Dynamics of a car/airplane and fuel economy

Energy in Transportation

- All transportation systems need energy to
 - accelerate up to speed.
 - Make up for losses due to (rolling) friction, air drag, etc.
 - Air planes need additional energy to climb to an altitude of ~10 km.
- Note that for slowing down (almost) no energy is required in most transportation systems (except air planes or ships).
- We see that energy consumption is linked to mass (acceleration, hills, altitude) and size (drag and resistance forces).

Power

 Power is defined as the rate at which work is done. Average power is the amount of work done in a time interval ∆t or the amount of energy transferred:

 $\overline{P} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ SI unit: 1 watt = 1W = 1J/s

• Mechanical power:

$$P_{avg} = \frac{\Delta W}{\Delta t} = \frac{F_{\parallel} \cdot \Delta x}{\Delta t} = F_{\parallel} \cdot v_{avg}.$$

Transportation

Estimate energy consumption from known forces.

- --- the gas mileage of a car;
- --- Are trains more efficient than cars?
- --- Fuel consumed by jet planes flying at an altitude of ~10 km.
- How does the energy efficiency of a bus compare to a car? What's the minimum number of passengers to make the bus more efficient.
- What is the efficiency of a ship?

Example

- In example 5.8 in Knight, the rolling friction and air drag of a car are estimated to be equal at 23 m/s.
 (m= 1500 kg and μ_r is given as 0.02).
- Rolling friction: $f_r = \mu_r m g = 294 N$. The air drag is also ~300 N giving a total of 600 N.

We will find out that the energy consumption of this car. Cars usually have their lowest energy consumption at~ 80 km/h on an open road and consume 6 - 10 L of gasoline per 100 km depending on size and engine.

Continue....

- In order to maintain speed, the car's engine must do work equal to the work done by friction and air drag: W = F d = 600 N x 100 km = 6 x 10⁷ J.
- Gasoline has an energy of 34.6 MJ per litre.
 The consumption is thus ~ 1.7 L.
- But car engines have internal energy losses (cooling, exhaust, friction, etc.) resulting in an efficiency of only ~ 20% (Wikipedia).

Taking the efficiency into account leads to a realistic answer of 8.5 L/100km.

Local versus highway

Gasoline consumption is larger in the city than on an open highway although speeds (and air drag) are lower. Why?

Hint: How much work is required to accelerate from 0 – 50 km/h?

Work-energy relation

W(net)=W(engine) – W(friction, Drag)= ΔK

W(engine) =W(friction, Drag)+ ΔK

During cruising at constant speed, $\Delta K=0$. Acceleration costs extra energy!!

Extra energy for acceleration

How much extra energy is consumed during acceleration?

Assuming that you accelerate from 0 - 50 km/h in 5 s, the acceleration is a = 2.8 m/s². The corresponding distance d = 35 m.

The rolling resistance and air drag combine to 400 N (following example 5.8). $W = F d = 400 N \times 35 m = 14000 J$.

 $\Delta K = \frac{1}{2} \text{ m v}^2 = 150\ 000 \text{ J}\ (\text{m} = 1500\ \text{kg})$

Compare to 1.5 x 105 J needed for the kinetic energy during acceleration phase: Car needs at least 10 times more energy for acceleration.

Hybrid Cars

- Why are hybrid cars more energy efficient?
- Efficiency of combustion engines depends on rpm. Most efficient at relative high speeds ~ 90 km/h.
- Electric motor very efficient at all speeds.

Fuel Economy of Airplanes

A Boing 747 has a maximum range of 13,450 km and a maximum fuel capacity of 216,840 L.

We can calculate the fuel economy from this: 16L/km or 1600 L per 100 km. The number of passengers is ~500, so each passenger uses 3.2L per 100 km when the plane is full.

This is similar to the fuel economy of a car!

Energy needed to climb up to an altitude of 10.5km

The mass of the plane is 390 000 kg at take-off. $V=m g h = 4 \times 10^{10} J$

Kinetic energy at the cruising speed of 915 km/h (254 m/s). $K = \frac{1}{2} m v^2 = 1.26 x 10^{10} J$

- How much fuel is needed for this? The energy efficiency of the jet engines is ~25% (estimated) Energy in jet fuel: 37.6 MJ/L.
- So we need 1400 L/0.25 = 5600L of jet fuel to accelerate to 915 km/h and go up to 10500 m.

Energy for cruising

- The rest of the fuel (~210,000L) is used to maintain "terminal" speed against air drag.
- Let's estimate the drag force: A 747 has a fuel capacity of 216,840 L and a max. range of 13450km. So 210,000 L are used to counter air drag. W = F d, so F = 147 kN. (Engines have max thrust of 4 x 282 kN). It is less than the air drag on the ground.

Flying at a high altitude reduces the air drag because of a lower air density !! That's why planes fly relatively high although further going high results in a lower upward lifting force.