point
at about 3 T becomes indistinct as temperature increases to 30 K.
The low carrier density of our samples allows the electrons
entering into the lowest Landau level at a relatively weak field
B2–3 T, and there is an inflection in the MR curve. Notably
with increasing temperatures, the increase of carrier density
due to thermal activation results in an increase in BC1. Due to the
combined Zeeman and orbital terms, it was theoretically
predicted that the lowest Landau level (N¼ 0) in the conduction
band splits into two sublevels by applying a magnetic field10,18. At
low temperature of 1.5 K, the upturned MR above B3 T is due to
the splitting of the lowest Landau level. As temperature increases
to B30 K, the thermal broadening of the two sublevels becomes
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Figure 1 | Characterization of synthesized Cd3As2 nanowires. (a) SEM image of the nanowires. Scale bar, 10mm. (b) TEM image of a nanowire with
diameter B100 nm. Scale bar, 50 nm. (c) High-resolution TEM image of a nanowire. The 0.73 nm interplanar spacing indicates the [112] growth direction.
Scale bar, 5 nm. (d) The energy-dispersive X-ray spectroscopy spectrum of the nanowire. The atomic ratio of Cd and As is approximately 3:2.
(e) Temperature dependence of resistivity of a nanowire device with diameter B200 nm (Sample 1), showing semiconducting-like behaviour. The resistivity
reaches maximum at around 26 K. Inset: schematic of the nanowire device with four-probe measurement configuration. The Si substrate is used as the back
gate electrode. (f) MR of the nanowire device measured at 1.5 K whilst varying the magnetic field from B>E (y¼0!) to B//E (y¼ 90!). Inset: schematic of
the relative orientations of B and E. The applied constant current is along the nanowire [112] direction, and the magnetic field is applied in the plane defined
by the nanowire direction and the vector normal to the substrate. y is an angle between B and normal direction of the substrate.
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10μm

From the radius R of the bend and diameter d of nanowires we estimate that  
distortion     of several percent can be achieved. This gives maximum estimated 
pseudomagnetic field of 10-15T in Cd3As2. 
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FIG. 2: Schematic depiction of the low-energy electron exci-
tation spectrum in Dirac and Weyl semimetals. a) In a Dirac
semimetal the bands are doubly degenerate due to the spin
degree of freedom while in a Weyl semimetal they are non-
degenerate. b) Contours of constant energy for ky = 0. For
magnetic field B k ŷ these correspond to the extremal orbits
[20] that give rise to QO periodic in 1/B.

in numerics we will use the actual lattice constants of
Cd

3

As
2

. Various tunneling amplitudes and ✏k are given
in Supplementary Material (SM). The low-energy spec-
trum of hlatt consists of a pair of Weyl points, shown in
Fig. 2a, which carry opposite chirality ⌘ = ±1 and are
located at crystal momenta K

⌘

= (0, 0, ⌘Q) with Q given
by cos(aQ) = �(t

0

+2t
2

)/t
1

. The lower diagonal block in
Eq. (1) describes the spin-down sector in Cd

3

As
2

and has
identical spectrum. Terms in ✏k account for particle-hole
(p-h) asymmetry present in Cd

3

As
2

.
Following Refs. [23–26] the most important e↵ect of

elastic strain can be included in the lattice model (1)
by modifying the electron tunneling amplitude along the
ẑ-direction according to

t
1

⌧z ! t
1

(1� u
33

)⌧z + i⇤
X

j 6=3

u
3j

⌧ j , (3)

where u
ij

= 1

2

(@
i

u
j

+ @
j

u
i

) is the symmetrized strain
tensor and u = (u

1

, u
2

, u
3

) represents the displacement
of the atoms. To see how this leads to an emergent vector
potential we study the low-energy e↵ective theory. We
expand hlatt(k) in the vicinity of the Weyl points K±
by writing k = K± + q and assuming small |q|. To
leading order we obtain the linearized Hamiltonian of the
distorted crystal [26]

h
⌘

(q) = vj
⌘

⌧ j
⇣
~q

j

� ⌘
e

c
A

j

⌘
, (4)

with the velocity vector

v
⌘

= ~�1a(⇤,⇤,�⌘t
1

sin aQ). (5)

For Cd
2

As
3

parameters and lattice constant a = 4Å this
gives ~v

⌘

= (0.89, 0.89,�1.24⌘)eVÅ. The strain-induced
gauge potential is given by

~A = �~c
ea

�
u
13

sin aQ, u
23

sin aQ, u
33

cot aQ
�
. (6)

We see that elements u
j3

of the strain tensor act on
the low-energy Weyl fermions as components of a chiral
gauge field because according to Eq. (4) ~A couples with
the opposite sign to the Weyl fermions with opposite chi-
rality ⌘. Ordinary electromagnetic gauge potential cou-
ples through the replacement ~q ! ~q � e

c

A, indepen-
dent of ⌘. Ref. [26] noted that application of a torsional
strain to a nanowire made of Cd

3

As
2

(grown along the
001 crystallographic direction) results in a uniform pseu-
domagnetic field b = r ⇥ ~A pointed along the axis of
the wire. The strength of this pseudomagnetic field was
estimated as b . 0.3T which would be insu�cient to ob-
serve QO. Our key observation here is that a di↵erent
type of distortion, illustrated in Fig. 1a, can produce a
much larger field b.
One reason why the torsion-induced b-field is relatively

small lies in the fact that it originates from the A
x

and
A

y

components of the vector potential. According to
Eq. (6) these are suppressed relative to the strain com-
ponents by a factor of sin aQ. This is a small number
in most Dirac and Weyl semimetals because the distance
2Q between the Weyl points is typically a small frac-
tion of the Brillouin zone size 2⇡/a. Specifically, we have
aQ ' 0.132 in Cd

3

As
2

[31]. Note on the other hand that
the A

z

component of the chiral gauge potential comes
with a factor cot aQ ' 1/aQ and is therefore enhanced.
A lattice distortion that produces nonzero strain tensor
element u

33

will therefore be much more e�cient in gen-
erating large b than u

13

or u
23

. Specifically, for the same
amount of strain the field strength is enhanced by a factor
of cot aQ/ sin aQ ' 1/(aQ)2 ' 57 for Cd

3

As
2

.
To implement this type of strain we consider a thin

film (or a nanowire) grown such that vector K
⌘

lies
along the z direction as defined in Fig. 1a. More gen-
erally we require that K

⌘

has a nonzero projection onto
the surface of the film or on the long direction for the
nanowire. Cd

3

As
2

films [29], microribbons [44] and
nanowires [45, 46] satisfy this requirement. Bending the
film as shown in Fig. 1b creates a displacement field
u = (0, 0, 2↵xz/d), where d is the film thickness and
↵ controls the magnitude of the bend. (If R is the ra-
dius of the circular section formed by the bent film then
↵ = 2d/R. ↵ can also be interpreted as the maximum
fractional displacement ↵ = u

max

/a that occurs at the
surface of the film.) This distortion gives u

33

= 2↵x/d
which, through Eq. (6), yields a pseudomagnetic field

b = r⇥ ~A = ŷ

✓
2↵

d

◆
~c
ea

cot aQ. (7)

Noting that �
0

= hc/e = 4.12⇥ 105TÅ we may estimate
the resulting field strength for a d = 100nm film as

b ' ↵⇥ 246T. (8)

The maximum pseudomagnetic field that can be achieved
will depend on the maximum strain that the material can

This should be sufficient to observe strain-induced quantum oscillations.
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FIG. 3: Numerical results for the Cd3As2 lattice Hamiltonian (2) in the presence of magnetic field B = ŷB and strain-induced
pseudomagnetic field b = ŷb. In all panels films of thickness 500 lattice points are studied with parameters appropriate for
Cd3As2. P-h asymmetry terms ✏k are neglected for simplicity which makes contributions from the two spin sectors identical.
a) Band structure and density of states (DOS) for zero field and zero strain. The inset shows the first Brillouin zone. b) Band
structure and normalized DOS for B = 1.5T. Red crosses indicate the peak positions expected on the basis of the Lifshitz-
Onsager quantization condition [20]. c) Band structure and DOS for b = 1.5T. Thin black line shows the expected bulk DOS
for ideal Weyl dispersion computed from Eq. (9).

sustain. Ref. [45] characterized the Cd
3

As
2

nanowires as
“greatly flexible” and their Figure 1a shows some wires
bent with a radius R as small as several microns. This
implies that ↵ of several percent can likely be achieved.
From Eq. (8) we thus estimate that field strength b '
10�15T can be reached, providing a substantial window
for the observation of the strain-induced QO.

To substantiate these claims we now present the re-
sults of our numerical simulations based on the lattice
Hamiltonian (2). Magnetic field B is implemented via
the standard Peierls substitution while the strain-induced
field b through Eq. (3). Geometry outlined in Fig. 1
is used with periodic boundary conditions along y and
z, open along x. Fig. 3 provides the summary of our
results. The unstrained crystal at zero field (panel a)
shows the expected band structure with bulk Weyl nodes
close to k

z

a = ±0.2 and a pair of linearly dispersing sur-
face states corresponding to Fermi arcs. The density of
states (DOS) exhibits the expected quadratic behavior
D(E) ⇠ E2 at low energies with some deviations appar-
ent for |E| & 12meV due to the departure of the lat-
tice model from the perfectly linear Weyl dispersion. At
E

Lif

' 20meV Lifshitz transition occurs where two small
Fermi surfaces associated with each Weyl point merge
into a single large Fermi surface as illustrated in Fig. 2b.

In Fig. 3b magnetic field B = ŷB is seen to reorganize
the linearly dispersing bulk bands into flat Landau levels.

In the continuum approximation given by Eq. (4) the
bulk spectrum of such Dirac-Landau levels is well known
and reads

E
n

(k
y

) = ±~
r

v2
y

k2
y

+ 2nv
x

v
z

e|B|
~c , n = 1, 2, . . . , (9)

The corresponding DOS shows a series of spikes at the
onset of each new Landau level and is in a good agree-
ment with the DOS calculated from the lattice model.
Deviations occur above ⇠ 12meV because the energy dis-
persion of the lattice model is no longer perfectly linear
at higher energies. The peak positions E

n

agree per-
fectly with the Lifshitz-Onsager quantization condition
[20], which takes into account these deviations. It re-
quires that S(E

n

) = 2⇡n(eB/~c), where S(E) is the ex-
tremal cross-sectional area of a surface of constant en-
ergy E in the plane perpendicular to B (see Fig. 2b),
and n = 1, 2, · · · .
Pseudomagnetic field b = ŷb, induced by strain us-

ing Eq. (3) with u
33

= 2↵x/d, also generates flat bands
(panel c), as expected on the basis of arguments pre-
sented above. The corresponding DOS is in agreement
with that obtained from Eq. (9) upon replacing B ! b.
Remarkably the agreement is nearly perfect for all ener-
gies up to E

Lif

. We attribute this interesting result to
the fact that strain couples as the chiral vector potential
only to the Weyl fermions. If we write the full Hamilto-
nian as h(p) = h

W

(p)+�h(p) where h
W

is strictly linear
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for ideal Weyl dispersion computed from Eq. (9).

sustain. Ref. [45] characterized the Cd
3

As
2

nanowires as
“greatly flexible” and their Figure 1a shows some wires
bent with a radius R as small as several microns. This
implies that ↵ of several percent can likely be achieved.
From Eq. (8) we thus estimate that field strength b '
10�15T can be reached, providing a substantial window
for the observation of the strain-induced QO.

To substantiate these claims we now present the re-
sults of our numerical simulations based on the lattice
Hamiltonian (2). Magnetic field B is implemented via
the standard Peierls substitution while the strain-induced
field b through Eq. (3). Geometry outlined in Fig. 1
is used with periodic boundary conditions along y and
z, open along x. Fig. 3 provides the summary of our
results. The unstrained crystal at zero field (panel a)
shows the expected band structure with bulk Weyl nodes
close to k

z

a = ±0.2 and a pair of linearly dispersing sur-
face states corresponding to Fermi arcs. The density of
states (DOS) exhibits the expected quadratic behavior
D(E) ⇠ E2 at low energies with some deviations appar-
ent for |E| & 12meV due to the departure of the lat-
tice model from the perfectly linear Weyl dispersion. At
E

Lif

' 20meV Lifshitz transition occurs where two small
Fermi surfaces associated with each Weyl point merge
into a single large Fermi surface as illustrated in Fig. 2b.

In Fig. 3b magnetic field B = ŷB is seen to reorganize
the linearly dispersing bulk bands into flat Landau levels.

In the continuum approximation given by Eq. (4) the
bulk spectrum of such Dirac-Landau levels is well known
and reads
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The corresponding DOS shows a series of spikes at the
onset of each new Landau level and is in a good agree-
ment with the DOS calculated from the lattice model.
Deviations occur above ⇠ 12meV because the energy dis-
persion of the lattice model is no longer perfectly linear
at higher energies. The peak positions E

n

agree per-
fectly with the Lifshitz-Onsager quantization condition
[20], which takes into account these deviations. It re-
quires that S(E
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) = 2⇡n(eB/~c), where S(E) is the ex-
tremal cross-sectional area of a surface of constant en-
ergy E in the plane perpendicular to B (see Fig. 2b),
and n = 1, 2, · · · .
Pseudomagnetic field b = ŷb, induced by strain us-

ing Eq. (3) with u
33

= 2↵x/d, also generates flat bands
(panel c), as expected on the basis of arguments pre-
sented above. The corresponding DOS is in agreement
with that obtained from Eq. (9) upon replacing B ! b.
Remarkably the agreement is nearly perfect for all ener-
gies up to E
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. We attribute this interesting result to
the fact that strain couples as the chiral vector potential
only to the Weyl fermions. If we write the full Hamilto-
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FIG. 3: Numerical results for the Cd3As2 lattice Hamiltonian (2) in the presence of magnetic field B = ŷB and strain-induced
pseudomagnetic field b = ŷb. In all panels films of thickness 500 lattice points are studied with parameters appropriate for
Cd3As2. P-h asymmetry terms ✏k are neglected for simplicity which makes contributions from the two spin sectors identical.
a) Band structure and density of states (DOS) for zero field and zero strain. The inset shows the first Brillouin zone. b) Band
structure and normalized DOS for B = 1.5T. Red crosses indicate the peak positions expected on the basis of the Lifshitz-
Onsager quantization condition [20]. c) Band structure and DOS for b = 1.5T. Thin black line shows the expected bulk DOS
for ideal Weyl dispersion computed from Eq. (9).

sustain. Ref. [45] characterized the Cd
3

As
2

nanowires as
“greatly flexible” and their Figure 1a shows some wires
bent with a radius R as small as several microns. This
implies that ↵ of several percent can likely be achieved.
From Eq. (8) we thus estimate that field strength b '
10�15T can be reached, providing a substantial window
for the observation of the strain-induced QO.

To substantiate these claims we now present the re-
sults of our numerical simulations based on the lattice
Hamiltonian (2). Magnetic field B is implemented via
the standard Peierls substitution while the strain-induced
field b through Eq. (3). Geometry outlined in Fig. 1
is used with periodic boundary conditions along y and
z, open along x. Fig. 3 provides the summary of our
results. The unstrained crystal at zero field (panel a)
shows the expected band structure with bulk Weyl nodes
close to k

z

a = ±0.2 and a pair of linearly dispersing sur-
face states corresponding to Fermi arcs. The density of
states (DOS) exhibits the expected quadratic behavior
D(E) ⇠ E2 at low energies with some deviations appar-
ent for |E| & 12meV due to the departure of the lat-
tice model from the perfectly linear Weyl dispersion. At
E

Lif

' 20meV Lifshitz transition occurs where two small
Fermi surfaces associated with each Weyl point merge
into a single large Fermi surface as illustrated in Fig. 2b.

In Fig. 3b magnetic field B = ŷB is seen to reorganize
the linearly dispersing bulk bands into flat Landau levels.

In the continuum approximation given by Eq. (4) the
bulk spectrum of such Dirac-Landau levels is well known
and reads

E
n

(k
y

) = ±~
r

v2
y

k2
y

+ 2nv
x

v
z

e|B|
~c , n = 1, 2, . . . , (9)

The corresponding DOS shows a series of spikes at the
onset of each new Landau level and is in a good agree-
ment with the DOS calculated from the lattice model.
Deviations occur above ⇠ 12meV because the energy dis-
persion of the lattice model is no longer perfectly linear
at higher energies. The peak positions E

n

agree per-
fectly with the Lifshitz-Onsager quantization condition
[20], which takes into account these deviations. It re-
quires that S(E

n

) = 2⇡n(eB/~c), where S(E) is the ex-
tremal cross-sectional area of a surface of constant en-
ergy E in the plane perpendicular to B (see Fig. 2b),
and n = 1, 2, · · · .
Pseudomagnetic field b = ŷb, induced by strain us-

ing Eq. (3) with u
33

= 2↵x/d, also generates flat bands
(panel c), as expected on the basis of arguments pre-
sented above. The corresponding DOS is in agreement
with that obtained from Eq. (9) upon replacing B ! b.
Remarkably the agreement is nearly perfect for all ener-
gies up to E

Lif

. We attribute this interesting result to
the fact that strain couples as the chiral vector potential
only to the Weyl fermions. If we write the full Hamilto-
nian as h(p) = h

W

(p)+�h(p) where h
W

is strictly linear
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FIG. 4: Strain-induced QO. Top pannel shows oscillations in
DOS at energy 10meV as a function of inverse strain strength
expressed as 1/b. For comparison ordinary magnetic oscil-
lations are displayed, as well as the result of the bulk con-
tinuum theory Eq. (9). Crosses indicate peak positions ex-
pected based on the Lifshitz-Onsager theory. Bottom pannel
shows oscillations in conductivity �yy assuming Fermi energy
EF = 10meV. To simulate the e↵ect of disorder all data are
broadened by convolving in energy with a Lorentzian with
width � = 0.25meV. The same geometry and parameters are
used as in Fig. 3.

in momentum p and �h is the correction resulting from
the lattice e↵ects, then strain causes p ! p � e

c

~A only
in h

W

but does not to leading order a↵ect �h. The real
vector potential A a↵ects h

W

and �h in the same way.

These results imply that QO will occur when either
B or b is present. If we vary B then D(E

F

), together
with most measurable quantities, will exhibit oscillations
periodic in 1/B. The same is true for the strain-induced
pseudomagnetic field b. This is illustrated in Fig. 4 which
shows oscillations in DOS and longitudinal conductivity
�
yy

at energy 10meV as a function of 1/b and 1/B. Con-
ductivity is calculated using the standard relaxation time
approximation as described in SM. Strain-induced QO
show robust periodicity in 1/b. Their period 0.329T�1 is
in a good agreement with the period 0.324T�1 expected
on the basis of the Lifshitz-Onsager theory and 0.336T�1

obtained from Eq. (9). Small irregularities that appear
at low fields can be attributed to the finite size e↵ects
as the Landau level spacing becomes comparable to the
subband spacing apparent e.g. in Fig. 3a. We verified
that similar oscillations occur at other energies below the
Lifshitz transition. Remarkably, we find strain-induced
oscillations periodic in 1/b also above E

Lif

. In addition,
we expect that in the presence of both b and B fields
the peaks split as two Weyl cones feel di↵erent e↵ective
magnetic fields. These e↵ects are further discussed in
SM.

Results presented above extend trivially to the full
Cd

3

As
2

Hamiltonian Eq. (1) where the spin-down block

makes an identical contribution and the p-h symmetry
breaking terms contained in ✏k bring only quantitative
changes (see SM for discussion). Experimental studies
[32–35] indicate that the linear dispersion in Cd

3

As
2

ex-
tends over a much wider range of energies than theo-
retically anticipated [31] with the Lifshitz transition oc-
curring above ⇠ 200meV. We therefore expect the zero-
field strain-induced QO predicted in this work to be eas-
ily observable in suitably fabricated Cd

3

As
2

films and
nanowires and potentially also in other Dirac and Weyl
semimetals. Our results show that conditions for their
observability are identical to those required to detect or-
dinary QO. The continuous tunability of the pseudomag-
netic field in large parameter range provides a new ex-
perimental basis for the study of emergent gauge fields
in three-dimensional crystalline solids.
The authors are indebted to D.A. Bonn, D.M. Broun,

A. Chen, I. Elfimov and W. N. Hardy for illuminating
discussions, and thank NSERC, CIfAR and Max Planck
- UBC Centre for Quantum Materials for support.

[1] X. Wan, A. M. Turner, A. Vishwanath, and S. Y.
Savrasov, Phys. Rev. B 83, 205101 (2011).

[2] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev.
B 84, 235126 (2011).

[3] O. Vafek and A. Vishwanath, Annual Review of Con-
densed Matter Physics 5, 83 (2014).

[4] K. Fukushima, D. E. Kharzeev, and H. J. Warringa,
Phys. Rev. D 78, 074033 (2008).

[5] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412
(2013).

[6] H.-J. Kim, K.-S. Kim, J.-F. Wang, M. Sasaki, N. Satoh,
A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Phys. Rev.
Lett. 111, 246603 (2013).

[7] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang,
H. Liang, M. Xue, H. Weng, Z. Fang, et al., Phys. Rev.
X 5, 031023 (2015).

[8] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan,
M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong,
Science 350, 413 (2015).

[9] A. A. Burkov, Journal of Physics: Condensed Matter 27,
113201 (2015).

[10] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic,
A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu,
and T. Valla, Nat Phys 12, 550 (2016).

[11] C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin,
B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang,
et al., Nat Commun 7, 10735 (2016).

[12] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[13] J. S. Bell and R. Jackiw, Il Nuovo Cimento A (1971-1996)

60, 47 (1969).
[14] H. Nielsen and M. Ninomiya, Physics Letters B 130, 389

(1983).
[15] S. A. Parameswaran, T. Grover, D. A. Abanin, D. A.

Pesin, and A. Vishwanath, Phys. Rev. X 4, 031035
(2014).

[16] Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern,
Phys. Rev. X 5, 041046 (2015).

7

0.10 0.15 0.20 0.25
0.2

0.4

0.6
0.04

0.08

0.12

 

σ
yy

(B
)/σ

yy
(0

)

1/B,1/b [T-1]

 strain
 magnetic field
 continuum

 

 

D
O

S
(2

8m
eV

)

a)

b)

FIG. 6: a) QO above the Lifshits transition due to ordinary magnetic field and due to the gauge field. Period di↵erence by
more than a factor of 2 is seen. The low-energy analytics does not apply anymore, as expected. b) Corresponding hypothesized
quasiclassical trajectories of electrons in the Brillouin zone. Green – for By field, and red – for by field.

oscillations around each of the Weyl points are possible.
Notice also that the electron in the pseudmagnetic field
travels clockwise around one of the Weyl points and
counterclockwise around the another. The precise nature
of the corresponding quasiclassical trajectories above
the Lifshitz transition is therefore an interesting open
question which we leave for further study. We speculate
that they include tunneling between the opposite points
of the Fermi surface as depicted in Fig. 6b. Such
trajectories would define an extremal area consistent
with our numerical results.

Equivalence of external and gauge fields

In this section we additionally substantiate the pro-
posed equivalence of b and B fields and suggest an addi-

tional experimental test. We propose to apply external
magnetic field of fixed strength and then slowly turn on
strain (or vice versa, whichever is more convenient in a
particular experimental design). This will result in split-
ting of the first peak in DOS as seen in Fig. 7. This
happens because the two Weyl cones will feel di↵erent
e↵ective magnetic fields, B + b and B � b, which result
in two independent sequences of peaks in DOS. Obser-
vation of the splitting would prove the identical nature
of the gauge and external magnetic fields in each of the
Weyl cones, and establish that the two cones feel opposite
e↵ective field due to b.
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of the corresponding quasiclassical trajectories above
the Lifshitz transition is therefore an interesting open
question which we leave for further study. We speculate
that they include tunneling between the opposite points
of the Fermi surface as depicted in Fig. 6b. Such
trajectories would define an extremal area consistent
with our numerical results.

Equivalence of external and gauge fields

In this section we additionally substantiate the pro-
posed equivalence of b and B fields and suggest an addi-

tional experimental test. We propose to apply external
magnetic field of fixed strength and then slowly turn on
strain (or vice versa, whichever is more convenient in a
particular experimental design). This will result in split-
ting of the first peak in DOS as seen in Fig. 7. This
happens because the two Weyl cones will feel di↵erent
e↵ective magnetic fields, B + b and B � b, which result
in two independent sequences of peaks in DOS. Obser-
vation of the splitting would prove the identical nature
of the gauge and external magnetic fields in each of the
Weyl cones, and establish that the two cones feel opposite
e↵ective field due to b.
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FIG. 1: Electron excitation spectra in a Weyl semimetal in the presence of a) magnetic field B and b) pseudomagnetic field b
generated by a torsional deformation. Parallel electric field E produces a charge density imbalance in case( a) while it appears
to produce excess total charge density in case (b). Panel (c) illustrates the displacement field u in the presence of torsion.
Consecutive layers of the crystal are rotated by relative angle '

0

= ⌦(L/a).

gin of the chiral fields by considering the e↵ect of the
elastic strain in the full lattice model that underlies the
low-energy theory (1.1). Specifically, using the method
developed in Refs. [6, 27], we find that (i) a uniform pseu-
domagnetic field b = r⇥a directed along the axis of the
wire ẑ is generated by applying static torsion as indicated
in Fig. 1b while (ii) pseudoelectric field e = � 1

c

@
t

a, also
along ẑ, is obtained by dynamically stretching and com-
pressing the sample.

Consequences of the strain-induced gauge fields can be
most easily deduced from the chiral anomaly equations
[21–23] which take the following form when both ordinary
and chiral EM fields are present [28]:

@
t

⇢
5

+r · j
5

=
e2

2⇡2~2c (E ·B + e · b), (1.2)

@
t

⇢+r · j =
e2

2⇡2~2c (E · b+ e ·B). (1.3)

Here ⇢ and ⇢
5

are the total electron and chiral density,
respectively, j and j

5

are the corresponding current den-
sities. Chiral density ⇢

5

= ⇢
R

�⇢
L

refers to the di↵erence
between the charge densities associated with the right-
and left-handed Weyl points.

The first equation (1.2) is most commonly associated
with the chiral anomaly, and expresses non-conservation
of the chiral charge in the presence of aligned EM or
pseudo-EM fields. Physically, this can be understood as
pumping of charge from one Weyl point to the other –
the chiral magnetic e↵ect [23]. It is this phenomenon that
underlies the anomalous negative magnetoresistance [29–
31] that has been recently observed in a variety of Weyl
and Dirac semimetals [32–36].

The second anomaly equation (1.3) only occurs when
both ordinary and pseudo-EM fields are present. It
expresses an apparent charge density non-conservation,
which is the focus of the present work. In a real solid
charge density is of course strictly conserved and Eq.
(1.3) therefore must be interpreted with caution. We
will show that Eq. (1.3) can be understood as pumping
of charge between the bulk and the boundary of the sys-
tem. Such pumping only occurs when either b or e fields

are present and furnishes a novel manifestation of the
chiral anomaly in a strained crystal.
To develop some intuition for the chiral anomaly let

us consider the Hamiltonian (1.1) in the presence of a
static uniform (pseudo)magnetic field. We begin with
the ordinary magnetic field B = Bẑ. The solution of
the corresponding Schrödinger equation h� = ✏� is well
known and consists of the set of Dirac Landau levels with
energies

✏
n

(k) = ±~v
r

k2 + 2n
e|B|
~c , n = 1, 2, . . . , (1.4)

for each Weyl fermion. There is also one chiral n = 0
level per valley with ✏

0

(k) = �z sgn(B)~vk. If a parallel
electric field E = Eẑ is now applied to the system then
the electron momenta begin to evolve according to the
semiclassical equation of motion k(t) = k(0) � eEt/~.
Because of the existence of the two chiral branches in
the spectrum this leads to charge pumping between the
two Weyl points, as illustrated in Fig. 1a, at a rate con-
sistent with the chiral anomaly equation (1.2). The key
point here is that in a real solid where the Hamiltonian
is defined on the lattice the two chiral branches are con-
nected away from the Weyl points and the chiral anomaly
equation simply describes the semiclassical evolution of
the electron states through the Brillouin zone [23]. In
the presence of relaxation processes a steady state non-
equilibrium distribution of electrons with nonzero chiral
density ⇢

5

is obtained which is responsible for the anoma-
lous ⇠ B2 contribution to the magnetoresistance.
Now consider the e↵ect of the chiral magnetic field

b = bẑ. The solution consists of the same Dirac Lan-
dau levels Eq. (1.4) but the n = 0 levels now dis-
perse in the same direction for the two Weyl points,
✏
0

(k) = sgn(b)~vk, as illustrated In Fig. 1b. Now if a
parallel electric field E = Eẑ is applied to the system we
see that the charge density seemingly begins to change.
Since the total charge is conserved this extra charge den-
sity must come from somewhere. We will demonstrate
below that it comes from the edge of the system. In-
deed this is plausible if we note that the energy spectrum
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gin of the chiral fields by considering the e↵ect of the
elastic strain in the full lattice model that underlies the
low-energy theory (1.1). Specifically, using the method
developed in Refs. [6, 27], we find that (i) a uniform pseu-
domagnetic field b = r⇥a directed along the axis of the
wire ẑ is generated by applying static torsion as indicated
in Fig. 1b while (ii) pseudoelectric field e = � 1
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a, also
along ẑ, is obtained by dynamically stretching and com-
pressing the sample.

Consequences of the strain-induced gauge fields can be
most easily deduced from the chiral anomaly equations
[21–23] which take the following form when both ordinary
and chiral EM fields are present [28]:

@
t

⇢
5

+r · j
5

=
e2

2⇡2~2c (E ·B + e · b), (1.2)

@
t

⇢+r · j =
e2

2⇡2~2c (E · b+ e ·B). (1.3)

Here ⇢ and ⇢
5

are the total electron and chiral density,
respectively, j and j

5

are the corresponding current den-
sities. Chiral density ⇢

5

= ⇢
R

�⇢
L

refers to the di↵erence
between the charge densities associated with the right-
and left-handed Weyl points.

The first equation (1.2) is most commonly associated
with the chiral anomaly, and expresses non-conservation
of the chiral charge in the presence of aligned EM or
pseudo-EM fields. Physically, this can be understood as
pumping of charge from one Weyl point to the other –
the chiral magnetic e↵ect [23]. It is this phenomenon that
underlies the anomalous negative magnetoresistance [29–
31] that has been recently observed in a variety of Weyl
and Dirac semimetals [32–36].

The second anomaly equation (1.3) only occurs when
both ordinary and pseudo-EM fields are present. It
expresses an apparent charge density non-conservation,
which is the focus of the present work. In a real solid
charge density is of course strictly conserved and Eq.
(1.3) therefore must be interpreted with caution. We
will show that Eq. (1.3) can be understood as pumping
of charge between the bulk and the boundary of the sys-
tem. Such pumping only occurs when either b or e fields

are present and furnishes a novel manifestation of the
chiral anomaly in a strained crystal.
To develop some intuition for the chiral anomaly let

us consider the Hamiltonian (1.1) in the presence of a
static uniform (pseudo)magnetic field. We begin with
the ordinary magnetic field B = Bẑ. The solution of
the corresponding Schrödinger equation h� = ✏� is well
known and consists of the set of Dirac Landau levels with
energies

✏
n

(k) = ±~v
r

k2 + 2n
e|B|
~c , n = 1, 2, . . . , (1.4)

for each Weyl fermion. There is also one chiral n = 0
level per valley with ✏

0

(k) = �z sgn(B)~vk. If a parallel
electric field E = Eẑ is now applied to the system then
the electron momenta begin to evolve according to the
semiclassical equation of motion k(t) = k(0) � eEt/~.
Because of the existence of the two chiral branches in
the spectrum this leads to charge pumping between the
two Weyl points, as illustrated in Fig. 1a, at a rate con-
sistent with the chiral anomaly equation (1.2). The key
point here is that in a real solid where the Hamiltonian
is defined on the lattice the two chiral branches are con-
nected away from the Weyl points and the chiral anomaly
equation simply describes the semiclassical evolution of
the electron states through the Brillouin zone [23]. In
the presence of relaxation processes a steady state non-
equilibrium distribution of electrons with nonzero chiral
density ⇢

5

is obtained which is responsible for the anoma-
lous ⇠ B2 contribution to the magnetoresistance.
Now consider the e↵ect of the chiral magnetic field

b = bẑ. The solution consists of the same Dirac Lan-
dau levels Eq. (1.4) but the n = 0 levels now dis-
perse in the same direction for the two Weyl points,
✏
0

(k) = sgn(b)~vk, as illustrated In Fig. 1b. Now if a
parallel electric field E = Eẑ is applied to the system we
see that the charge density seemingly begins to change.
Since the total charge is conserved this extra charge den-
sity must come from somewhere. We will demonstrate
below that it comes from the edge of the system. In-
deed this is plausible if we note that the energy spectrum
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FIG. 2: Tight-binding model simulations of a Weyl semimetal wire under torsional strain and applied magnetic field B = ẑB.
Top row of figures shows the band structure of the lattice Hamiltonian defined by Eqs. (2.4) and (2.9) computed for a wire
with a rectangular cross section of 30 ⇥ 30 sites and a lattice constant a = 40Å. (We use larger lattice constant here and in
subsequent simulations than in real Cd

3

As
2

in order to be able to model nanowires and films of realistic cross sections with
available computational resources. Note that this does not a↵ect the physics at low energies because the lattice Hamiltonian
is designed to reproduce the relevant k · p theory independent of a.) Open boundary conditions are imposed along x and y,
periodic along z. Parameters appropriate for Cd

3

As
2

are used. Middle and bottom rows show spectral functions A

bulk(k,!)
and A

surf(k,!). The former is obtained by averaging the full spectral function Aj(k,!) over sites j in the central 10 ⇥ 10
portion of the wire while the latter averages over the sites located at the perimeter of the wire. The torsion applied in columns
c and d corresponds to the maximum displacement at the perimeter of 0.5a, or '

0

' 2o between consecutive layers.

µ occurs because under adiabatic evolution an electron
initially in the quantum state with momentum k in the
nth band remains in that state as the band energy E

n

(k)
evolves in response to strain.

From the point of view of the low-energy theory the
lateral shift of the chiral branches is consistent with the
e↵ect of the uniform chiral gauge potential a

z

which
according to our discussion below Eq. (2.8) moves the
Weyl points closer together for ↵ > 0. From Eqs. (2.10)
and (2.11) we can estimate the amount of this shift
�Q ' (e/~c)a

z

= �u
33

cot aQ/a. This in turn gives an
estimate for the required change in the chemical potential

�µ = µ0 � µ
0

= �~v�Q, or

�µ = �v

c
ea

z

= ↵
~v
a

cot aQ. (3.1)

For Cd
3

As
2

parameters including the particle-hole sym-
metry breaking terms in ✏k we have ~v ' 1.94eVÅ which
implies �µ = 3.75meV for ↵ = 0.03. This estimate com-
pares favorably with the value �µ

num

= 3.46meV ob-
tained from our lattice model simulation presented in Fig.
3a.
If we continue focusing solely on the low energy de-

grees of freedom we would conclude that a change �µ in
the chemical potential in a linearly dispersing band with
degeneracy (B/�

0

) brings about a change in the electron
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the e↵ects discussed above to generically remain present
in Dirac semimetals such as Cd

3

As
2

and Na
3

Bi.

IV. EXPERIMENTAL MANIFESTATIONS OF
THE STRAIN-INDUCED CHIRAL ANOMALY

A. Persistent currents in a twisted Weyl semimetal
with broken T : topological coaxial cable

The phenomena discussed above have several observ-
able consequences which we now discuss. According to
Fig. 2c Weyl semimetal wire under torsion exhibits spa-
tial separation between left and right moving modes at
low energies: the former are localized near the boundary
while the latter occur in the bulk. At a generic chemi-
cal potential we thus expect persistent equilibrium cur-
rents to flow in such a wire as indicated in Fig. 6a. This
can be argued as follows. Suppose the current density
j
z

(r) is uniformly zero at some reference chemical po-
tential µ

0

. If we now change the chemical potential to
µ = µ

0

+ �µ we are populating additional right moving
modes in the bulk and left moving modes at the surface
of the wire. Although the total current carried by the
wire remains zero, as it must be in any normal metal in
equilibrium [40], there is now a non-vanishing positive
current density flowing in the bulk compensated by the
negative current density flowing along the surface. We
have verified numerically that this is indeed the case in
the lattice model (2.4) and (2.9): for any chemical po-
tential µ 6= 0 a ground-state current density develops as
illustrated in Fig. 6b.

Such a current flow generates magnetic fields outside
the wire which are, at least in principle, measurable e.g
by scanning SQUID microscopy. In practice, however, we
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FIG. 6: Equilibrium current density in the Weyl semimetal
wire under torsion. a) Schematic depiction of the bulk/surface
current flow. b) Ground state current density computed from
the lattice model Eqs. (2.4) and (2.9) at chemical potential
µ = 5meV. Warm (cold) colors represent positive (negative)
current density j.

expect this to be a challenging experiment. The currents
occur only in a Weyl semimetal with broken T which is
most likely to be realized in a magnetic material. It might
be di�cult to distinguish the fields produced by torsion-
induced persistent currents from the sample magnetiza-
tion. We note that in Dirac semimetals, like Cd

3

As
2

or
Na

3

Bi, the total current density will vanish upon includ-
ing the contribution from the lower diagonal block in the
Hamiltonian (2.1). This has to be the case because non-
zero j would violate the T symmetry of the material,
which should remain unbroken under strain. The cur-
rent density can be nonzero, however, when both torsion
and magnetic field are applied. This is demonstrated in
Fig. 9 of Appendix A.

B. Chiral torsional e↵ect

The physics described above however has a simple
manifestation observable in transport measurements in
both Weyl and Dirac semimetals. Consider a measure-
ment of longitudinal resistivity in a twisted wire. Once
again we start by discussing a Weyl semimetal. When
electric field E is applied to the twisted wire it begins to
produce charge density �⇢ = ⇢ � ⇢

0

in the bulk at the
rate given by the anomaly equation (1.3). In view of our
discussion above we interpret �⇢ as charge density imbal-
ance between the bulk and the surface of the wire. Such
an imbalance can relax back to equilibrium only through
processes that induce backscattering between the bulk
right moving modes and the surface left moving modes.
If we denote the relevant scattering time by ⌧ we get an
equation

d

dt
�⇢ =

e2

2⇡2~2cE · b� �⇢

⌧
. (4.1)

At long times t � ⌧ the steady state solution reads

�⇢ =
e2⌧

2⇡2~2cE · b. (4.2)
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Conclusions 

Similar to graphene elastic strain in Dirac and Weyl 
semimetals acts as chiral gauge potential 

This gives rise to quantum oscillations in complete 
absence of magnetic field  

Also generates an interesting novel manifestation 
of the chiral anomaly
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FIG. 4: Strain-induced QO. Top pannel shows oscillations in
DOS at energy 10meV as a function of inverse strain strength
expressed as 1/b. For comparison ordinary magnetic oscil-
lations are displayed, as well as the result of the bulk con-
tinuum theory Eq. (9). Crosses indicate peak positions ex-
pected based on the Lifshitz-Onsager theory. Bottom pannel
shows oscillations in conductivity �yy assuming Fermi energy
EF = 10meV. To simulate the e↵ect of disorder all data are
broadened by convolving in energy with a Lorentzian with
width � = 0.25meV. The same geometry and parameters are
used as in Fig. 3.

in momentum p and �h is the correction resulting from
the lattice e↵ects, then strain causes p ! p � e

c

~A only
in h

W

but does not to leading order a↵ect �h. The real
vector potential A a↵ects h

W

and �h in the same way.

These results imply that QO will occur when either
B or b is present. If we vary B then D(E

F

), together
with most measurable quantities, will exhibit oscillations
periodic in 1/B. The same is true for the strain-induced
pseudomagnetic field b. This is illustrated in Fig. 4 which
shows oscillations in DOS and longitudinal conductivity
�
yy

at energy 10meV as a function of 1/b and 1/B. Con-
ductivity is calculated using the standard relaxation time
approximation as described in SM. Strain-induced QO
show robust periodicity in 1/b. Their period 0.329T�1 is
in a good agreement with the period 0.324T�1 expected
on the basis of the Lifshitz-Onsager theory and 0.336T�1

obtained from Eq. (9). Small irregularities that appear
at low fields can be attributed to the finite size e↵ects
as the Landau level spacing becomes comparable to the
subband spacing apparent e.g. in Fig. 3a. We verified
that similar oscillations occur at other energies below the
Lifshitz transition. Remarkably, we find strain-induced
oscillations periodic in 1/b also above E

Lif

. In addition,
we expect that in the presence of both b and B fields
the peaks split as two Weyl cones feel di↵erent e↵ective
magnetic fields. These e↵ects are further discussed in
SM.

Results presented above extend trivially to the full
Cd

3

As
2

Hamiltonian Eq. (1) where the spin-down block

makes an identical contribution and the p-h symmetry
breaking terms contained in ✏k bring only quantitative
changes (see SM for discussion). Experimental studies
[32–35] indicate that the linear dispersion in Cd

3

As
2

ex-
tends over a much wider range of energies than theo-
retically anticipated [31] with the Lifshitz transition oc-
curring above ⇠ 200meV. We therefore expect the zero-
field strain-induced QO predicted in this work to be eas-
ily observable in suitably fabricated Cd

3

As
2

films and
nanowires and potentially also in other Dirac and Weyl
semimetals. Our results show that conditions for their
observability are identical to those required to detect or-
dinary QO. The continuous tunability of the pseudomag-
netic field in large parameter range provides a new ex-
perimental basis for the study of emergent gauge fields
in three-dimensional crystalline solids.
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FIG. 2: Tight-binding model simulations of a Weyl semimetal wire under torsional strain and applied magnetic field B = ẑB.
Top row of figures shows the band structure of the lattice Hamiltonian defined by Eqs. (2.4) and (2.9) computed for a wire
with a rectangular cross section of 30 ⇥ 30 sites and a lattice constant a = 40Å. (We use larger lattice constant here and in
subsequent simulations than in real Cd

3

As
2

in order to be able to model nanowires and films of realistic cross sections with
available computational resources. Note that this does not a↵ect the physics at low energies because the lattice Hamiltonian
is designed to reproduce the relevant k · p theory independent of a.) Open boundary conditions are imposed along x and y,
periodic along z. Parameters appropriate for Cd

3

As
2

are used. Middle and bottom rows show spectral functions A

bulk(k,!)
and A

surf(k,!). The former is obtained by averaging the full spectral function Aj(k,!) over sites j in the central 10 ⇥ 10
portion of the wire while the latter averages over the sites located at the perimeter of the wire. The torsion applied in columns
c and d corresponds to the maximum displacement at the perimeter of 0.5a, or '

0

' 2o between consecutive layers.

µ occurs because under adiabatic evolution an electron
initially in the quantum state with momentum k in the
nth band remains in that state as the band energy E

n

(k)
evolves in response to strain.

From the point of view of the low-energy theory the
lateral shift of the chiral branches is consistent with the
e↵ect of the uniform chiral gauge potential a

z

which
according to our discussion below Eq. (2.8) moves the
Weyl points closer together for ↵ > 0. From Eqs. (2.10)
and (2.11) we can estimate the amount of this shift
�Q ' (e/~c)a

z

= �u
33

cot aQ/a. This in turn gives an
estimate for the required change in the chemical potential

�µ = µ0 � µ
0

= �~v�Q, or

�µ = �v

c
ea

z

= ↵
~v
a

cot aQ. (3.1)
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implies �µ = 3.75meV for ↵ = 0.03. This estimate com-
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= 3.46meV ob-
tained from our lattice model simulation presented in Fig.
3a.
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grees of freedom we would conclude that a change �µ in
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degeneracy (B/�

0

) brings about a change in the electron


