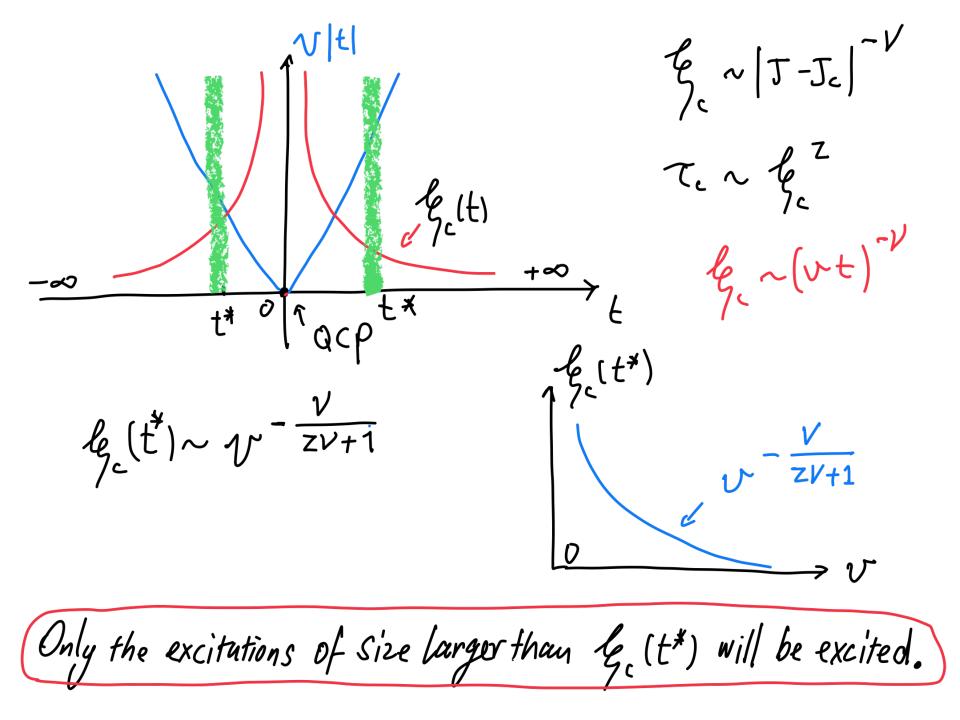
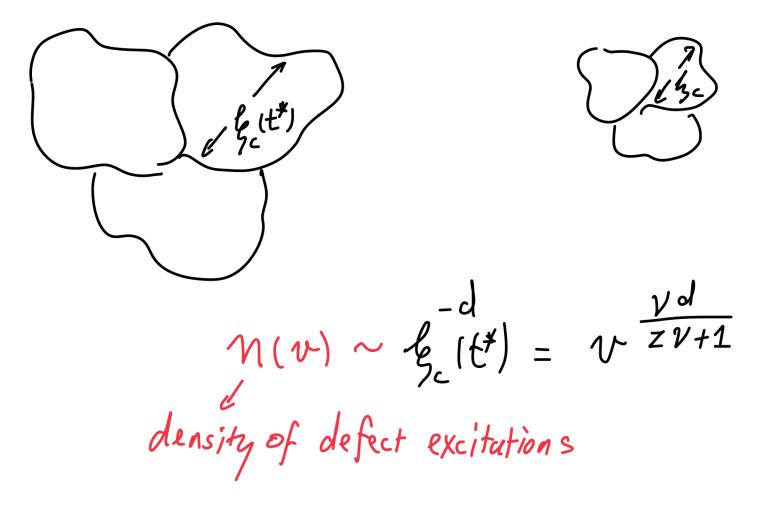
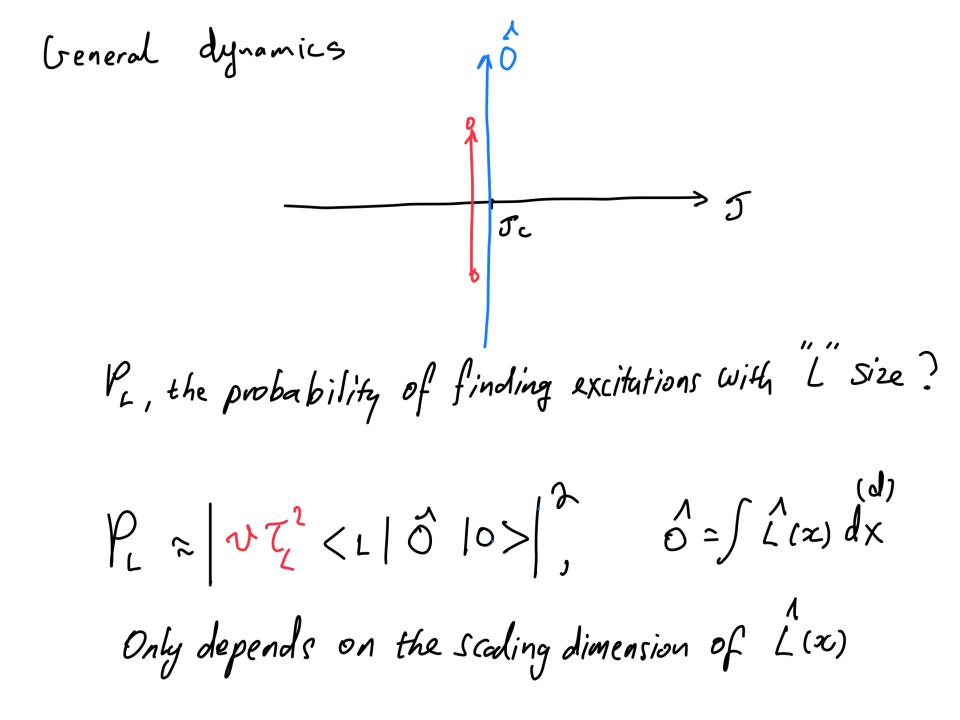
Phys525: Quantum Condensed Matter Physics: Quantum Criticality Basics, Dynamics and Topological criticality

Episode 14: Application: Sweeping across a QCP: introduction to quantum dynamics of Kibble-Zurek type



Cartoons (Final state) of Quenched defects fast Vs Slow





General: beyond heuristics
$$(P_n = |a_n|^2)$$

 $P_L \approx |v T_2^2 < L | \tilde{O} | 0 > |^2, \quad \tilde{O} = \int \tilde{L}(x) dx$
if $x \to e^{\lambda} x', \quad \tilde{L}(x) \to \tilde{L}(x') = e^{\eta \lambda} \tilde{L}(e^{\lambda} x')$
 η the scaling dimension of $\tilde{L}(x)$
then $P_L \approx (v L^{2Z + d - \eta})^2 + \cdots$
Most likely excitutions $L > L_c = w^{-\frac{1}{2Z + d - \eta}}$.
 $(for \tilde{L}(x) = q(x) q(x), one can show that $Z + d - \eta = \frac{1}{V}$.$

then
$$P_L \approx \left(v L^{2Z + d} - \eta \right)^2 + \cdots$$

$$\int for \hat{L}(x) = \hat{\varphi}(x) \hat{\varphi}(x)$$
, one can show that $Z + d - \gamma = \frac{1}{V}$.

$$\begin{array}{ll}
\hat{O} = \int d_{x} \hat{L}(x), & \hat{L}(x) \rightarrow \hat{L}(x') = e^{\eta \lambda} \hat{L}(e^{k} x') \\
\hat{O} \rightarrow \hat{O}' = e^{\lambda(d-\eta)} \hat{O} \\
\hat{\langle e^{\lambda}L | \hat{O} | 0 \rangle} = \langle L | \hat{O} | 0 \rangle e^{\lambda(d-\eta)}
\end{array}$$

 \rightarrow < L $|\hat{0}|$ > ~ L $(d-\eta)$