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Vortex-boson duality in four space-time dimensions
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Abstract – A continuum version of the vortex-boson duality in (3+1) dimensions is formulated
and its implications studied in the context of a pair Wigner crystal in underdoped cuprate
superconductors. The dual theory to a phase fluctuating superconductor (or superfluid) is shown
to be a theory of bosonic strings interacting through a Kalb-Ramond rank-2 tensorial gauge field.
String condensation produces Higgs mass for the gauge field and the expected Wigner crystal
emerges as an interesting space-time analog of the Abrikosov lattice.
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When particles in quantum many-body systems interact
very strongly standard perturbation techniques break
down and, in dimensions greater than 1, dualities often
provide the only insights into the physics of such systems.
Duality transformations, in general, map the strongly
coupled sector of one theory onto the weakly coupled
sector of another. The original Kramers-Wanier duality [1]
for the Ising ferromagnet represents a prime example of
such a mapping. Dualities permeate modern statistical,
condensed matter and particle physics, and have emerged
recently as a key tool in string theory.
In condensed-matter physics perhaps the most useful

and influential duality is the one connecting vortices
and bosons in two spatial dimensions [2–4]. This duality,
hereafter referred to as Lee-Fisher duality, maps the
system of interacting bosons in (2+1)D onto a fictitious
superconductor in an external magnetic field whose flux
in the temporal direction is proportional to the density
of the original bosons. It shows that Mott insulator,
proximate to the phase fluctuating boson condensate, can
be viewed as the Abrikosov vortex lattice of the dual
superconductor. This deep connection has been exploited
in modeling systems ranging from quantum spins to
fractional quantum Hall effect, and most recently cuprate
superconductors.
In cuprates such considerations are motivated by the

experimental findings of static checkerboard patterns in
the charge density of very underdoped samples [5–7]
which have been interpreted as evidence for a Cooper
pair Wigner crystal (PWC) [8]. The latter can be most
naturally understood by appealing to the Lee-Fisher

duality [9–11]. However, recent analysis of the vibra-
tional modes of such a PWC [12,13] indicates that it is
3-dimensional (in the sense that vibrations propagate in all
3 space dimensions) and it is thus unclear how the inher-
ently two-dimensional Lee-Fisher duality applies to this
situation. The problem can be stated as follows. A key role
in the formulation of the Lee-Fisher duality is played by
vortices which appear (in pairs of opposite vorticity) near
the transition to the Mott insulating phase as quantum
fluctuations of the system. The dual relationship between
bosons and vortices however exists only in two spatial
dimensions where the latter can be regarded as point parti-
cles. In three space dimensions vortices form oriented loops
and can no longer be thought of as particles. The question
thus arises how to understand the formation of a PWC
in the three-dimensional phase fluctuating superconduc-
tor indicated by experiments [5–7].
In this letter we point a way out of this conundrum

by constructing a (3+1)-dimensional implementation of
vortex-boson duality using a representation of vortex loops
as relativistic bosonic strings. We then show that string
condensation indeed produces a ground state that can be
characterized as an insulating crystal of Cooper pairs and
discuss some of its unique properties.
We remark that the lattice formulation of such (3+1)D

duality has been given long time ago [14,15] and was
used recently to study exotic fractionalized phases [16,17]
in (3+1)D. Here, by contrast, we formulate a conti-
nuum version which shows that a boson (Cooper pair)
crystal can emerge from a phase fluctuating superfluid
(superconductor) even in the absence of any underlying
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lattice structure. This is exactly the limit apparently rele-
vant to cuprates [12]. On the formal side this contin-
uum approach also reveals an intimate connection to the
theory of bosonic strings and enables us to employ in our
calculations some of the string theory technology.
We begin by considering a continuum theory of a

superconductor in (3+1) space-time dimensions defined
by the Euclidean partition function Z =

∫
D[Ψ,Ψ∗]

exp(−
∫ β
0 dτ

∫
d3xL) with Ψ= |Ψ|eiθ a scalar order

parameter and the Lagrangian density

L= 1
2
K̃ |(∂µ− 2ieAµ)Ψ|2+U(|Ψ|2). (1)

The Greek index µ= 0, 1, 2, 3 labels the temporal and
spatial components of (3+1)-dimensional vectors, and we
use natural units with != c= 1. U is a potential function
that sets the value of the order parameter Ψ in the
superconducting state in the absence of fluctuations. The
electromagnetic vector potential A is explicitly displayed
in order to track the charge content of various fields. If we
allowed A to fluctuate, then eq. (1) would coincide with
the well-known Abelian Higgs model.
We now focus on the fluctuations in the phase θ by fixing

the amplitude |Ψ|=Ψ0 at the minimum of U ,

L= 1
2
K (∂µθ− 2eAµ)2 , (2)

where K = K̃Ψ20 represents the phase stiffness. The first
few steps of the duality mapping proceed just as in
(2+1)D. We first decouple the quadratic term with a
real auxiliary field, Wµ, using the familiar Hubbard-
Stratonovich transformation, obtaining

L= 1

2K
W 2µ + iWµ(∂µΘ− 2eAµ)+ iWµ(∂µθs). (3)

We have also decomposed the phase into a smooth part θs
and singular part Θ containing vortex lines.
Gaussian integration over θs leads to a constraint

∂µWµ = 0, (4)

which reflects conservation of electric charge. In (2+1)D
one enforces this constraint by expressing Wµ as a curl
of an auxiliary gauge field. The curl operation, however,
is meaningful only in 3 dimensions and herein lies the
difficulty with higher-dimensional duality. In (3+1)D we
may enforce the constraint (4) by writing

Wµ = εµναβ∂νBαβ , (5)

where εµναβ is the totally antisymmetric tensor and Bαβ is
an antisymmetric rank-2 tensor gauge field. Substituting
eq. (5) back into the Lagrangian and performing integra-
tion by parts in the term containing Θ, we obtain

L =
H2αβγ
3K

− iBαβ(εαβµν∂µ∂νΘ)

− i2e(εµναβ∂νBαβ)Aµ, (6)

where Hαβγ = ∂αBβγ + ∂βBγα+ ∂γBαβ is the tensorial
field strength which should be thought of as a general-
ization of the Maxwell field strength Fµν .
The above Lagrangian exhibits several notable features.

First, it possesses invariance under the gauge trans-
formation

Bαβ→Bαβ + ∂[αΛβ] (7)

for an arbitrary smooth vector function Λµ. The square
brackets represent antisymmetrization, e.g. ∂[αΛβ] =
∂αΛβ − ∂βΛα. This gauge invariance reflects conservation
of vorticity in the original model. Second, from the last
term in L we may immediately deduce that the electric
four-current is related to B by jµ = 2e(εµναβ∂νBαβ). The
charge density, in particular, can be written as

ρ= j0 = 2e(εijk∂iBjk), (8)

where Roman indices run over spatial components only.
The second term in L informs us that field B is

minimally coupled to the “vortex loop current”

σαβ(x) = εαβµν∂µ∂νΘ(x), (9)

which is an antisymmetric rank-2 tensor quantity. For
a smooth function the right-hand side of eq. (9) would
vanish since the derivatives would commute. In 3 spatial
dimensions, single valuedness of eiΘ(x) permits line singu-
larities in Θ(x) such that it varies by an integer multiple
of 2π along any line that encircles the singularity. These
are the vortex loops.
To implement the duality transformation we now shift

our point of view from the phase field Θ(x) to the vortex
loop worldsheets. These describe the evolution of vortex
loops in imaginary time and should be thought of in
analogy with worldlines of point particles. The worldsheets
are specified by a set of 2-parameter vector functions

X
(n)
µ (σ1, σ2) where n labels the individual loops. We take
σ1 to be time-like, and correspondingly vary between 0
and the inverse temperature β, and σ2 space-like, which
by convention varies from 0 to 2π for closed loops. (Since
vortices can only terminate on magnetic monopoles we
consider only closed vortex loops here.) Clearly, given a

set of worldsheets X(n)µ one can reconstruct the phase field
Θ(x) up to any smooth contribution.
A surface element of a worldsheet is characterized by a

rank-2 antisymmetric tensor

Σ(n)µν =
∂X

(n)
[µ

∂σ1

∂X
(n)
ν]

∂σ2
. (10)

It is straightforward to show that the loop current (9) is
related to the worldsheet by

σµν(x) = 2π
∑

n

∫
d2σΣ(n)µν δ

(
X(n)−x

)
. (11)
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This relation allows us to rewrite the partition function
as a functional integral over the vortex loop worldsheets

X
(n)
µ . We thus have Z =

∫
D[X] exp(−S) with

S =
∑

n

∫
d2σ

[
T
√
Σ(n)µν Σ

(n)
µν − 2πiΣ(n)µν Bµν(X(n))

]

+
1

3K

∫
d4xH2αβγ +Sint+SJac. (12)

We recognize the first line as the celebrated Nambu-Goto
action [18] for bosonic strings propagating in the presence
of a background Kalb-Ramond gauge field Bµν [19]. The
first term can be interpreted as the reparametrization
invariant surface area of the string worldsheet with the
string tension T . Although such term does not appear
explicitly in eq. (6) it would arise in a more careful
treatment of our starting theory (1) had we retained the
cost of the suppression of the order parameter amplitude
|Ψ| near the vortex core. The second and the third
terms follow directly from eq. (6) and describe long-range
interactions between strings mediated by the superflow,
now represented by the Kalb-Ramond gauge field.
Sint contains short-range interactions between strings

that would also arise from a more careful treatment of
the core physics. Finally, SJac represents the Jacobian
of the transformation from phase variable Θ to string

worldsheets X(n)µ . This last term plays an important
role in the quantization of our string theory. It is well
known that a fundamental string can be consistently
quantized only in the critical dimension, which for bosonic
string is D= 26 [20]. A question then arises as to how
we quantize our vortex strings in (3+1)D; after all we
started from a well-defined field theory (1) and we expect
the string theory (12) derived from it to also be well
behaved. The answer lies in the fact that our strings
are not fundamental; rather they are Nielsen-Olesen–type
strings [21] with intrinsic thickness defined by the core size.
It was shown by Polchinski and Strominger [22] that terms
in SJac, which would be absent in the case of a fundamental
string, precisely cancel the conformal anomaly responsible
for the high critical dimension. Vortex strings are indeed
well behaved in the physical dimension.
We are now ready to complete the duality mapping.

Our main goal will be to understand the string-condensed
phase, analogous to the vortex-condensed phase in the
(2+1)D Lee-Fisher duality. To this end we must pass to
second quantized string theory, a “string-field theory”
This can be done rigorously in the so-called light-cone
gauge [23] or using the Becchi-Rouet-Stora-Tyutin
(BRST) procedure [24]. Here we opt for a less rigorous
but physically much more transparent procedure devised
in ref. [25] which provides a straightforward route towards
the description of the string-condensed phase.
The central concept in the string-field description is

the wave functional Φ[X], a complex-valued functional
defined on the space of one-parameter string trajectories
{Xµ(σ2), σ2 = (0, 2π)}, which we regard as cross-sections

of the string worldsheet Xµ(σ1, σ2) at fixed value of σ1.
The physical significance of Φ[X] is most readily visualized
in the so-called static parametrization: in a chosen Lorentz
frame of reference take X0 = σ1 = τ and X=X(τ, σ),
with τ the imaginary time. Φ[τ,X] then represents the
quantum-mechanical amplitude for finding the string in
configuration {X(σ), σ= (0, 2π)} at time τ .
The second quantized action for the string functional

takes the form [25]

S =
∫
D[X]

∫
dσ
√
h
[∣∣(δ/δΣµν − 2πiBµν)Φ[X]

∣∣2

+M2
eff

∣∣Φ[X]
∣∣2]+

1

3K

∫
d4xH2αβγ +S ′int. (13)

The plaquette derivative δ/δΣµν quantifies the variation
of the functional Φ[X] upon modifying the path X by an
infinitesimal loop ∆X which sweeps the surface element
δΣµν . The loop space metric h= (∂Xµ(σ)/∂σ)2 is needed
to preserve the reparametrization invariance of the action.
S ′int represents short-range string interactions and contains
terms cubic and higher order in |Φ|. All contributions
quadratic in |Φ| have been folded into the effective string
mass Meff . The action (13) remains invariant under the
gauge transformation (7) if we require Φ to transform as

Φ[X]→Φ[X]e−4πi
∫
dXµΛµ . (14)

String condensation occurs when M2
eff becomes nega-

tive. The string functional then develops nonzero vacuum
expectation value, 〈0|Φ[X]|0〉 &= 0. The simplest case is
that of a uniform string condensate,

〈0|Φ[X]|0〉=Φ0 = const. (15)

Physically, this simply means that any string configura-
tion is equally probable. This ansatz, however, cannot
describe a phase disordered superconductor. To see this
note that substituting eq. (15) into action (13) produces a
mass term for the Kalb-Ramond gauge field. Such a mass
term then leads to the Meissner effect: the gauge field
is expelled from the interior of the sample, Bµν = 0. In
view of eq. (8), this corresponds to complete expulsion of
charge from the system, which is not the situation we are
interested in.
What we seek is the analog of the Abrikosov vortex state

in which the field can penetrate in quantized increments.
We thus consider a more general ansatz, which allows both
the amplitude and the phase of Φ[X] to vary:

〈0|Φ[X]|0〉=Φ0e
∫
dσ[ζ

√
X′2 ln f(X)+2πiX′µ · Ωµ(X)]. (16)

Here X =X(σ), X ′ = ∂σX(σ), f(x) and Ωµ(x) are real
scalar and vector functions parametrizing the functional,
and ζ is a parameter with the dimension of inverse
length. f(x) is nonnegative and should be thought of as
the space-time-dependent amplitude of the string conden-
sate. Specifically, f = 1 corresponds to uniform condensate
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amplitude while f > 1 (f < 1) describes its local enhance-
ment (depletion). Ωµ(x) determines the phase of the
string condensate. Substituting eq. (16) to (13) we obtain
S =
∫
d4xL with

L = Φ20
2

[
π2f2(∂[µΩν]− 2Bµν)2

+ ζ2(∂µf)
2+V(f2)

]
+
1

3K
H2αβγ . (17)

We observe that any smooth part of Ω can be eliminated
by the gauge transformation (14). Thus, only the singular
part of Ω has physical significance. Indeed we note that
it is permissible for Ω to be multiply valued as long
as the wave functional (16) remains single valued. A
configuration of specific interest to us contains monopoles
in the spatial part of Ω= (Ω0,Ω),

∇· (∇×Ω) =
∑

a

Qaδ
(3)(x−xa), (18)

where xa and Qa label the position and the charge of the
a-th monopole. Single valuedness of (16) demands that Qa
be integer. We shall see that such singularities represent
sources for Bµν , just as vortices in a superconductor act
as sources for the magnetic field.
We now analyze the action (17) in the presence of static

monopole configurations in Ω. To this end we adopt a
dual mean-field approximation (DMFA) which neglects
quantum fluctuations of all the fields. We emphasize that
in terms of the original phase degrees of freedom, DMFA
describes a highly nontrivial quantum fluctuating state.
In addition, we perform a dual “London” approximation,
f(x) = 1, which should be adequate as long as the mono-
poles are relatively dilute. (This approximation fails in the
small region near the monopole center where f → 0.) The
ground state energy of the system can then be written as

E = 1
2

∫
d3x

[
π2Φ20(∂[iΩj]− 2Bij)2+

1

K
(εijk∂iBjk)

2

]
.

(19)

Minimizing with respect to Bij leads to the Euler-
Lagrange equation

π2Φ20(2Bij − ∂[iΩj])−
1

2eK
εijk∂kρ= 0, (20)

where we used eq. (8). Next, acting on all terms by εijl∂l
and defining a dual “penetration depth” λ−2d = 2π

2Φ20K,
we obtain an equation for charge density ρ(x)

ρ−λ2d∇2ρ= 2e∇· (∇×Ω). (21)

This equation resembles the London equation for the
z-component of magnetic field in the presence of an
Abrikosov lattice of vortices and can be analyzed by
similar methods. The key difference is that, in light of
eq. (18), the right-hand side describes a collection of point

sources in three space dimensions, whereas Abrikosov
vortices are line singularities described by δ(2). Below we
briefly summarize some main results of this analysis and
the relevant details will be given elsewhere [26].
Equation (21) can be solved for an arbitrary arrange-

ment of monopole positions and charges to obtain

ρ(x) = 2e
∑

a

Qa
e−|x−xa|/λd

4πλ2d|x−xa|
. (22)

It is easy to show that the total electric charge associated
with a monopole is 2eQa; the charge is quantized in
the units of 2e, as expected. At finite charge density,
monopoles with like charges repel by Yukawa potential
∼ e−r/λd/r and the ground state is a Bravais lattice of
elementary (Qa = 1) monopoles. This leads to periodic
modulation in ρ(x) with charge 2e per unit cell: a pair
Wigner crystal in three space dimensions.
An appealing overall picture thus emerges. Vortex loops

in a (3+1)-dimensional superconductor (or superfluid)
can be efficiently described as bosonic strings interacting
through a rank-2 tensorial Kalb-Ramond gauge field Bµν .
In the non-superconducting phase, strings proliferate and
condense, producing Higgs mass for the gauge field. In
the Higgs phase the only way for Bµν to penetrate into
the bulk of the system is to set up quantized monopole-
like singularities in the phase Ωµ of the string condensate
wave functional. These singularities then act as point
sources for Bµν . The associated electric charge density ρ,
which is closely related to the Kalb-Ramond field strength
Hµνλ, is then governed by a London-like equation (21).
For a periodic array of point sources, such as will form at
finite charge density, a 3-dimensional pair Wigner crystal
emerges with charge distribution given by eq. (22).
The duality discussed above establishes vortex-loop

condensation as a concrete mechanism for the formation of
a pair Wigner crystal in a 3-dimensional quantum phase
fluctuating superconductor. It explains how a 3d PWC
can form in underdoped cuprates and allows for detailed
computations of its structure and vibrational modes [26]
which are of direct experimental interest.
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