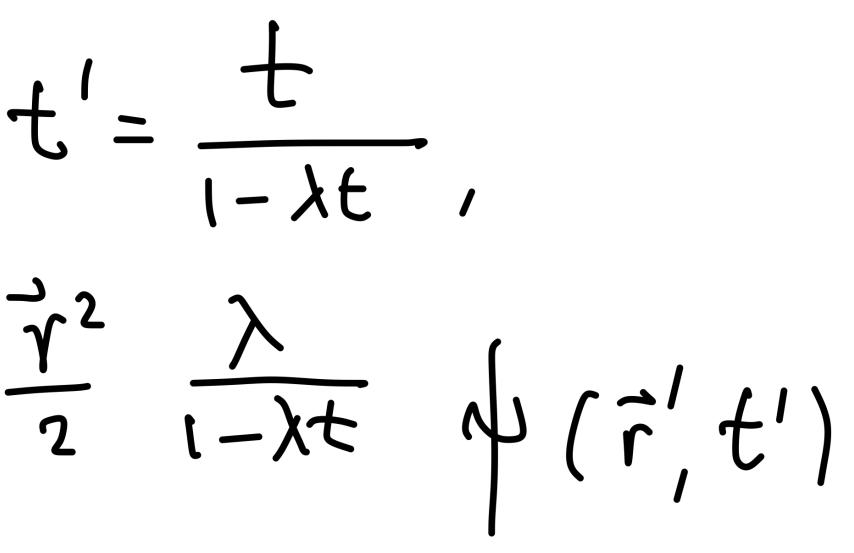
Phys529B: Topics of Quantum Theory

Lecture 21: introduction to 2D an 3D CFT states: non-relativistic ones

instructor: Fei Zhou

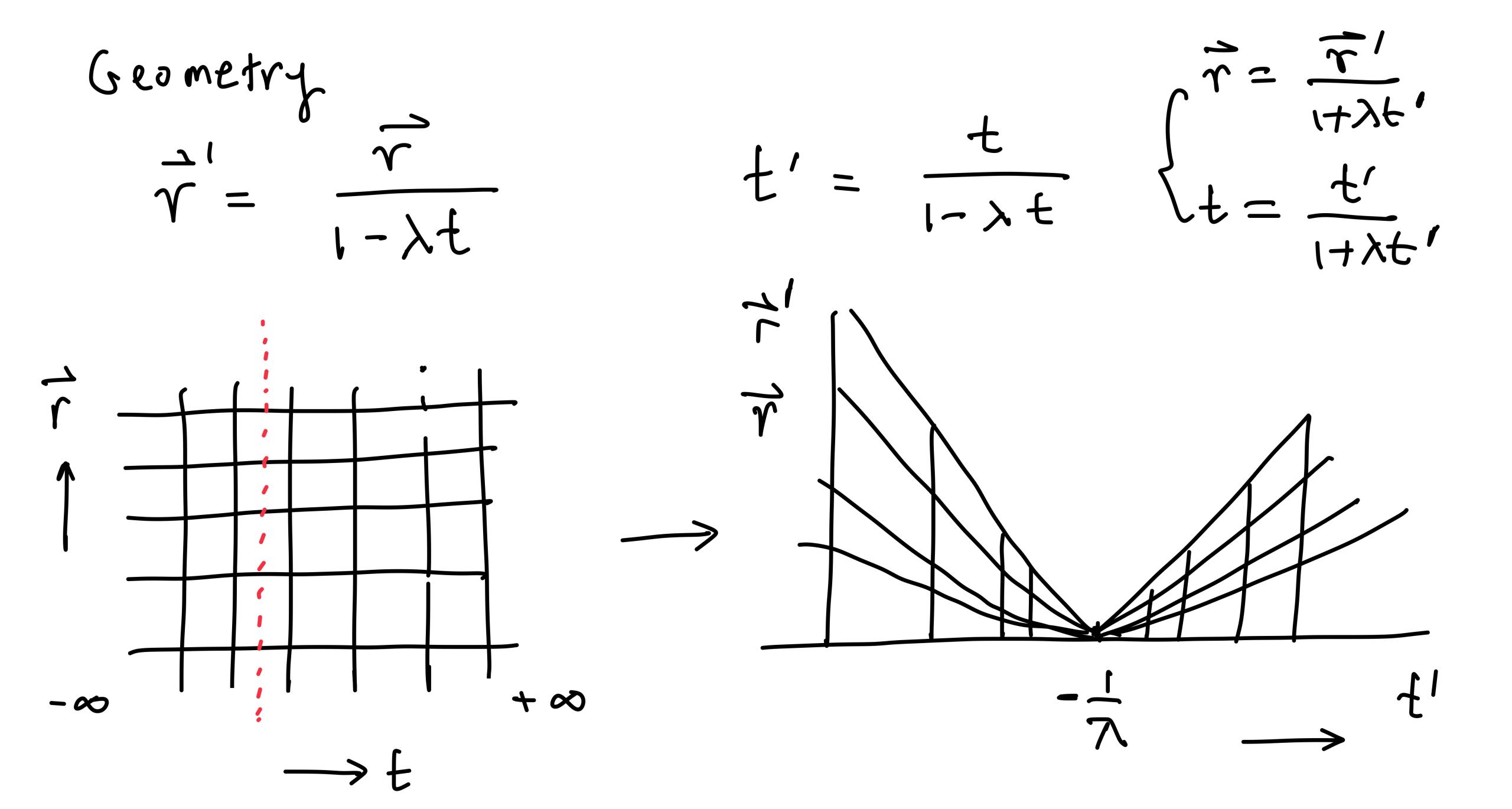
- Conformal invariance $\gamma \rightarrow \gamma' = \frac{1}{1-\lambda t}, \quad t \rightarrow t' = \frac{t}{1-\lambda t},$ $\psi(\vec{r},t) \rightarrow \frac{1}{(1-\lambda t)^d} e^{i\frac{\vec{r}^2}{2}} \frac{\lambda}{1-\lambda t} \psi(\vec{r}',t')$ E. O. M. Invariant.



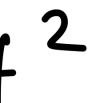
Rep of Conformal group SO(2, 1) Maki, zhou 2019

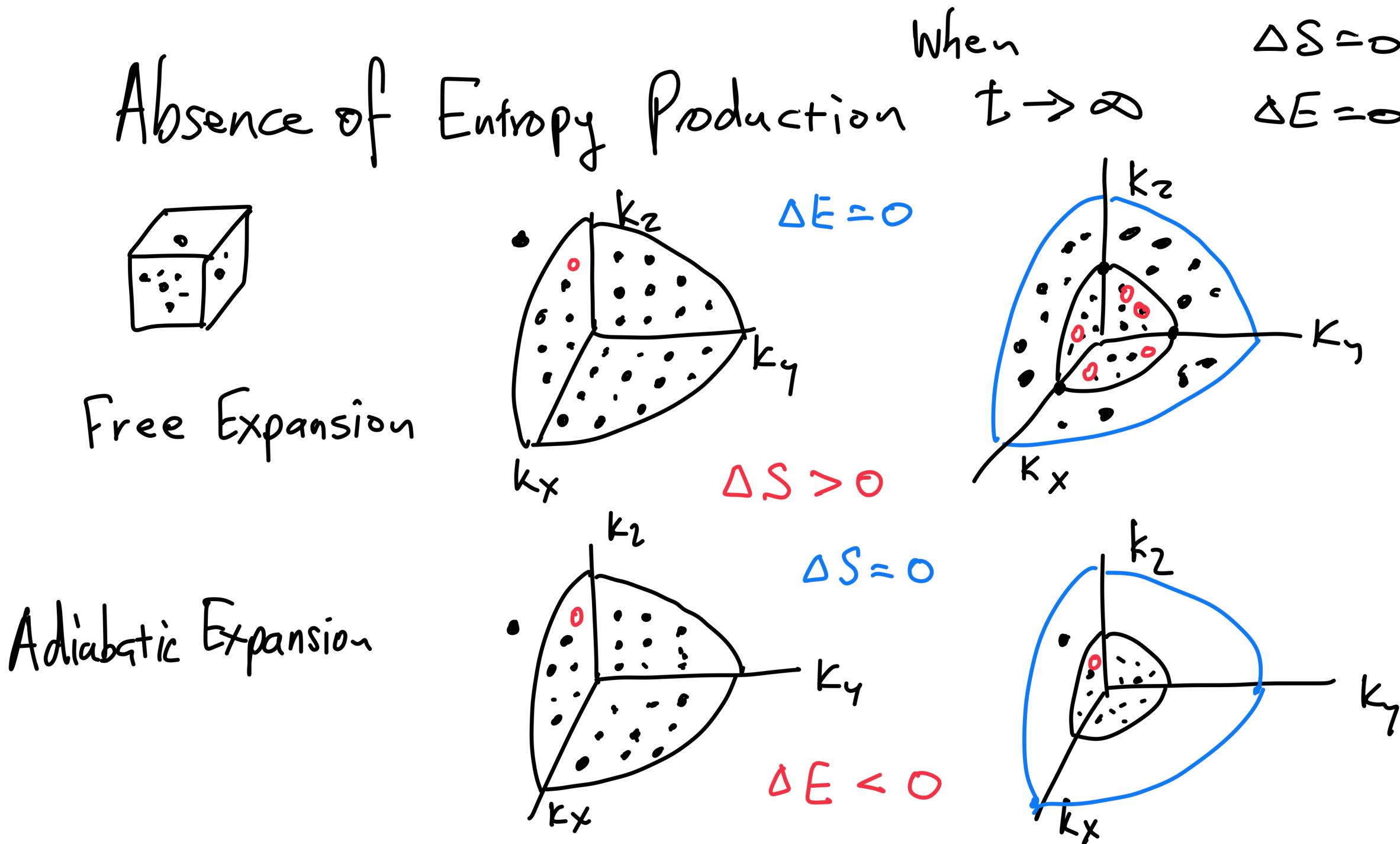
 $G_{H} = \partial_{t}, \qquad \text{temporal translation}$ $G_{D} = 2t\frac{\partial}{\partial t} + \vec{r} \cdot \nabla_{\vec{r}} + \frac{\partial}{2} \qquad \text{Space-time dilation}$ $G_{c} = t^{2}\frac{\partial}{\partial t} + t(\vec{r} \cdot \nabla_{\vec{r}} + \frac{d}{2}) + i\frac{\vec{r}^{2}}{2}$

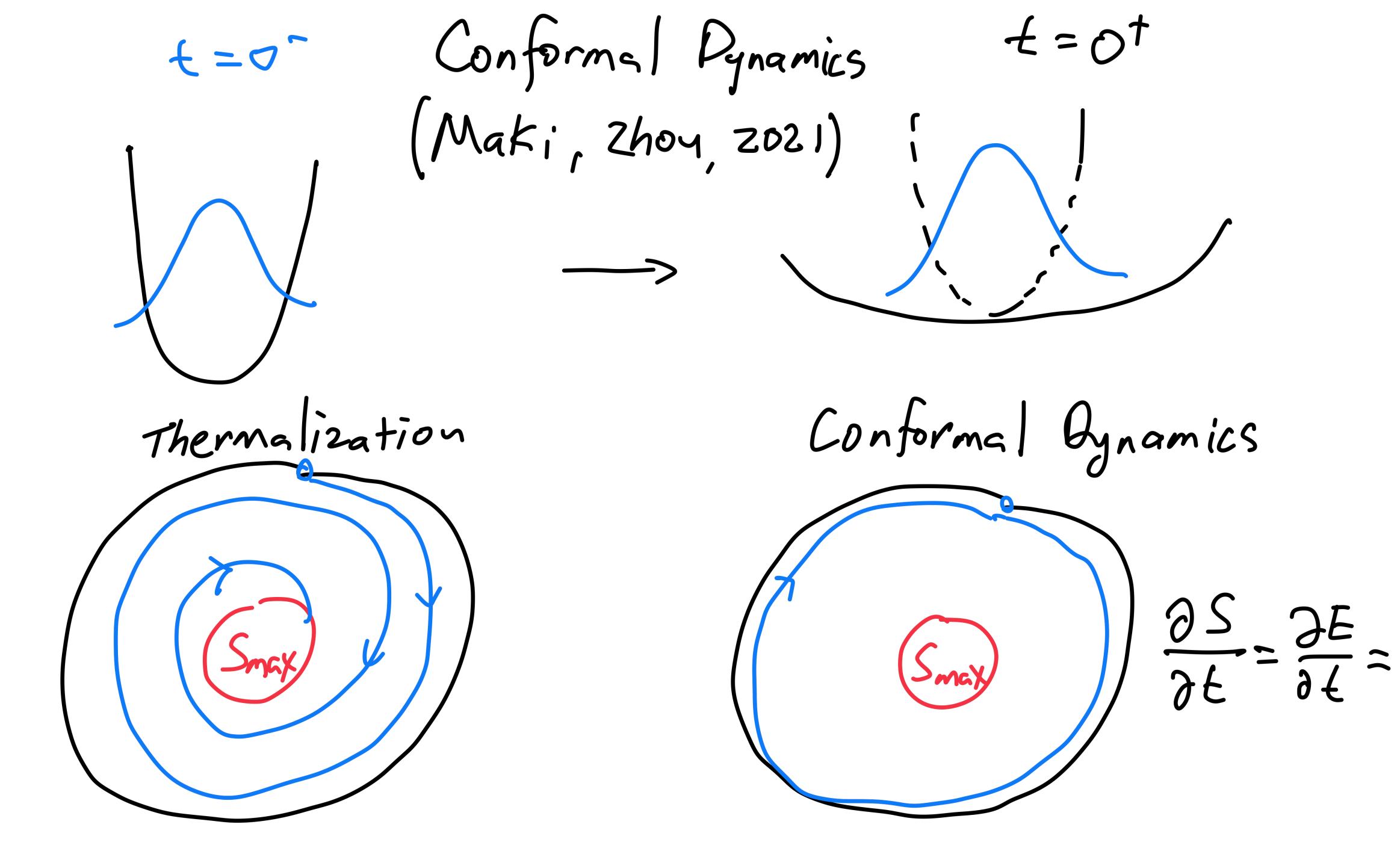
Ur (SL (2, R)) SO(2,1) Algebra $[\sigma_{z}, 6] = -26$ $[G_{D}, G_{H}] = -2G_{H}$ $[G_{D}, G_{C}] = 2G_{C}$ $[62, 6_{+}] = 26_{+}$ $[GH, G_c] = +G_D$ $\left[\mathcal{G}_{+}, \mathcal{G}_{+} \right] = -\mathcal{G}_{Z}$ Ref. $Su(z) \sim Su(3)$ SO(2, 1)



H = H' Conformal Symmetry $i\partial_t \psi(\vec{r},t) = [\psi,H] \longrightarrow i\partial_t \psi'(\vec{r},t') = [\psi,H']$ $U(t) \longrightarrow U(t')$ $\epsilon \rightarrow o$ $U(t \rightarrow \infty) \longrightarrow U'(t' = -\frac{1}{\lambda} + \epsilon)$ $\simeq u'(-\frac{1}{\lambda}) + O(\epsilon)$ All dynamics become frozen at - At Xt²

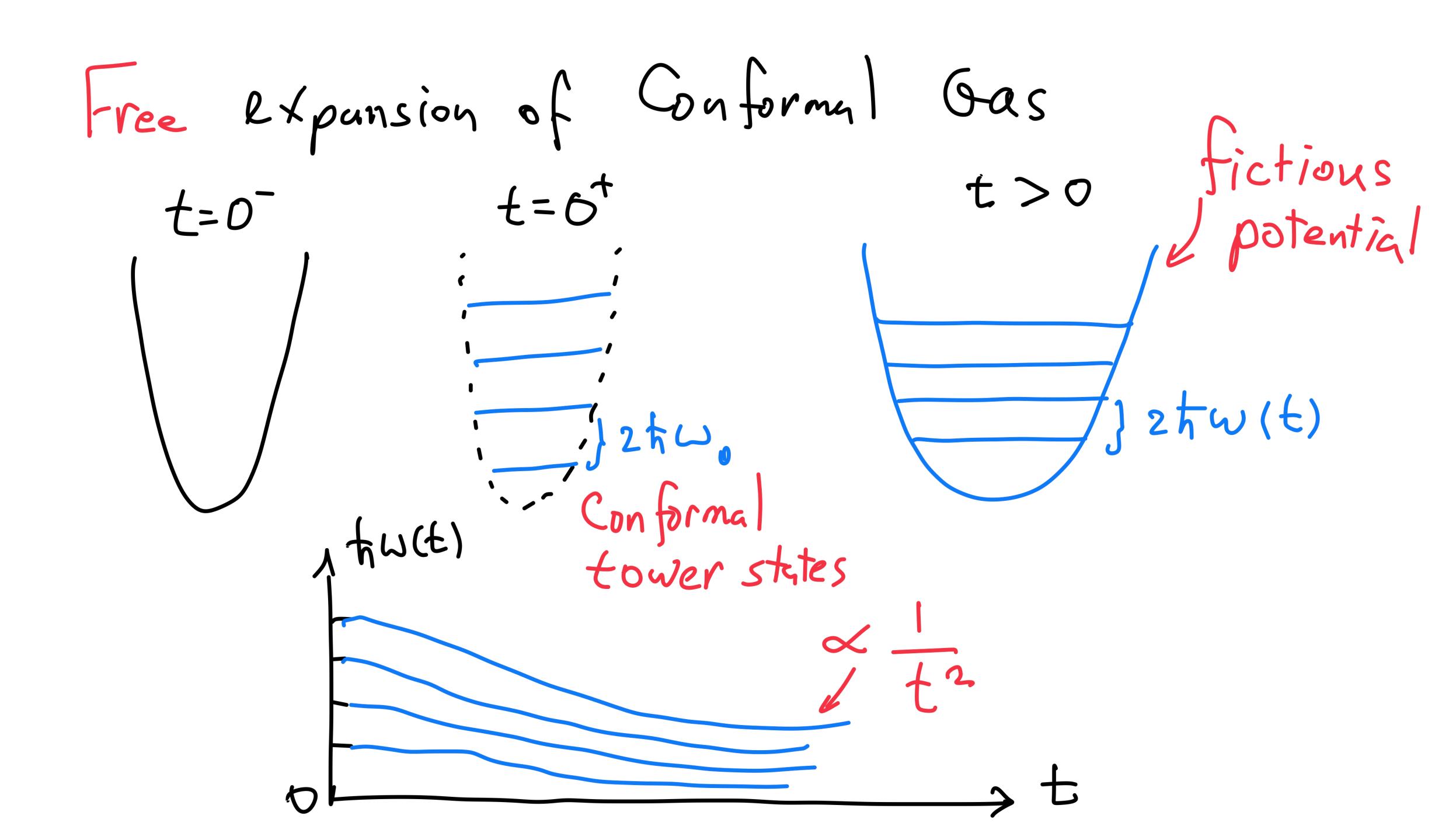


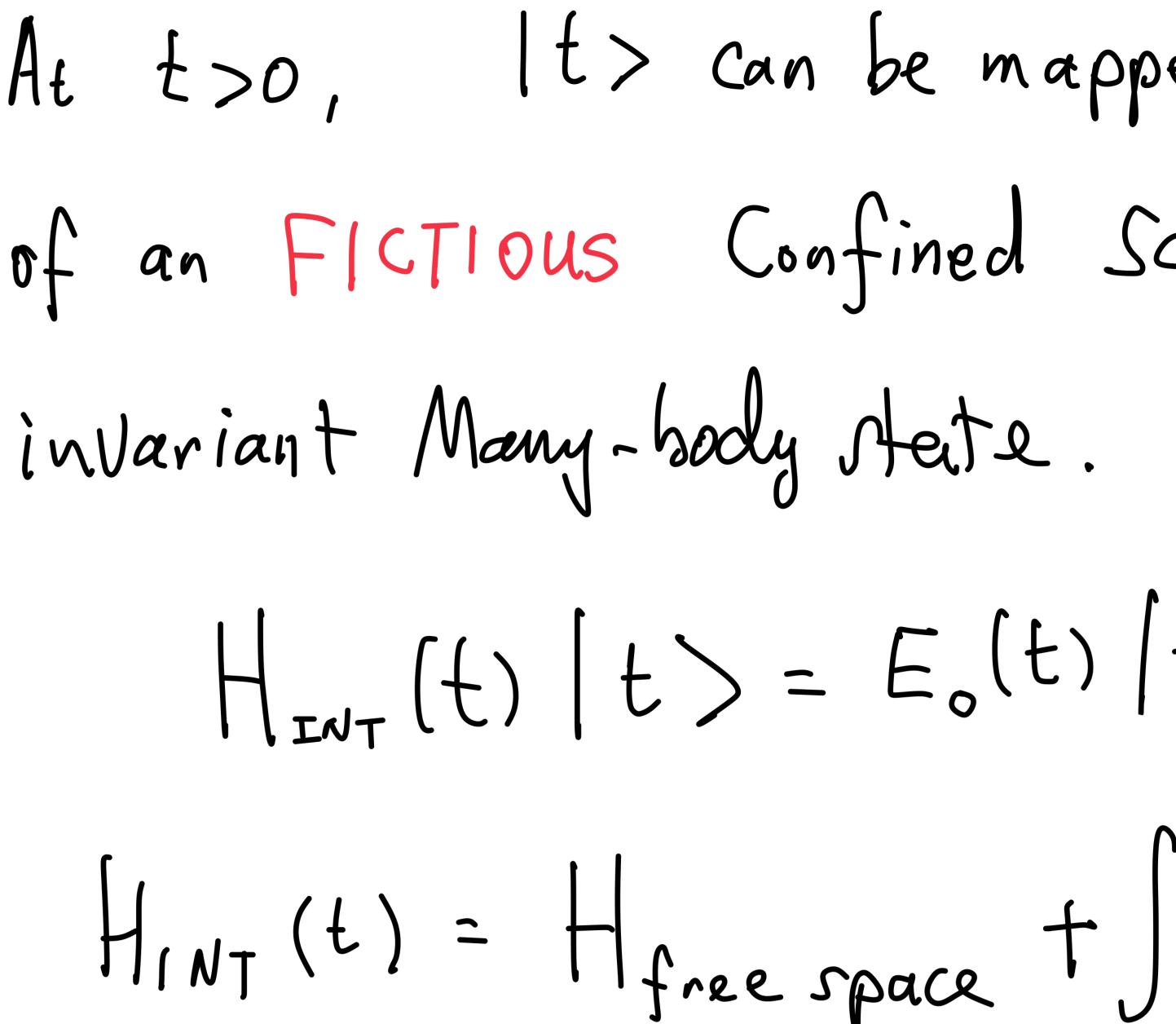




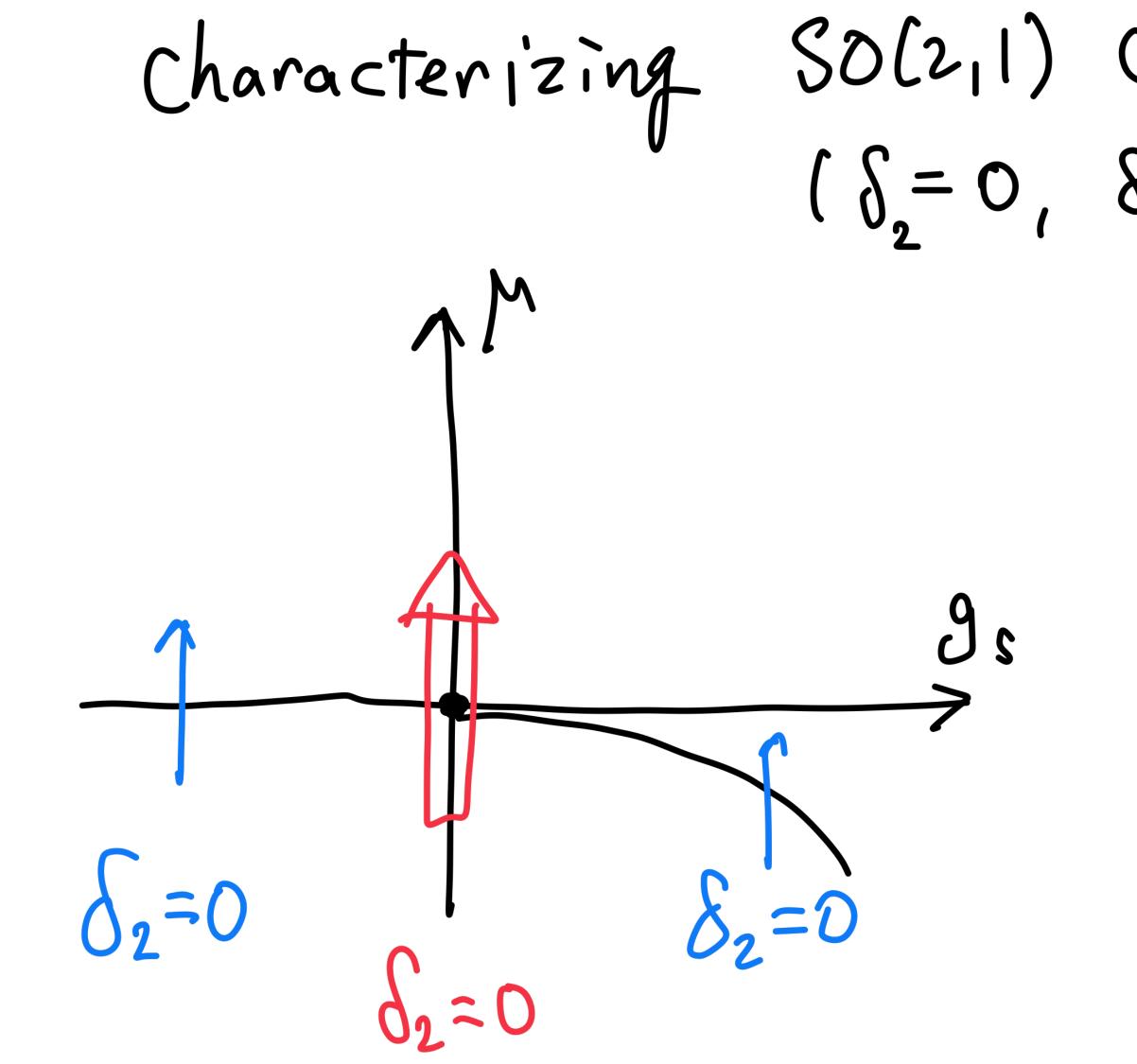
Conformal Dynamics: $\Delta E = 0$, $\Delta S = 0$ Following Conformal Tower State Dynamics

Adiabatic Process: $\Delta E = W$, $\Delta S = D$ Isothermal Process: $\Delta E = 0$, $\Delta S = \frac{\Delta \phi}{T} = t \frac{\psi}{T} \neq 0$



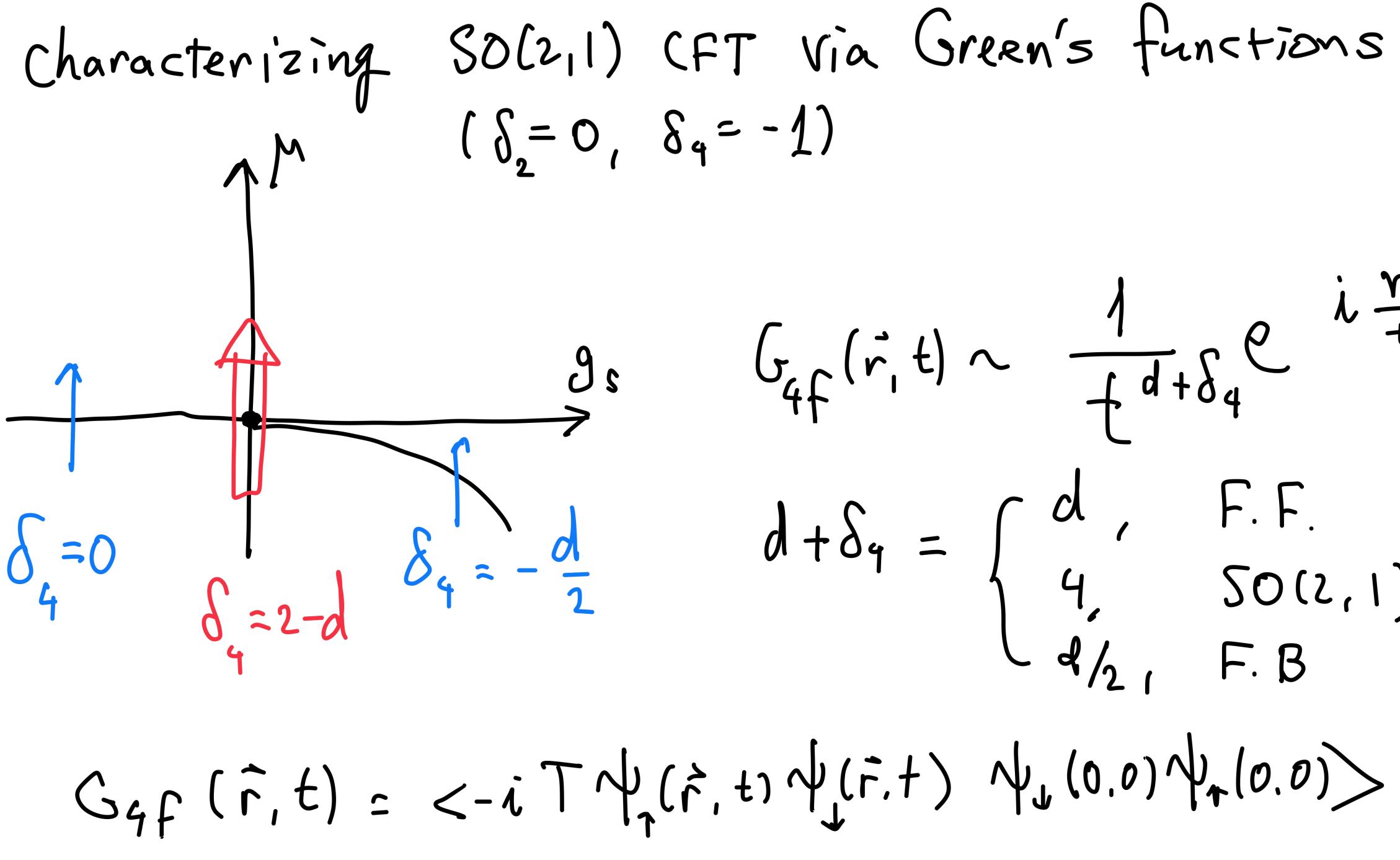


At t>0, It> can be mapped into an eigenstate of an FICTIOUS Confined Scale-Conformal $H_{INT}(t)|t\rangle = E_o(t)|t\rangle$ fictions $H_{INT}(t) = H_{free space} + \int_{2}^{M} \hat{w(t)} \psi^{\dagger} \hat{r}^{2} \psi d\hat{r}^{3}$



Characterizing SO(2,1) CFT Via Green's functions $(S_2 = 0, S_q = -1)$

 $G_{F}(\hat{r}, t) = \langle -iT\psi(\hat{r}, t)\psi_{0}\rangle > g_{S}$ $G_F(\hat{r},t) \sim \frac{1}{f\frac{d}{2}+\delta_2} \rho^{i} \frac{\gamma}{2t}$



 $G_{4f}(\vec{r},t) \sim \frac{1}{f^{d}+\delta_{4}}e^{i\frac{r}{t}}$ $d + \delta_{4} = \begin{pmatrix} d, & F.F. \\ 4, & SO(2, 1) \\ \frac{d}{2}, & F.B \end{pmatrix}$

 $\frac{dZ}{dE} = 0$ \rightarrow $\frac{d\hat{g}}{dt} = (d-2)\hat{g} + \hat{g}^2$ $\rightarrow \int \frac{d\tilde{g}}{dt} = (d-2)\tilde{g} n$ A) $\rightarrow \frac{d \delta g}{dt} \simeq (2-d)$ B) $D_{im}[\psi] = (2+d)+(2$

 $\delta_2 = 0$

near
$$g=0$$
, $Dim [\Psi^4] = (q+2) + (d = 2d)$

