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1 Introduction

”Happy families are all alike; every unhappy family is unhappy in its own way”.
—Leo Tolstoy, Anna Karenina
Each fermion just like a unhappy family of Tolstoy’s intends to live its own distinct life which

we have called a quantum state. Bosons on the other hand can live identical lives. When that
happens, especially when the entropy doesn’t play an overwhelming role in the free energy, bosons
can occupy a single quantum state. That is called Bose-Einstein condensation. Indistinguishable
particles are more emotional than distinguishable particles. What we have learned in the previous
session can be summarized in terms of happy and unhappy families. This is what you have to
bring with you even after your summer vacation!!

Let me say it in a slightly different way. Fermions which obey Fermi-Dirac statistics obviously
dislike each other; a fermion does not tolerate a second fermion in one quantum state and the Pauli
exclusion principle exactly expresses this harsh reality of FD statistics. In this sense, Bosons are
more tolerating: they are more willing to share a quantum state. They achieve inner happiness
because they have done something platonically-morally right.

However, dislikeness between fermions is not necessary bad for a system of fermions. If you
have been in one of popular Robson St restaurants (say the little Japanese Tapas place at the
corner of Robson and Bidwell) , you must have noticed that there are always people waiting
outside Friday evening 7 or 8pm. Only when seats are available, people can enter the restaurant
to start their dinners. This simple reality in Vancouver westend shows how order is established in
a restaurant.

The Pauli exclusion principle as well enforces certain unique ”order” of fermions. For instance,
at T=0 only states within a so-called Fermi surface are occupied but states outside the Fermi
surfaces are all empty. In this session I will fully exploit the consequences of the Pauli exclusion
principle, or the dis- likeness of Fermions mathematically.

2 Fermi seas and fermi surfaces

Consider Fermions in a box of size V = Lx × Ly × Lz. The eigenstates of particles in a box are

Ψnx,ny ,nz =
1√
V

exp(i
nx2π

Lx

x)× exp(i
ny2π

Ly

y)× exp(i
nz2π

Lz

z)

nµ = 1, 2, 3, ....; µ = x, y, z. (1)

We have chosen periodical boundary conditions along x, y, z directions.
These are eigenstates for fermions to occupy under the ruling of the Pauli exclusion principle.

We label each state as a vector in a three dimensional momentum space

(nx, ny, nz) (2)
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where nµ are integers only. All eigen states then form a lattice in the 3d momentum space. Perfect!
So every site of this lattice actually represents an eigenstate with an eigenvalue

ε(nx, ny, nz) =
h2n2

x

2mL2
x

+
h2n2

y

2mL2
y

+
h2n2

z

2mL2
z

. (3)

Note this is the energy of a particle at given level (nx, ny, nz). For simplicity, we set Lx = Ly =
Lz = L; h = 2πh̄.

FD statistics dictates that all states below µ are filled at T = 0. This is obvious from the
point of view of the total energy E: particles occupy as many low energy levels as possible before
moving to higher energy levels.

So all states satisfy the following condition are occupied

ε(nx, ny, nz) ≤ εF = µ. (4)

The surface defined by the equality above is called the fermi surface (FS) of the fermi gas and the
bulk is called fermi sea.

Exercise 1 Calculate the number of quantum states beneath the FS.
For large systems, µ is much larger than the level spacing in the problem. We neglect the

discreteness of eigen values in the momentum space. A very useful formula is

∑
nx

∑
ny

∑
nz

→ V
∫ d3k

(2πh̄)3
. (5)

V = L3.
Hint:

δnx = δkx
Lx

2πh̄
,
∑
x

→
∫

Lx
dkx

2πh̄
(6)

Using this formula one finds that

N

V
=

4πk3
F

3

1

(2πh̄)3
,
k2

F

2m
= εF = µ. (7)

kF is the fermi momentum. So the fermi momentum determines the density of fermions!!

3 Degeneracy pressure

Because fermions carry finite momenta at any finite density, even at T = 0, fermions have nonzero
kinetic energy which leads to degeneracy pressure of fermi gases.

To appreciate this important aspect of fermi gases, let us recall what happens to ”classical”
gases describe by the Boltzmann distribution. Let us calculate the partition function of a particle

Z1 = V
∫ d3k

(2πh̄)3
exp(−βε(k)) =

4πV λ3
T

(2πh̄)3

∫
dxx2 exp(−x2) (8)

λT is the thermal wave length.
And the energy and pressure of the gas are

E =
3

2
NkT, P =

N

V
kT (9)
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a well known result. Note that the pressure goes to zero as the temperature approaches zero
because particles lose their momenta.

Exercise 2 Calculate the energy, pressure of a classical gas.
Now let us carry out parallel calculations for fermions.

E

N
=

V

N

∫ d3k

(2πh̄)3
fFD(εk)ε(k) =

3

5
εF . (10)

Very nice discussions about the degenerate gas pressure can be found in textbook, page 272-282.
At last I want to introduce the density of states.

∫ d3k

(2πh̄)3
→

∫
dεN(ε); N(ε) =

mk(ε)

4π2h̄3 . (11)

4 Responses of electrons to Zeeman fields

Spintronic is one of major directions in condensed matter physics. It is interesting to see how
electron spins are manipulated these days in laboratories. Here I will only discuss responses of
fermi seas to external Zeeman fields.

Most of fermions we are familiar with actually carry spin-1/2. A particle with spin-1/2 can be
considered as a magnetic dipole which is coupled to a Zeeman field

H = −gσzHz (12)

g depends on a few internal properties of particles and we simply name it as a g-factor characteriz-
ing coupling between spin and external fields. Electron spins are specified by three Pauli matrices
in non-relativistic limit but here you can think σz as a variable taking either plus (spin-up) or
minus one (spin-down).

For an electron with spin-up or down, the total energy is

ε(k; σz) =
h̄2k2

2m
− gσzHz. (13)

The Fermi momenta for spin-up(kF+) and spin-down (kF−) particles are different.

h̄2k2
F+

2m
+

h̄2k2
F−

2m
= 2εF , kF+ − kF− =

4mgHz

kF+ + kF−
. (14)

Exercise 4 Calculate the energy as the function of Hz, the magnetization Mz, and the Pauli
spin susceptibility χs for Fermi gases using the following definitions

Mz =
∂E

∂Hz

, χs =
∂Mz

∂Hz

. (15)

5 Excitations: Particles and Holes

Before I talk about transport of electrons let me first speak about excitations. And to simplify
the situation let us only consider T = 0 case.

In the ground state, we have all particles occupying states below the fermi surface. The many-
body state of N-particles can be specified as
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f(k) = 1, εk ≤ εF ; f(k) = 0, εk > εF . (16)

Consider a state of N + 1 particles with the extra particle occupying k0(|k| > kF ). f(k) is the
same as above except

f(k) = 1, when k = k0. (17)

One can evaluate the momentum, energy, spin and charge of this state. One arrives the
conclusion that this state of N +1 particles represents a particle with mass m, momentum k, spin
1/2, charge e and velocity vF k̂. Well, this is a result one should expect!

However, there is another kind of excitations which correspond to removal of a particle from
below the fermi surface. The N − 1 particle state is still defined by Eq.16 except the particle at
k0(|k0| < kF ) is removed, i.e.

f(k) = 0, when k = k0. (18)

One can show that

E(N − 1)− E(N) =
∑

|k|≤kF ,k6=k0

(ε(k)− µ)− ∑

|k|≤kF

(ε(k)− µ) = −(εk0 − µ) > 0. (19)

Indeed an excitation!!
What I am going to show next is that this hole-like excitation (positively charged) moves in

the opposite direction of momentum k0!! For the given state specified above,

Q =
∑

|k|≤kF ,k6=k0

k− ∑

|k|≤kF

k = −k0 (20)

So the excitation is of momentum Q = −k0 and energy εQ = QvQ. Obviously

vQ = vF Q̂ = −vF k̂. (21)

The excitation moves along −k0 direction, very very unusual! This is a distinct feature of a
hole-like excitation in fermionic systems.

Exercise 1 Show a hole-like excitation with a Sz = 1/2 electron removed from beneath a fermi
surface carries Sz = −1/2.

6 Collective excitations and Zeroth sounds

TBA

7 2DEG and Quantized Conductance

TBA

8 Charge quantization and Coulomb Blocade

TBA

4


