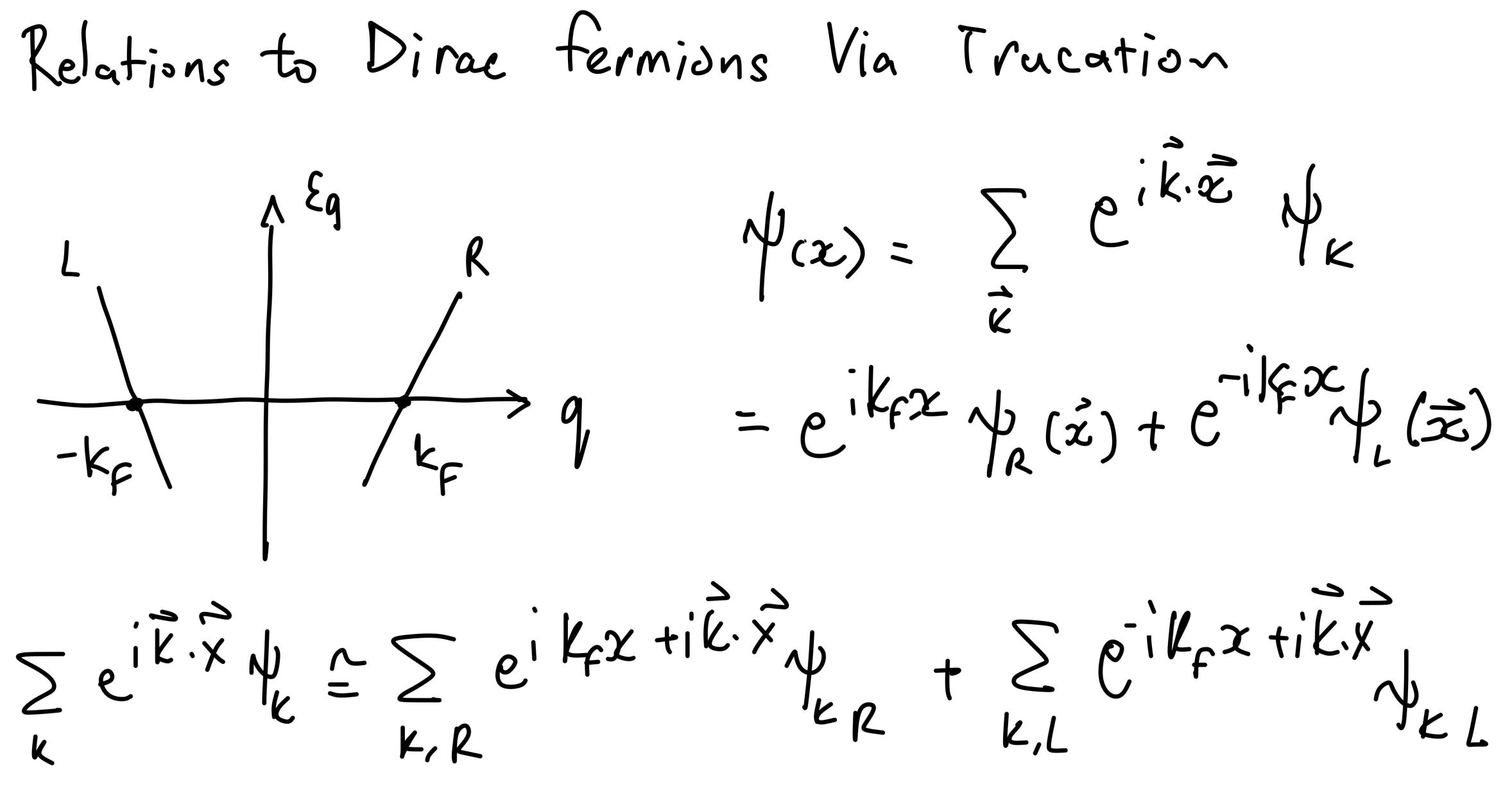
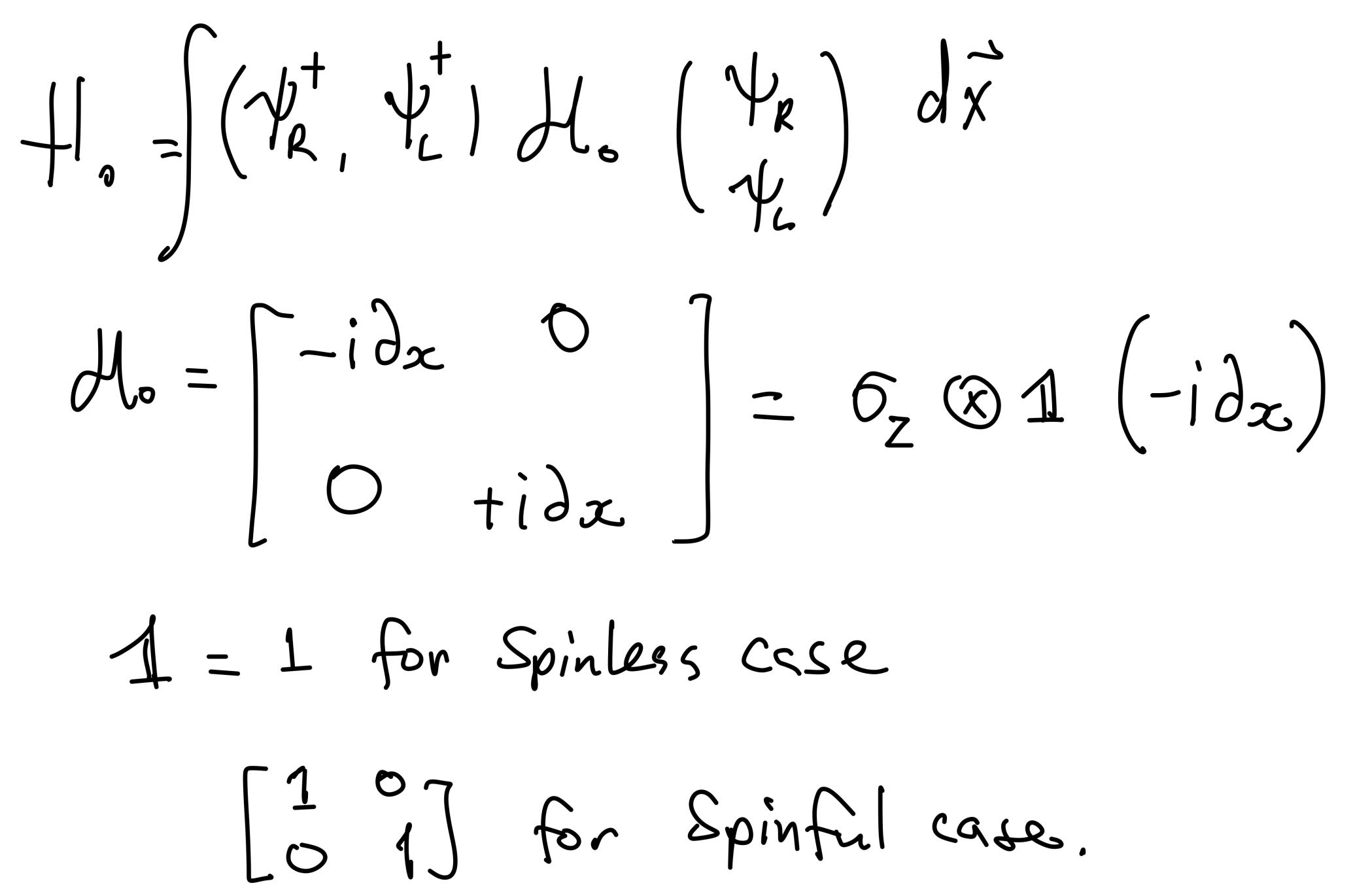
Phys529B: Topics of Quantum Theory

Lecture 18: introduction to 1D LL and bosonization

instructor: Fei Zhou



 $\psi(x) = \sum_{k} e^{i \vec{k} \cdot \vec{x}} \psi_{k}$



Interactions HI = g, [[Na Na Na Ya Ka + NL NL] - forward Scattering $+g_2 \int \psi_{\lambda} \psi_{$

- back Scattering

 $g_1 = V(q_2), \quad g_2 = V(0) - V(2k_f)$ $\hat{V}_{L} = \int \psi_{(\bar{x})}^{\dagger} \psi_{(\bar{x})} \psi_{(\bar{x})} \psi_{(\bar{x}')} \psi_$

Note that $f(x) = \psi_{R}^{+}(x) \psi_{R}^{+}(x) + \psi_{L}^{+}(x) \psi_{L}^{+}(x)$

+ $\psi_{R}^{\dagger}(x)\psi_{L}(x)\tilde{e}^{i2k_{F}x}$ + $\psi_{L}^{\dagger}(x)\psi_{R}(x)e^{i2k_{F}x}$

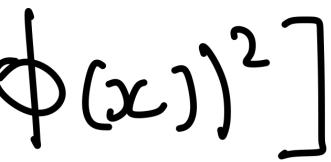
Useful algebraic Relations for current algebras [AB, C] = A[B, C] + [A, C]B $[A, BC] = \{A, B\}C - B\{A, C\}$

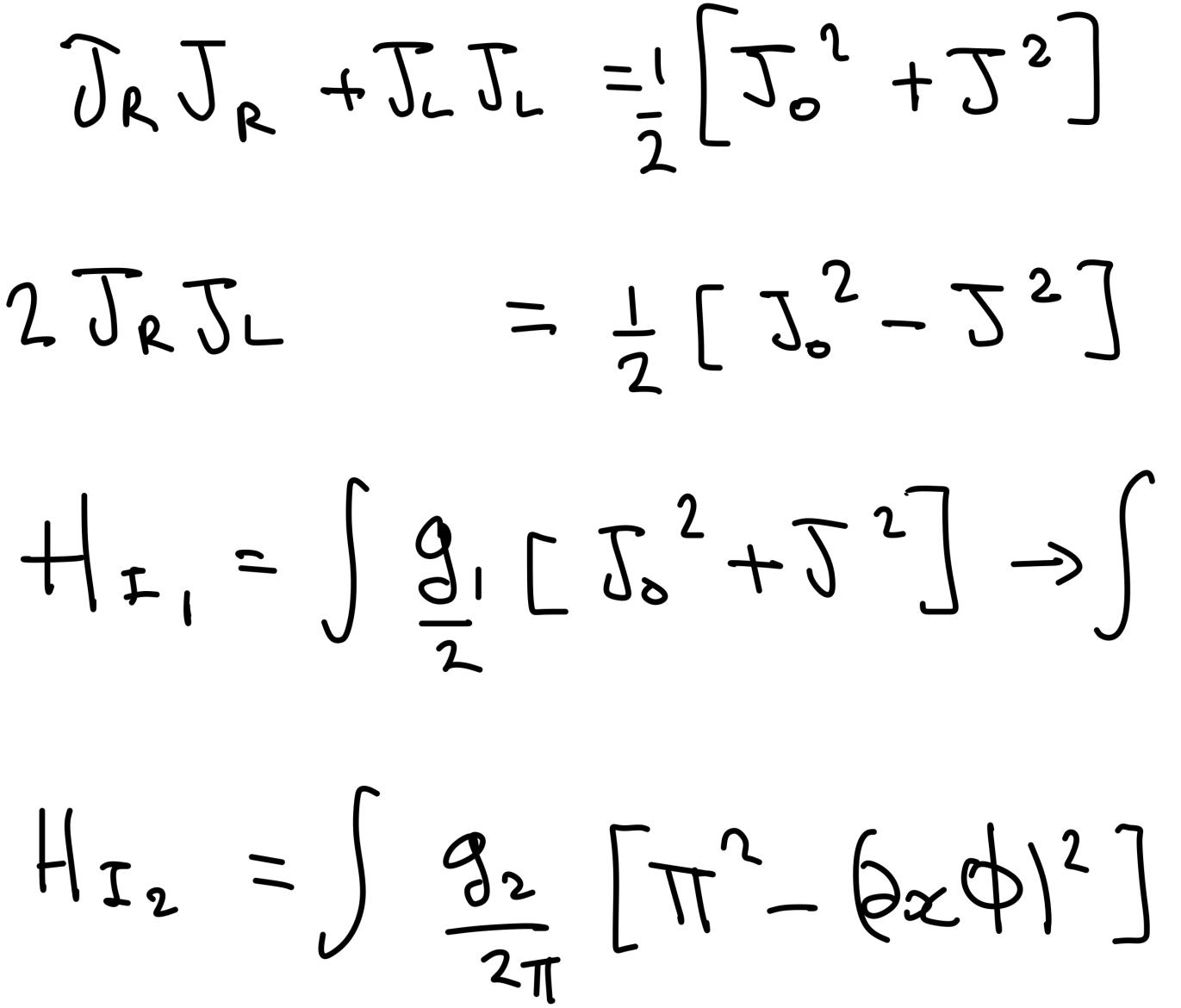
Current opeator and Current Algebras $J_{c} = \psi_{c}^{\dagger} \psi_{L} \qquad J_{R} = \psi_{R}^{\dagger} \psi_{R}$ $\begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon), & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon), & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x+\epsilon) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \end{bmatrix} = \begin{bmatrix} \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) \\ \chi_{R}^{\dagger}(x) & \chi_{R}^{\dagger}(x) & \chi$ $= \Psi_{R}^{\dagger}(x+\epsilon) \left[\Psi_{R}(x+\epsilon), \Psi_{R}^{\dagger}(x) \Psi_{R}(x) \right]$ + $\left[\Psi_{R}^{\dagger}(x+\epsilon), \Psi_{R}^{\dagger}(x) \Psi_{R}(x) \right] \Psi_{R}^{\dagger}(x+\epsilon) = \overline{\delta} \left\{ \Psi_{R}^{\dagger}(x+\epsilon), \Psi_{R}^{\dagger}(x) \right\} \Psi_{R}^{\dagger}(x+\epsilon)$ + $\left[\Psi_{R}^{\dagger}(x+\epsilon), \Psi_{R}^{\dagger}(x) \Psi_{R}(x) \right] \Psi_{R}^{\dagger}(x+\epsilon) = \overline{\delta} \left\{ \overline{\delta} \right\}$ $= \left\{ \psi_{R}^{\dagger}(x + \epsilon) \psi_{R}(x) - \psi_{R}^{\dagger}(x) \psi_{R}(x + \epsilon) \right\} \delta(\epsilon)$

 $\Psi_{L}^{\dagger}(x+\epsilon)\Psi_{L}(x) \sim \langle \Psi_{R}^{\dagger}(x+\epsilon)\Psi_{R}(x) \rangle = \frac{L}{2\pi\epsilon}$ $\left[\int_{R} (x'), \int_{R} (x) \right] = \frac{l}{\pi} \frac{\partial}{\partial x'} \delta(x'-x)$ by the same token, $\psi_{L}^{\dagger}(x+\epsilon)\psi_{L}(x) \sim \langle \psi_{L}^{\dagger}(x+\epsilon)\psi_{L}(x)\rangle = \frac{-i}{2\pi\epsilon}$ $[J_{L}(x'), J_{L}(x)] = -\frac{i}{\pi} \frac{\partial}{\partial x'} \delta(x'-x)$

 $J_0 = J_R + J_L$, $J = J_R - J_L$ $[J_{o}(x), J_{o}(x')] = 0, [J_{(x)}, J_{(x')}] = 0$ $[\mathcal{J}_{0}(x), \mathcal{J}(x')] = + \frac{i}{\pi} \frac{\partial}{\partial x} \delta(x - x')$ (Following move rareful analysis)

Suggests the following bosonization $J(x) = \frac{1}{\sqrt{\pi}} \partial_x \phi, \quad J_o(x) = \frac{1}{\sqrt{\pi}} \pi,$ $[\pi(x), \phi(x')] = -i\partial(x-x')$ So that $[J(x), J(x)] = +\frac{1}{\pi} \frac{\partial}{\partial x} \delta(x-x')$ $H_{0} = \frac{V_{E}}{2} \left[\left(\pi (x)^{2} + (\partial x \varphi(x))^{2} \right) \right]$





 $J_R J_R + J_L J_L = \left[J_0^2 + J^2 \right]$ forward Scattering $2 J_R J_L = \frac{1}{2} [J_0^2 - J^2]$ backward Scattering $H_{I} = \int \frac{g_1}{2} \left[J_0^2 + J^2 \right] \rightarrow \int \frac{g_1}{2\pi} \left[\pi^2 + (\partial_x \phi)^2 \right]$

$$H = \frac{v}{2} \int \{\frac{1}{K} \prod + k\}$$

$$K = \sqrt{\frac{V_F + \frac{g_1}{\pi} + \frac{g_2}{\pi}}{V_F + \frac{g_1}{\pi} - \frac{g_2}{\pi}}}$$

K=1 when $g_2=0$,

 $\left(\partial_{x} \phi\right)^{2}$

$$V = \left(\frac{V_F}{T} + \frac{g_1}{\pi} \right)^2 - \left(\frac{g_2}{\pi} \right)^2$$

