Electricity

--- Current and voltage

Summary of conductors and insulators

- Conductors need free (mobile) charges
 In metals there are free electrons
- Insulators have all charges firmly bound (glass, most plastics)
- air?
- Human body?

The flux through the Gaussian surface is zero. There's no net charge inside, hence no charge on this interior surface.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Faraday's Cage

(b) The conducting box has been polarized and has induced surface charges.

The electric field is perpendicular to all conducting surfaces.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Electric current

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Q0

The electric current in this case,

- 1) increases
- 2) decreases
- 3) remains unchanged as a function of time.

Voltage

Before plates are connected, certain electric energy is stored. These energy stored is characterized electric potential difference or Voltage.

conduction electrons in a wire

The electron has frequent collisions with ions, but it undergoes no net displacement.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

No connected to charged plates

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

When connected to plates

Maintain a constant electric current

A Battery keeps current flowing !!

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

$$\Delta V = rac{W_{chem}}{q}$$

Voltage of a battery

Electric potential

Gravitational Potential Energy mgh Gravitational Potential gh Electrical potential Energy qV Electrical potential V

Some Typical Voltages

Voltage Source	(approx.)
Thundercloud to ground	10 ⁸ V
High-voltage power line	10 ⁶ V
Power supply for TV tube	104 V
Automobile ignition	104 V
Household outlet	120 V
Automobile battery	12 V
Flashlight battery	1.5 V
Resting potential across	
nerve membrane	10 ⁻¹ V
Potential changes on skin	
(EKG and EEG)	10 ⁻⁴ V

Sources of electric potential

- Batteries
- Van de Graaff generator
- Power stations
- Alternators
- Wind generators
- Solar panels
- Piezoelectric materials

Electric current v d Electrons The bigger the voltage, Wire The bigger the current. The electron current *i* is the number of electrons passing through this cross section

of the wire per second.

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Current: the flow of charges.

- I = Q/t
- SI Unit ampere
 A
- What kind of charges?
 electrons, ions, holes

A and B copper wires of same lengths connected to two identical batteries. A with bigger cross-section than the other. A should carry a

- 1) Bigger current;
- 2) Smaller current;
- 3) Same current;
- 4) None of above .

Q2

A and B copper wires of same cross sections. A is longer than B. A should carry a

- 1) Bigger current;
- 2) Smaller current;
- 3) Same current;
- 4) None of above.

Ohm's Law

$I = \sigma A V/d = V / R$

where A is a cross section area of a wire, d is length.

V is the voltage across the wire. We call the quantity characterizing the material conductivity σ .

Inverse of σ is called resistivity ρ , $\rho = 1/\sigma$

 $R = \rho d/A$