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1 (10 points)

1.1

Instead of deriving an equation of motion for the Green’s function (which we have done in class), we simply

express the uq in terms of creation and annihilation operators aq, a
†
q:

D0
q(t) = −i〈T uq(t)u−q(0)〉 = − i

2MΩq

[
θ(t)〈

(
aq(t) + a†−q(t)

) (
a−q + a†q

)
〉+ θ(−t)〈

(
a−q + a†q

) (
aq(t) + a†−q(t)

)
〉
]

From the Heisenberg equation of motion, we have aq(t) = e−iΩqaq(0) and a†q(t) = (aq(t))
†. Inserting this and

realizing that aq |0〉 = 0 and 〈0| a†q = 0, we get

D0
q(t) = − i

2MΩq

[
θ(t)e−iΩqt〈aqa†q〉+ θ(−t)eiΩqt〈a−qa†−q〉

]
= − i

2MΩq

[
θ(t)e−iΩqt + θ(−t)eiΩqt

]
Here we have made the assumption that Ωq = Ω−q.

Then,

Dq(ω) =

∫ ∞
−∞

dteiωtD0
q(t) = − i

2MΩq

[∫ ∞
0

dte−iΩqtei(ω+iη)t +

∫ 0

−∞
dteiΩqtei(ω−iη)t

]
=

1

2MΩq

[
1

ω − Ωq + iη
− 1

ω + Ωq − iη

]
=

1

2MΩq

2Ωq + 2iη

ω2 − Ω2
q + η2 + 2Ωqiη

=
1

M

1

ω2 − Ω2
q + iη̃

where η̃ = 2Ωqη and we haved used that 2iη in the numerator vanishes in the implied limit of η → 0 without

causing any divergence.

1.2

The Matsubara (imaginary time) Green’s function is defined as

D0
q(τ) = 〈T uq(τ)u−q(0)〉

We will compute it for the phonon Hamiltonian Hph =
∑
q Ωqa

†
qaq using two different ways: by finding its

equation of motion and by explicit evaluation of the thermal expectation value.

For the EOM approach, the basic strategy is to take time derivates until we obtain a closed set of differential

equations. We start with

∂τD0
q(τ) = δ(τ)〈[uq(0), u−q(0)]〉+ 〈T ∂τuq(τ)u−q〉

Here, the commutator turns out to be zero,

[uq(0), u−q(0)] =
1

2MΩq

[
aq + a†−q, a−q + a†q

]
=

1

2MΩq

([
aq, a

†
q

]
+
[
a†−q, a−q

])
= 0
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Since aq(τ) = eτHphaq(0)e−τHph it follows that ∂τaq(τ) = [Hph, aq(τ)] =
∑
k Ωk

[
a†kak, aq(τ)

]
= −Ωqaq(τ) and

therefore aq(τ) = e−Ωqτaq(0). An analogous calculation yields a†q(τ) = eΩqτa†q(0). Note that in imaginary time,

a†q(τ) 6= (aq(τ))†! Take a moment to think why this is not the case.

Making use of the explicit form of the time dependence, we get

∂τD0
q(τ) =

1√
2MΩq

〈T
(
−Ωqaq(τ) + Ωqa

†
−q(τ)

)
u−q〉

This still does not help. So let’s take another time-derivative.

∂2
τD0

q(τ) = δ(τ)
1

2M
〈
[
−aq + a†−q, a−q + a†q

]
〉+ Ω2

q〈T uq(τ)u−q〉 = − 1

M
δ(τ) + Ω2

qD0
q(τ)

We write the Green’s function as a Fourier series D0
q(τ) =

∑
n e

iωnτD0
q(ωn), where ωn are bosonic Matsubara

frequencies ωn = 2πn/β. The δ(τ)-function can be expressed as δ(t) = 1
β

∑
n e

iωnτ . Inserting all of this gives

(
−ω2

n − Ω2
q

)
D0
q(ωn) = − 1

βM

so that the final result is

D0
q(ωn) =

1

βM

1

ω2
n + Ω2

q

.

Alternatively, we can do the following:

2MΩqD0
q(τ) = θ(τ)〈

(
aqe
−Ωqτ + a†−qe

Ωqτ
) (
a−q + a†q

)
〉+ θ(−τ)〈

(
a−q + a†q

) (
aqe
−Ωqτ + a†−qe

Ωqτ
)
〉

= θ(τ)
[
e−Ωqτ 〈aqa†q〉+ eΩqτ 〈a†−qa−q〉

]
+ θ(−τ)

[
e−Ωqτ 〈a†qaq〉+ eΩqτ 〈a−qa†−q〉

]
Now we make use of the fact that 〈a†qaq〉 = nq = 1

eβΩq−1
.

2MΩqD0
q(τ) = θ(τ)

[
e−Ωqτ (nq + 1) + eΩqτnq

]
+ θ(−τ)

[
e−Ωqτnq + eΩqτ (nq + 1)

]
= e−Ωq|τ | (nq + 1) + eΩq|τ |nq

And finally we perform the Fourier series

D0
q(ωn) =

1

2MΩqβ

∫ β

0

dτe−iωnτ
[
e−Ωqτ (nq + 1) + eΩqτnq

]
=

1

2MΩqβ

[
e−Ωqβ

−iωn − Ωq
(nq + 1) +

eΩqβ

−iωn + Ωq
nq −

1

−iωn − Ωq
(nq + 1)− 1

−iωn + Ωq
nq

]
=

1

2MΩqβ

[
1

iωn + Ωq
− 1

iωn − Ωq

]
=

1

Mβ

1

ω2
n + Ω2

q

1.3

We obtain the retarded phonon Green’s function using

DR
q (ω) = −βD0

q(ωn → −iω + η) =
1

2MΩq

(
1

ω − Ωq + iη
− 1

ω + Ωk + iη

)

The spectral function is

Aq(ω) = − 2

1− e−βω
ImDR

q (ω) =
2π

1− e−βω
1

2MΩq
(δ(ω − Ωq)− δ(ω + Ωq))

=
π

MΩq
[(nq + 1)δ(ω − Ωq) + nqδ(ω + Ωq)]
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2 (20 points)

2.1

The Feynman-Dyson expansion to n-th order is given by

Gk(t) = −i
∞∑
n=0

(−iΛ)n

n!

∑
q1,k1

∫ ∞
−∞

dt1 · · ·
∑
qnkn

∫ ∞
−∞

dtn 〈Φ0| T ck(t)c†k(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)

× · · · × v−qn(tn)c†kn−qn(tn)ckn(tn) |Φ0〉

where we have defined vq =
√

2MΩquq = aq + a†−q and used that the perturbation Hamiltonian is H1 =

Λ
∑
qk v−qc

†
k−qck.

Up to second order, the expression is

Gk(t) = G0(t)− i (−iΛ)2

2

∑
q1q2k1k2

∫ ∞
−∞

dt1dt2 〈Φ0| T ck(t)c†k(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)v−q2(t2)c†k2−q2(t2)ck2

(t2) |Φ0〉 (1)

We now want to use Wick’s theorem to simplify the expectation value. Since there are 8 operators in the

expectation value, there is a lot of possible contractions. However, most of them vanish, and some give the

same result.

It is best to organize all contraction using diagrams:

1

disconnected

A B

C D

E F

2a

2b

In panel A, we have represented each operator by a line. Fermion operators c are represented by a full line.

An arrow leading out of the black dot represent an annihilation operator; an arrow leading into a dot represents

a creation operator. Since expectation values of to creation operators vanish, we can only pair c with c†. In

the arrow notation it means that we can only connect two legs with the same arrow flow.

Phonon operators u are represented by a dashed line. Since there are only two u operators, we have no

choice other than contracting them which leads to the diagram in panel B.
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We could also be tempted to pair ck(t) and c†k(0). But this leads to a disconnected diagram, as shown

in panel C. Disconnected diagrams do not contribute to the Green’s function as they are cancelled by the

denominator (DS 3.1.16) that we are omitting.

Now consider the red leg in panel D. We have two options to connect it. Further inspection reveals that both

options yield the same result, since the interaction vertex is symmetric and all of its momentum variables are

summed over. So we can safely make a choice, and remember that we need to multiply any resulting diagram

by a factor of 2.

Now consider the blue leg in panel D. We have two distinct choices to connect it. The first one is shown

by a dark blue line. The remaining two fermion legs need to be connected, yielding the diagram in panel E. It

corresponds to the contraction

〈Φ0| T ck(t)c†k(0)v−q1(t1)c†k1−q1(t1)ck1(t1)v−q2(t2)c†k2−q2(t2)ck2(t2) |Φ0〉 (2)

We can clean up the diagram so that is looks like this:

The second option (2b) shown in panel D yields the diagram in panel F. It corresponds to the following

contraction:

〈Φ0| T ck(t)c†k(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)v−q2(t2)c†k2−q2(t2)ck2

(t2) |Φ0〉 (3)

In clean form, the corresponding diagram look like this:

Let us now perform the contraction in Eq. (3) explicitly:

〈Φ0| T ck(t)c†k(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)v−q2(t2)c†k2−q2(t2)ck2

(t2) |Φ0〉

= 〈Φ0| T ck(t)c†k1−q1(t1) |Φ0〉 〈Φ0| T ck2
(t2)c†k(0) |Φ0〉 〈Φ0| T v−q1(t1)v−q2(t2) |Φ0〉 〈Φ0| T ck1

(t1)c†k2−q2(t2) |Φ0〉

= G0
k(t− t1)δ(k − k1 + q1)G0

k(t2)δ(k2 − k)D0
−q1(t1 − t2)δ(q1 + q2)G0

k1
(t1 − t2)δ(k1 − k2 + q2)2MΩq1

For the third line, we have applied the definition of the time-ordered real-time Green’s functions G0 and D0.

Note that one has to keep track of minus signs that arise when two fermionic operators are commuted past

each other. In the present case, there is no overall minus sign. We now insert this into Eq. (1):

Gk(t) = G0(t) + 2
iΛ2

2

∑
q

∫ ∞
−∞

dt1dt2G
0
k(t− t1)D0

q(t1 − t2)G0
k−q(t1 − t2)G0

k(t2 − 0)2MΩq

= G0(t) + 2
iΛ2

2

∑
q

∫ ∞
−∞

dt1dt2
1

(2π)4

∫
dω1dω2dω3dω4e

−iω1(t−t1)e−i(ω2+ω3)(t1−t2)e−iω4t2

×G0
k(ω1)D0

q(ω2)G0
k−q(ω3)G0

k(ω4)2MΩq

= G0(t) + 2
iΛ2

2

∑
q

1

(2π)2

∫
dωdω′e−iωtG0

k(ω)D0
q(ω
′)G0

k−q(ω − ω′)G0
k(ω)2MΩq
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2.2

We perform the Fourier-transform:

Gk(ω) = G0(ω) + 2
iΛ2

2

∑
q

1

2π

∫ ∞
−∞

dω′G0
k(ω)D0

q(ω
′)G0

k−q(ω − ω′)G0
k(ω)2MΩq

= G0(ω) +G0
k(ω)Σk(ω)G0

k(ω)

where

Σk(ω) =
iΛ2M

π

∑
q

Ωq

∫ ∞
−∞

dω′D0
q(ω
′)G0

k−q(ω − ω′) .

For your entertainment, you can try to find all possible diagrams up to 4th order. Below are a few of these

diagrams. All in all, there are 2 topologically distinct first order diagrams, and 10 distinct one at second order.

The full list of diagrams is given in DS Eq. (6.3.13). In principle, one can follow above derivation to get the

integral expression for each of these diagrams. However, it is possible, and maybe a bit more convenient, to

directly translate a diagram into an integral expression by following the so called Feynman rules.

Gk(t) =
k

+

k k − q k

q

+

k k

0

k k − q k k − q′ k

q q′

+

k

k − q
k − q − q′

k − q′

k

q q′

+

k

k − q
k − q − q′

k − q
k

q

q′ +

k k − q k

q
p

p− q

q

+

k k k

0 0

2.3

The expression for the phonon propagator to second order is

Dq(t) = D0
q(t)− i

(−iΛ)2

2

∑
q1q2k1k2

∫ ∞
−∞

dt1dt2〈T uq(t)u−q(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)v−q2(t2)c†k2−q2(t2)ck2

(t2)〉

We again organize the possible Wick contractions using a diagram:
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A B

Panel A is similar to what we had before. The difference is that the outer legs are now phonon-legs (dashed

line) since we are computing the phonon propagator. There is only one way to connect the 4 fermionic legs, see

panel B. After that, there are two ways of pairing the phonon legs, but again these two pairings are equivalent,

so everything results in a factor of 2.

Explicitly, the contraction is:

〈T uq(t)u−q(0)v−q1(t1)c†k1−q1(t1)ck1
(t1)v−q2(t2)c†k2−q2(t2)ck2

(t2)〉

= −2MΩqD
0
q(t− t1)δ(q − q1)G0

k1−q1(t2 − t1)δ(k1 − q1 − k2)G0
k1

(t1 − t2)δ(k1 − k2 + q2)D0
q(t2)δ(q − q2)

Note that one has to keep track of minus signs that arise when commuting to fermionic operators! In this case,

we get a total minus sign! The above expression corresponds to the following diagram:

Inserting this into Eq. (4) yields

Dq(t) = D0
q(t)− 2i

Λ2

2

∑
k

∫ ∞
−∞

dt1dt22MΩqD
0
q(t− t1)G0

k−q(t2 − t1)G0
k(t1 − t2)D0

q(t2 − 0)

Fourier transforming just like before gives

Dq(ω) = D0
q(ω)− 2i

1

2π

Λ2

2

∑
k

∫ ∞
−∞

dω′2MΩqD
0
q(ω)G0

k−q(ω
′ − ω)G0

k(ω′)D0
q(ω)

= D0
q(ω) +D0

q(ω)Πq(ω)D0
q(ω)

where

Πq(ω) = −2i
1

2π

Λ2

2

∑
k

∫ ∞
−∞

dω′2MΩqG
0
k−q(ω

′ − ω)G0
k(ω′)

The Feynman-Dyson expansion of the full phonon propagator up to second order has the following diagram-

matic representation:

Dq(t) = q + q

k

q

k − q
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3 (10 points)

3.1

For finite temperature, the above calculation remains the same apart from some factors of i and integration

boundaries at 0 and β instead of −∞and ∞. The expression for the phonon propagator to second order is

Dq(τ) = D0
q(τ) +

Λ2

2

∑
q1q2k1k2

∫ β

0

dτ1dτ2〈T uq(τ)uq−(0)v−q1(τ1)c†k1−q1(τ1)ck1(τ1)v−q2(τ2)c†k2−q2(τ2)ck2(τ2)〉β

Inserting this into Eq. (4) yields

Dq(τ) = D0
q(τ)− 2

Λ2

2

∑
k

∫ β

0

dτ1dτ22MΩqD0
q(τ − τ1)G0

k−q(τ2 − τ1)G0
k(τ1 − τ2)D0

q(τ2 − 0)

Applying the definition of the Fourier series for Matsubara frequencies

G0(τ) =
∑
n

eiωnτG0(ωn)

G0(ωn) =
1

β

∫ β

0

e−iωnτG0(τ)∫ β

0

ei(ωn−ωm)τdτ = βδn,m

gives the phonon propagator in frequency space

Dq(ωn) = D0
q(ωn)− Λ2β2

∑
k

∑
ωm

2MΩqD0
q(ωn)G0

k−q(ωm − ωn)G0
k(ωm)D0

q(ωn)

= D0
q(ωn) +D0

q(ωn)Πq(ωn)D0
q(ωn)

where we have defined the phonon-self-energy

Πq(ωn) = −2MΛ2β2Ωq
∑
k

∑
ωm

G0
k−q(ωm − ωn)G0

k(ωm)

3.2

The fermionic Matsubara Green’s function is given by

G0
k(ωn) =

1

β

1

iωn + εk

We evaluate the Matsubara sum using the method of contour integration.

Cq(ωn) =
∑
ωm

G0
k−q(ωm − ωn)G0

k(ωm) = − β

2πi

∮
1

eβω + 1
G0
k−q(ωn − iω)G0

k(iω)

= − 1

2πiβ

∮
1

eβω + 1

1

−iωn − ω + εk−q

1

−ω + εk

We see that there are two poles at ω = εk and ω = εk−q + iωn. Computing the residues and also considering

the minus sign from the reversed orientation of the contour, we get

Cq(ωn) =
1

β

(
− 1

eβεk + 1

1

−iωn + εk−q − εk
− 1

eβεk−q + 1

1

iωn − εk−q + εk

)
=

1

β

1

iωn + εk − εk−q
(fk − fk−q)
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where fk = 1/(eβεk + 1). Note that ωn = 2πn/β is a bosonic frequency, as opposed to ωm = (2n+ 1)π/β which

is fermionic. Thus, e−iωnβ = 1. Using this our self-energy becomes

Πq(ωn) = −2MΛ2βΩq
∑
k

fk − fk−q
iωn + εk − εk−q
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