Last lecture

Hydro power stations, Wind turbine farms, Solar cells

And Final exam

Hydro Power

Gravitational potential energy is transformed into electrical energy. Power = Energy/Time $P = \Delta m g h/\Delta t$

So the power depends on the amount of the water per unit time. Using the density $\rho = m/V$ (1000 kg/m³ for water), we obtain

 $\mathsf{P} = \rho \mathsf{ g } \mathsf{ h } (\Delta \mathsf{V} / \Delta \mathsf{t})$

The term in brackets is the flow rate, which is a volume per unit time, measured in m³/s.

Wind Turbines

Wind Power

- Wind energy is in form of kinetic energy: $K = \frac{1}{2} m v^2$
- Similarly to flowing water in a hydro power station, it makes sense to express the mass in terms of a flow rate and consider power:
- $P = K/t = \frac{1}{2} \Delta m/\Delta t v^2$
- Using the density ($\rho = 1.28$ kg/m³ for air): P = $\frac{1}{2} \rho (\Delta V / \Delta t) v^2$
- Important for the windmill is the amount of wind that moves through the area A defined by the rotor blades: $\Delta V/\Delta t = A \Delta x/\Delta t = A v$.
- $P = \frac{1}{2} \rho A v^3$

Wind Power: Le Nordais Wind Turbine

This is data from a _____ online text. We can _____ proof that it's wrong!

	Average wind speed in the region	28 km/h
•	Wind speed to produce 200 kW	15 km/h
•	Wind speed to produce 750 kW	51 km/h
	Maximum wind speed (turbine stops)	85 km/h
	Height of tower	55 m
	Length of blades	14 m
	Length of nacelle	8.5 m
	Weight of one blade	3 t
	Weight of nacelle	19.5 t
	Weight of electric generator	5 t
	Weight of entire installation	75 t
	Gear box ratio	80:1
	Lower speed of blades	15 r/min
	Higher speed of blades	22.5 r/min

 $P = \frac{1}{2} \rho A v^{3} \text{ (available power)}$ = 28.5 kW (at 15 km/h)= 1.12 MW (at 51 km/h)

Solar Power

- Solar panel usually converts radiation energy into electricity using the photovoltaic effect in solar cells.
- In solar cells, the work is done by the incoming solar radiation: radiation triggers electronic transitions which lead to a current.

http://inventors.about.com/library/inventors/blsolar3.htm

Solar cell power

Electrical energy generated per day= Solar panel area X average solar radiation X daytime hours X efficiency.

Currently solar cell efficiency is less than 25%.

Final exam

- 10 PRS-like questions (multiple choices;
 both conceptual and quantitative)
- 2 tutorial-problem-like questions (context rich)
 - 3 Master physics like questions

Open book but no laptops/cell phones etc.

Resource center still open next week during regular hours.

Thank you for attending my lectures and good luck to your final.