An improved energy balance model: Atmosphere and Greenhouse gases

Absorption by atmosphere;
Greenhouse gases;

Summary: Earth Energy Balance Equation

$$\begin{split} P_{in} &= P_{out} \\ P_{in} &= (1\text{-}A) \ S \ \pi \ R_{Earth}^2, \ P_{out} &= 4\pi \ R_{Earth}^2 \ \sigma \ T_{Earth}^4 \\ T_{earth} &= 255K \end{split}$$

Q0

The solar constant is 1kW/m² and the radius of the earth is 6400km, the incoming radiation power absorbed by the earth is approximately

- 1) 1000 kW;
- 2) 1,000,000 kW;
- 3) 1,000,000,000 kW;
 -) 10^{14} kW.

Earth Energy Budget Sheet

FIGURE 3-19

Earth's globally averaged atmospheric energy budget. All fluxes are normalized relative to 100 arbitrary units of incident radiation. (From Schneider, *Climate Modeling*, Scientific American, 256:5, 72–80, 1987.)

Atmospheric Absorption

 From: http://www.everythingweather.com/atmosphericradiation/absorption.shtml

Atmospheric Absorption

• From: http://www.everythingweather.com/atmosphericradiation/absorption.shtml

Green house effect

1) Model one: Glass layer effects on the earth temperature;

2) An atmospheric model with Green house effect (with Green house gases).

Earth Energy Balance

We will again make a very simple model but one which includes atmosphere

Now the energy balance for the surface of the Earth is:

- $P_{in} = (1-A) S \pi R_{Earth}^{2} + \sigma T_{e}^{4} 4\pi R_{Earth}^{2}$
- $P_{out} = \sigma T_s^4 4\pi R_{Earth}^2$

Now the energy balance for the surface of the Earth is:

(1-A) S π R_{Earth}² + σ T_e⁴ 4 π R_{Earth}² = σ T_s⁴ 4 π R_{Earth}²

•
$$T_s^4 = (1-A) S / 4\sigma + T_e^4 = 2 T_e^4$$

(Assuming $T_e = 255 \text{ K}$)

Q1

Using the improved climate model, I find that the surface temperature of the earth is

- 1) 0C
- 2) 15 C
- 3) 30C
- 4) 60 C

You should get
$$T_s = T_e \sqrt{2} = 303 \text{ K} = 30 \ ^{\circ}\text{C}$$

• Not really – too hot!

Issues:

- Is atmosphere a thin layer?
- Is it totally absorbing in infrared?

Different layers of the atmosphere

Lets have a closer look in infrared region.

We see plenty of "holes".

Earth Energy Balance

 The more complex models involving multilayer atmosphere partially transparent in infrared come up with better estimates of temperatures of the surface of the Earth – about 15 °C