
PHYS 503 Problem set # 5 solution April 12, 2022

1 (15 points)

1(a)

We perform a mean-field decoupling as shown in class of the interaction Hamiltonian,

−V1

∑
r,a=x̂,ŷ

c†rcrc
†
r+acr+a −→ V1

∑
r,a

〈c†rc
†
r+a〉crcr+a + 〈crcr+a〉c†rc

†
r+a + const. (1)

After Fourier transforming, we get (for ease of notation we set V = N2a = 1)

V1

∑
r,a

〈crcr+a〉c†rc
†
r+a =

∑
q,a

V1

∑
k′

eik
′a〈ck′+qc−k′〉︸ ︷︷ ︸

∆a(q)

∑
k

e−ikac†k+qc
†
−k . (2)

Assuming a spatially uniform gap, one has ∆a(q) = ∆a and we get∑
ka

∆ae
−ikac†kc

†
−k =

∑
ka

∆a (cosk · a− i sink · a) c†kc
†
−k = −i

∑
ka

∆a sin(k · a)c†kc
†
−k (3)

Here the cos-term averages to zero after momentum summation, since it is even in k and c†kc
†
−k is odd. The

factor of −i is an overall phase that can be ”gauged away”, that is absorbed in the definition of ∆a, leaving us

with the final expression ∑
k

(∆x sin kx + ∆y sin ky) c†kc
†
−k + h.c. (4)

The full Hamiltonian is

H =
∑
k

ξkc
†
kck +

∑
k

[
(∆x sin kx + ∆y sin ky) c†kc

†
−k + h.c.

]
(5)

with ξk = −2t(cos kx + cos ky)− µ.

1(b)

In part (a) we defined

∆a = V1

∑
k

sin(k · a) 〈ckc−k〉. (6)

Decomposing ∆a = ∆′a + i∆′′a into its real and imaginary parts we can further express the real part in terms of

the Nambu-Gorkov Green’s function

∆′a = = V1

∑
k

sin(k · a)
1

2
Tr
[
σxG0(k, t = 0−)

]
(7)

=
V1

β

∑
ωn,k

sin(k · a)
1

2
Tr [σxG0(k, ωn)] . (8)

∆′′a satisfies the same equation with σx → σy.
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Inserting the expression for the Green’s function

G0(k, ωn) =
1

β

iωn + ξkσz + ∆′kσx + ∆′′kσy
(iωn)2 − E2

k

(9)

where

∆k = ∆x sin kx + ∆y sin ky, E2
k = ξ2

k + |∆k|2, (10)

and performing the Matsubara sum, we obtain

∆a = −V1

β

∑
ωnk

sin(k · a) ∆k

ω2
n + E2

k

= V1

∑
k

sin(k · a) ∆k

2Ek
tanh (βEk/2) . (11)

This is a set of two coupled equations for ∆x,∆y. They can be solved self-consistently by numerical iteration,

or analytically in the limits where either T or ∆a is small.

1(c)

As usual the quasiparticle excitation spectrum is given by the poles of the Green’s function

Ek =
√
ξk + |∆2

k| (12)

where

∆k = ∆x sin kx + ∆y sin ky = ∆
(
sin kx + eiϕ sin ky

)
(13)

For ϕ = 0 we have |∆2
k| = ∆2 (sin kx + sin ky)

2
= ∆2

(
sin2 kx + sin2 ky + 2 sin kx sin ky

)
. We find that the gap

vanishes at kx = −ky and kx = ky + π which is indicated by the blue lines in the figure below. The excitation

energy vanishes when both ξk = 0, i.e. at the Fermi surface shown as orange contour, and ∆k = 0. Thus, Ek

vanishes at the intersection of the blue and orange lines; the spectrum is generically gapless in this case.
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For ϕ = π/2, we have |∆2
k| = ∆2

(
sin2 kx + sin2 ky

)
which vanishes at four points k = (0, 0), (0, π), (π, 0), (π, π)

in the Brillouine zone. These do not generically intersect with the Fermi surface and the spectrum is fully

gapped.

2 (10 points) Edge states of a topological superconductor: Analytical

derivation

2(a)

We start with Eq. (4.3.14) of Doniach and Sondheimer. Note that for our 2×2 Hamiltonian, the Green’s function

G0 and the perturbation U are 2× 2 matrices and all multiplications are in fact matrix multiplications.

F (p;p′, ε) = G0(p, ε)δp,p′ +G0(p, ε)
∑
q

U(p− q)F (q;p′, ε) (14)

The use of the F function with two momenta p,p′ is necessary, since the presence of a line impurity U0δ(x)

breaks translational invariance of in the x-direction. Above equation can be solved by iteration, yielding

F (p;p′, ε) = G0(p, ε)δp,p′ +G0(p, ε)U(p− p′)G0(p′, ε)

+G0(p, ε)
∑
q1

U(p− q1)G0(q1, ε)U(q1 − p′)G0(p′, ε)

+G0(p, ε)
∑
q1

U(p− q1)G0(q1, ε)
∑
q2

U(q1 − q2)G0(q2, ε)U(q2 − p′)G0(p′, ε) + . . . . (15)

Just like in the lecture we can repackage this iteration series inside the T -matrix. Then we obtain the form

F (p;p′, ε) = G0(p, ε)δp,p′ +G0(p, ε)T (p;p′, ε)G0(p′, ε) (16)

where

T (p;p′, ε) = U(p− p′) +
∑
q1

U(p− q1)G0(q1, ε)U(q1 − p′)

+
∑
q1

U(p− q1)G0(q1, ε)
∑
q2

U(q1 − q2)G0(q2, ε)U(q2 − p′) + . . . . (17)

Above expression involves a series of convolutions. These simplify significantly, once we insert the actual form

of the perturbation U which is given by

U(r) = U0δ(x) = u0σzδ(x) , (18)

where σz is the Pauli-z-matrix. In Fourier space, this becomes

U(q) =

∫
dxdyeiqxx+iqyyUδ(x) = U0δqy,0 . (19)

The δqy,0 function is reminiscent of the fact that our line impurity only breaks translational invariance along

the x-direction. Along y, translational invariance is still presence. Moreover, the perturbation does not have

any qx-dependence due to its δ(x)-localization in real space.
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Inserting this expression into the T -matrix Eq. (??) yields

T (p;p′, ε) = U0δpy,p′
y

+
∑
q1x

U0G0(q1xpy, ε)U0δpy,p′
y

+
∑
q1x

U0G0(q1xpy, ε)
∑
q2x

U0G0(q2xpy, ε)U0δpy,p′
y

+ . . .

=

1 +
∑
qx

U0G0(qxpy, ε) +

(∑
qx

U0G0(qxpy, ε)

)2

+ . . .

U0δpy,p′
y

=

[
1− U0

∑
qx

G0(qxpy, ε)

]−1

U0δpy,p′
y
. (20)

We are now interested in the Green’s function G(x, py, ε) = F (xpy;xpy, ε) at position x and momentum ky.

Inserting Eq. (??) into Eq. (??), we arrive at the final result.

G(x, py, ε) = F (xpy;xpy, ε) =
∑
pxp′

x

eipxxe−ip
′
xxF (pxpy; p′xpy, ε)

=
∑
px

G0(pxpy, ε) +

[∑
px

eipxxG0(pxpy, ε)

][
1− U0

∑
qx

G0(qxpy, ε)

]−1

U0

∑
p′
x

e−ip
′
xxG0(p′xpy, ε)


(21)

2(a) [10 bonus points]

Expression (??) is numerically evaluated in the solution python file. We are interested in the local Green’s

function at the boundary. The position of the boundary is determined by the line impurity at x = 0. Thus, we

need to evaluate G(xky, ε) at x = 1 or x = −1, i.e. left or right of the boundary.

Note that in the limit u0 →∞, we have[
1− U0

∑
qx

G0(qxpy, ε)

]−1

U0 = −

[∑
qx

G0(qxpy, ε)

]−1

. (22)

The different terms in Eq. (??) are denoted as follows in the python code:

G(x, py, ε)︸ ︷︷ ︸
Gsurface

=
∑
px

G0(pxpy, ε)︸ ︷︷ ︸
Gbulk

+

[∑
px

eipxxG0(pxpy, ε)

]
︸ ︷︷ ︸

G0x

[
−U0

∑
qx

G0(qxpy, ε)

]−1

︸ ︷︷ ︸
T

∑
p′
x

e−ip
′
xxG0(p′xpy, ε)


︸ ︷︷ ︸

G0x

(23)

You can run your code or the solution and change the model parameters as well as the variable x.
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