next up previous
Next: About this document ...

PHYSICS 206
Problem set 6 1999, solution


Problem 1
Introduce a coordinate system as in figure:
\begin{figure}
\epsfysize=200pt
\epsffile{plank.eps}
\end{figure}
The z-axis points out of the plane of the paper. The moment of inertia about a vertical axis through the center of mass is

\begin{displaymath}I_{zz}=\frac{M\l ^2}{12}\end{displaymath}



a:
The center of mass velocity is

\begin{displaymath}\vec{V}_{cm}=\frac{P}{M}\hat{j}\end{displaymath}

while the angular momentum is

\begin{displaymath}\vec\Lambda=-\frac{P\l }{2}\hat{k}\end{displaymath}

so that the angular velocity is

\begin{displaymath}\vec\omega=\frac{\vec\Lambda}{I_{zz}}=-\frac{6P}{Ml}\hat{k}\end{displaymath}

$\vec{V}_{cm}$ and $\vec\omega$ stay constant during the subsequent motion, since no further forces or torques act on the plank.

b:
The translational velocity of the point of contact is

\begin{displaymath}\vec{V}_P=\vec{V}_{cm}+\vec\omega\times\vec{r}_P\end{displaymath}

The position of the point of contact P at time t is

\begin{displaymath}\vec{r}_P=-\hat{i}\frac{\l }{2}\cos(\omega t)+\hat{j}\frac{\l }{2}\sin(\omega t)+
\vec{V}_{cm}t\end{displaymath}

The velocity of $\vec{V}_P$ is thus

\begin{displaymath}\vec{V}_P=\frac{d\vec{r}_P}{dt}=\vec{V}_{cm}+\frac{\omega\l }{2}(
\hat{i}\sin(\omega t)+\hat{j}\cos(\omega t))\end{displaymath}


\begin{displaymath}=\frac{P}{M}[(1+3\cos(\omega t))\hat{j}+3\cos(\omega t)\hat{i})]\end{displaymath}

The angular velocity $\vec\omega$ is independent of the reference point.

c:
The position of an arbitrary point on the plank which initially was located a distance x to the right of the center of mass is

\begin{displaymath}\vec{r}_x=\hat{i}x\cos(\omega t)-\hat{j}x\sin(\omega t)+\vec{V}_{cm}t\end{displaymath}

The initial velocity of this point is thus

\begin{displaymath}(V_{cm}-\omega x)\hat{j}=\frac{P\hat{j}}{M}(1-\frac{6x}{l})\end{displaymath}

We conclude that the initial velocity is zero a distance $x=\l /6$ to the right of the center on mass.

Problem 2
The moments of inertia of a box with sides a,2a,3a about the center of mass in a coordinate system with axes parallel to the sides of the box is

\begin{displaymath}I=M\left(\begin{array}{ccc}
\frac{b^2+c^2}{12}&0&0\\
0&\fr...
...
0&\frac{10}{12}&0\\
0&0&\frac{5}{12}\\
\end{array}\right)\end{displaymath}

We have

\begin{displaymath}\vec\omega=\frac{\omega}{\sqrt{14}}(1,2,3)\end{displaymath}

The kinetic energy is thus

\begin{displaymath}\frac{1}{2}\vec\omega\cdot I\vec\omega=\frac{Ma^2\omega^2}{28...
...13}{12}+\frac{40}{12}+\frac{45}{12})=
\frac{7Ma^2\omega^2}{24}\end{displaymath}



Problem 3
The moment of inertia of a sphere of radius r, mass $\mu$ about its center is

\begin{displaymath}I_{cm}=\mu r^2\left(\begin{array}{ccc}
\frac{2}{5}&0&0\\
0&\frac{2}{5}&0\\
0&0&\frac{2}{5}\\
\end{array}\right)\end{displaymath}

The moment of inertia tensor of the same sphere about (0,0,-r) is

\begin{displaymath}I_{r}=\mu r^2\left(\begin{array}{ccc}
\frac{7}{5}&0&0\\
0&\frac{7}{5}&0\\
0&0&\frac{2}{5}\\
\end{array}\right)\end{displaymath} (1)

Let M be the mass of the solid sphere in the absence of a cavity and m the mass with the cavity present. We have

\begin{displaymath}m=\frac{7M}{8}\end{displaymath}


\begin{figure}
\epsfysize=180pt
\epsffile{hollow.eps}
\end{figure}
a:
The z-coordinate of the center of mass is

\begin{displaymath}z_{cm}=\frac{1}{m}(M\cdot 0-\frac{Ma}{2\cdot 8})=-\frac{a}{14}\end{displaymath}



b:
Substituting $\mu=-\frac{M}{8}$ and $r=\frac{a}{2}$ into the expression for Ir gives for the moments of inertia about the center of the sphere

\begin{displaymath}I_0=Ma^2\left(\begin{array}{ccc}
\frac{2}{5}-\frac{7}{5\cdot...
...0&\frac{57}{140}&0\\
0&0&\frac{31}{70}\\
\end{array}\right)\end{displaymath}



c:
We have

\begin{displaymath}I_{cm}=ma^2\left(\begin{array}{ccc}
\frac{57}{140}+\frac{1}{...
...&\frac{101}{245}&0\\
0&0&\frac{31}{70}\\
\end{array}\right)\end{displaymath}

Return to title page.

 
next up previous
Next: About this document ...
Birger Bergersen
2000-02-20