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1 Introduction

1.1 About this course

The material in these notes was last presented in class January-April 2002.
Included are also a number problems that mostly constitute assignments and
exams from the winter sessions 1999{2002. The problems are very much part
of the course, and without doing them you cannot expect to fully understand
the material. There were also optional end of term projects and you can �nd
a list of some of these near the end of these notes.

AIMS
Physics 206 at UBC covers material fromNewtonian mechanics to Lagrangian
and Hamiltonian dynamics. The most important goals are to

� Give needed background for later courses in quantum and statistical
mechanics and electricity and magnetism.

� Make you familiar with the often formal and abstract approach of
physics. Classical mechanics is a good place to do this{ one can at
the same time relate to familiar experiences.

� Introduce you to powerful problem solving techniques and allow prac-
tice of skills.

� Show applications to practical problems.

TEXTS
There was no assigned text for the course. A possible suitable text (of which
I unfortunately was not aware when I gave the course) is the book by Flo-
rian Scheck[17]. Much of my lecture material was inspired by the "classic"
text Landau and Lifshitz[11], and to a lesser extent by another "classic",
Goldstein[8] (I had the �rst edition as an undergraduate a long time ago).
In previous years Hand and Finch[9], and Cassiday and Fowles[7] have been
assigned to the course. Cassiday and Fowles introduce Lagrangian Mechanics
at a much later stage than I do, so you may prefer the other texts. They do
require, more mathematical background than Cassiday and Fowles, so it may
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still be useful. The book by Landau and Lifshitz is quite brief and extremely
concise. Actually, everything that is needed for the course is there, and some
students may prefer it as a text because of its elegance and clarity. Hand
and Finch, and also Cassiday and Fowles, contain quite a bit of historical
background and many more examples than it is possible to �nd room for in
a one term course. For some students this extra material will be helpful in
providing better understanding.

A common problem facing undergraduate physics students is that the neces-
sary mathematics is often taught after it is required in the physics courses.
The book by Riley, Hobson and Bence[19] may bridge the gap - it contains
most of the math required for an undergraduate degree in physics and I
recommend it as a general mathematical reference for physics students. A
similar book is Arfken and Weber[2].

You are encouraged to use soft-ware such as Maple or Mathematica to solve
the assignments! Both programs have excellent help menus. There are also
many books available describing how to use both programs. For Maple I
found Ko
er[10] very helpful. You will �nd links to a number of Maple
worksheets complementing the lecture material on the course web site. These
have been produced using Maple 6 or Maple V release 5 operating under
Windows 1998. Hopefully these worksheet will work in other environments
too! You should feel free to download them from the course web site and edit
them yourself for particular problems. The books by Enns and McGuire[4]
and Lynch[12] are intended for a more advanced level than PHYS 206, but
they contains many wonderful Maple examples that would be understandable
to PHYS 206 students. The Enns and McGuire book is also available in a
Mathematica edition. Sometimes working from examples is not enough, and
you may need to learn more about the Maple language. I have found "The
Maple V Programming guide" by Monagan et al.[14] a useful reference in this
respect. In the case of Mathematica the standard reference is Wolfram[19].
Some useful web links can be found at the course web site.

1.2 Vector Algebra.

I will start by covering some mathematical preliminaries:
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Much of mechanics is concerned with establishing the position, velocity
and acceleration of particles as well as the forces acting on these. We
represent these quantities by vectors. I will assume that you have had some
exposure to vector algebra, but in order to establish notation (and to refresh
your memory) I will quickly go through some of the rules.

Vectors are objects that have a magnitude and direction. I will use the
notation ~A to describe vectors (except in �gures where I will write A).

To specify a vector we need a coordinate system.
The vector can then be expressed in terms of its components.

We will �rst specify formal rules of vector algebra in a 3-dimensional Carte-
sian system:

~A = (Ax; Ay; Az)

Throughout this course we implicitly assume that this coordinate system is
right-handed, i.e. the order of the components matters.

z

x

y

z

y

x

Lefthanded coordinate system Righthanded coordinate system

We add and subtract vectors by adding and subtracting the components

~A + ~B = (Ax +Bx; Ay +By; Az +Bz)
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~A� ~B = (Ax � Bx; Ay � By; Az � Bz)

Scalars are quantities which are independent of the coordinate system used,
they can be speci�ed by a single number in appropriate units.
When a vector is multiplied by a scalar the e�ect is to multiply all com-
ponents by the same number

c ~A = (cAx; cAy; cAz)

Since they are di�erent types, we cannot add scalars and vectors. So far
the rules of vector algebra are much the same as ordinary algebra. The
plot thickens when we come to vector multiplication! There are two kind of
products:

DOT PRODUCTS

� The scalar or dot product of two vectors is de�ned by

~A � ~B = (AxBx + AyBy + AzBz) = ~B � ~A
The result of the multiplication is a
number i.e. a scalar.

� The magnitude or length of a vector is

A = j ~Aj =
q
~A � ~A =

q
A2
x + A2

y + A2
z

� The null vector has zero magnitude. The only way to achieve this to
put all the components to zero. I will not bother to put a vector sign
over the null vector

~0 = (0; 0; 0) = 0

� Unit vectors have length 1. I will use the notation

Â =
~A

j ~Aj
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Of special interest are the unit vectors in the three principal directions of a
Cartesian coordinate system. They are often written

êx = (1; 0; 0); êy = (0; 1; 0); êz = (0; 0; 1)

Another common notation is

î � êx; ĵ � êy; k̂ � êz

Clearly
î � î = ĵ � ĵ = k̂ � k̂ = 1

î � ĵ = î � k̂ = ĵ � k̂ = 0

CROSS PRODUCT
The vector or cross product can be de�ned in terms of determinants

~A� ~B = (AyBz � AzBy; AzBx � AxBz; AxBy � AyBx)

= î

����� Ay Az
By Bz

�����+ ĵ

����� Az Ax
Bz Bx

�����+ k̂

����� Ax Ay
Bx By

�����

=

�������
î ĵ k̂
Ax Ay Az
Bx By Bz

�������
Remembering that a determinant changes sign when two rows (or columns)
change place we �nd

~A� ~B = � ~B � ~A

Clearly
~A� ~A = 0

When evaluating cross products it is convenient to remember the cyclic re-
lations

î� ĵ = k̂; ĵ � k̂ = î; k̂ � î = ĵ

which are equivalent to the familiar right hand rule.

SCALAR TRIPLE PRODUCT
Since ~B � ~C is a vector

~A � ( ~B � ~C)
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is a scalar. From the determinantal expression for the cross product we �nd

~A � ( ~B � ~C) =

�������
Ax Ay Az
Bx By Bz

Cx Cy Cz

�������
We know that determinants changes sign when two rows or columns are
interchanged.With two interchanges the determinant stays the same. Hence

~A � ( ~B � ~C) = ( ~A� ~B) � ~C
There are also vector triple products.
It can be shown that

~A� ( ~B � ~C) = ~B( ~A � ~C)� ~C( ~A � ~B)
which is di�erent from

( ~A� ~B)� ~C = ~B( ~A � ~C)� ~A( ~B � ~C)

Often when solving problems it is useful to know how to apply symbol manip-
ulation packages to problems. The worksheet WORKINGWITH VECTORS
IN MAPLE at
http://www.physics.ubc.ca/ birger/n206l1a.mws (or .html) demonstrates how
to manipulate vectors using Maple.

SUMMARY
We have

� Worked out the basics of vector algebra in a Cartesian coordinate sys-
tem.

� Described

{ vector addition and subtraction

{ dot product

{ vector product

{ scalar and vector triple products
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Example problems

Problem 1.2.1
(Problem 1 of 1999 problem set 1)
Given the three vectors

~a = �î + ĵ+ k̂; ~b = î� ĵ + k̂; ~c = î+ ĵ� k̂

Find

a: The angle between ~a and ~b.

b: ~a � (~b� ~c)

c: ~a� (~b� ~c)
d: (~a�~b)� ~c

Problem 1.2.2
(Problem 3 of 2000 problem set 1)
An electrical wire extends diagonally in a straight line down the north wall
of a house. It makes a 30o angle with the vertical. After it reaches the corner
with the west wall it continues down along the west wall at a 30o angle with
the vertical. What is the angle between the two segments of the wire?

Problem 1.2.3
(Problem 4 of 2000 problem set 1)

The Lorentz force ~F on a charge q moving with velocity v in a magnetic �eld
is

~F = q(~v � ~B)

It is found that if (in appropriate units)

~v = î )
~F

q
= 2k̂� 4ĵ

~v = ĵ ) jF=qj = 5

What are the possible values of the magnetic induction ~B in these units.
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Problem 1.2.4
(Problem 1 of problem set 1 2002)
The Lorentz force on a charge q moving with velocity ~v in a magnetic �eld
with induction ~B is

~F = q~v � ~B

It is found, in appropriate units, that if ~v = vî the force is given by

~F

qv
= �3ĵ + 2k̂

if ~v = vĵ the force is given by

~F

qv
= 3̂i� k̂

and if ~v = vk̂ the force is given by

~F

qv
= �2̂i + ĵ

Find the induction ~B

Problem 1.2.5
(Problem 1 of problem set 1 2001)
Identify the following surfaces:

a: j~rj = 1

b: ~r � k̂ = 1

c: j~r � (~r � k̂)k̂j = 1

Here k̂ is a unit vector in the z-direction of a Cartesian coordinate system
and ~r is a vector to a point on the surface your are asked to describe.

Problem 1.2.6
(Problem 2 of problem set 1 2001)

Let ~A be an arbitrary vector and n̂ a unit vector in an arbitrary direction.
Show that

~A = ( ~A � n̂)n̂+ (n̂� ~A)� n̂
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Problem 1.2.7
(Problem 2 of problem set 1 2002)

Consider a triangle ABC, whose sides are the three vectors ~A; ~B; ~C. The
angles opposite to the three sides are, respectively �; �, and 
. Show that

sin�

A
=

sin�

B
=

sin 


C

2 Newtonian Mechanics.

2.1 Momentum, work and kinetic energy.

Newtonian mechanics is the foundation on which classical mechanics is
built. This course is mostly concerned with the Lagrangian and Hamilto-
nian reformulation of classical mechanics. We will �nd that the reformulated
theory is better suited to handle problems more diÆcult than the ones you
were exposed to in high school and �rst year physics. Nevertheless, to mo-
tivate and justify the more advanced treatment we need to go back to the
"roots".

NEWTON'S LAWS

1 Every body continues in the state of rest or with uniform motion in a
straight line, unless it is compelled by a force.

2 Acceleration is proportional to the applied force and takes place in the
direction of the force

~F = m~a

3 The mutual forces between two objects are equal and oppositely di-
rected. (For every action there is an equal and opposite reaction).

The �rst law de�nes an inertial reference frame. If there is an inertial
frame, then any frame that moves relative to it with constant velocity is also
an inertial frame.

Acceleration is the rate of change of the velocity.

~a =
d~v

dt
=
d2~x

dt2
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where ~a;~v, position ~x, as well as the force ~F are all vectors in space. In
Newtonian mechanics time is universal ) observers in di�erent reference
frames can agree on the time. Space and time are given and no attempt is
made to justify these concepts.

CONSERVATION OF MOMENTUM.

The proportionality constant m in ~F = m~a is the inertial mass. In Newto-
nian mechanics the inertial mass is independent of the velocity of a particle
and the product

m~v = ~p

is the linear momentum (or simply the momentum) of an object. The
second law can then be restated

~F =
d~p

dt

The third law can be interpreted to state that the rates of change of momen-
tum are equal and opposite for two bodies in
uencing each other, so that
the total momentum is unchanged. This is just the law of conservation of
momentum.

WORK is a form of energy given by:
Force � displacement � work.

Let us �rst consider motion in one dimension.

Suppose a body moves a distance dx in a time interval dt, starting out at xi
and ending up at xf under the in
uence of the force F . The initial velocity
is vi and the �nal vf . The work done on a particle is

W =
Z xf

xi
Fdx = m

Z xf

xi

dv

dt
dx

= m
Z xf

xi

dx

dt

dv

dx
dx = m

Z vf

vi
vdv

=
1

2
m(v2f � v2i )
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1
2
mv2=kinetic energy

Work done=change in kinetic energy.

The argument can be extended to more than one dimension
We express the trajectory ~r(t), velocity ~v(t) and Force ~F , on component
form:

~r = x̂i + yĵ+ zk̂

~v = vxî+ vy ĵ+ vzk̂

~F = Fxî+ Fy ĵ+ Fzk̂

where î; ĵ; k̂, respectively, are unit vectors in the x�; y� and z� directions.
The work done on a particle is now

W =
Z ~rf

~ri

~F � d~r

= m
Z xf

xi

dvx
dt
dx+m

Z yf

yi

dvy
dt
dy +m

Z zf

zi

dvz
dt
dz

=
m

2
(v2x + v2y + v2z)jfi =

mv2f
2

� mv2i
2

Work done on particle = change in kinetic energy!

CONSERVATIVE FORCES: ONE DIMENSIONAL CASE
Many forces in nature depend on position only (not explicitly on time or
velocity). In one dimension we can always express a position dependent
force as derivative of a potential energy V (x).

F (x) = �dV
dx

V (x) = �
Z x0

F (x0)dx0

Only potential energy di�erences matter for the dynamics, the absolute
value of the potential energy is not meaningful in classical mechanics. We
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indicated this by omitting the lower limit of integration above.

Often we choose the potential energy to be zero at some convenient reference
point. (usually at in�nity or the origin).

CONSERVATIVE FORCES: THREE DIMENSIONAL CASE

In higher dimension the concept of conservative forces is a bit more compli-
cated.

A position dependent force is conservative if its line integral between
two points is independent of the path.

ri

rf

1

2

possible paths closed path

We can then then de�ne the potential energy as

V (~rf)� V (~ri) = �
Z ~rf

~ri

~F � d~r

= �
Z xf

xi
Fxdx�

Z yf

yi
Fydx�

Z zf

zi
Fzdx

If the line integral along any closed path is zero, the line integral must be
independent of the path taken between the inititial and �nal states! So,
another way of de�ning a position dependent conservative force is that the
line integral I

~F � d~r = 0
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for all possible closed paths.

THE GRADIENT OPERATOR

If the path in�nitesimally short:

dV =
@V

@x
dx+

@V

@y
dy +

@V

@z
dz

= �Fxdx� Fydx� Fzdx

De�ne the operator r , or nabla by

r = î
@

@x
+ ĵ

@

@y
+ k̂

@

@z

We have
~F = �rV

When r operates on a scalar such as V it is called the gradient. The
gradient of �V is the vector ~F .

Not all position dependent forces ~F (~r) can be written as the gradient of a
potential. The line integral along any closed path must be zero! We will in
section 2.4 show how this can be veri�ed in general using Stokes' theorem.

EXAMPLE
The force

~F = yî� xĵ

is not conservative. To see this let us compute the line integral counterclock-
wise around a circle of radius r surrounding the origin

x = r cos�; y = r sin �;

dx = �r sin �d�; dy = r cos �d�I
~F � d~r = �r2

Z 2�

0
(sin2 � + cos2 �)d� = �2�r2 6= 0

EXAMPLE
The force

~F = yî+ xĵ
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is conservative. We can show this by noting that it is the negative gradient
of the potential

V (~r) = �xy

�rV = (̂i
@

@x
+ ĵ

@

@y
+ k̂

@

@z
)xy = îy + ĵx

q.e.d.

CONSERVATION OF ENERGY

Suppose ~F is a conservative force. Then

Z ~rf

~ri

~F � d~r = 1

2
mv2f �

1

2
mv2i = Vi � Vf

and we �nd
1

2
mv2f + Vf =

1

2
mv2i + Vi = Etot = const

which is the law of conservation of energy. You will recall from �rst year
that the law of conservation of energy often can be used to simplify problems.

In addition to the conservative case discussed above, energy is also conserved
if the force ~F is perpendicular to the direction of motion v̂ (as in the case of
the magnetic induction acting on a charge). In that case the force does no
work and does not a�ect the energy.

A SPECIAL CASE: SIMPLE HARMONIC MOTION
You will recall from �rst year physics that the potential energy of a harmonic
oscillator with displacement x can be written

V (x) =
1

2
kx2

where

k =
d2V (x)

dx2

�����
x=0

is the spring constant. In the more general case where the potential energy
has a minimum at some value x = a, the second derivative of the potential
about this point will be the spring constant for small oscillations about a.
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MICROSCOPIC AND MACROSCOPIC MODELS
In microscopic models energy is typically conserved.

In the everyday (macroscopic) world there are dissipative forces such as
drag and friction and energy is typically not conserved unless one wants to
get involved in a microscopic description of the motion of individual atoms.

SUMMARY
We began our discussion of mechanics:

� by introducing Newton's Laws

� �rst law postulates existence of inertial systems

� second law de�nes inertial mass as ratio between force and acceleration

� third law is equivalent to law of conservation of momentum

� we de�ned conservative forces and conservation of energy

� We also discussed

{ work

{ kinetic energy

{ potential energy

Example problems

Problem 2.1.1
(Problem 2 of 1999 problem set 2)

a: Find the potential energy V (x) as a function of displacement x for a
particle subject to the force

Fx = F0e
�cx
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b: Find the velocity v = _x as a function of displacement x for a particle
subject to the force in a: of mass M which starts out with v = 0 at
x = 0.

c: Plot the displacement and velocity as a function of time between t = 0
and t = 10 when M = F0 = c = 1. The expressions for v(t) and x(t)
should be evaluated numerically for the plot.

Problem 2.1.2
(Problem 3 of 1999 problem set 4)
A gun can �re a shell with speed v0 in any direction. Show that the gun can
reach any target between the ground and the surface

g2�2 = v40 � 2gv20z

where z is the vertical direction, � =
p
x2 + y2, g is the acceleration of gravity,

air resistance can be neglected, and the earth is 
at.

Problem 2.1.3
(Problem 3 of 2001 problem set 1)
A pebble is thrown from the top of a hill which slopes downwards uniformly
with angle � = 60o. At what angle � from the horizontal should the pebble
be thrown to have the greatest range?

Problem 2.1.4
(Problem 4 of 2001 problem set 1)
A car can accelerate uniformly at the rate 2m s�2, it can brake with a
maximum deceleration of 6m s�2. What is the minimum time to travel
500m, starting and ending the trip at rest?

Problem 2.1.5
(Problem 3 of 2002 problem set 2)
The potential energy of a molecule is

U(r) =
a

r12
� b

r6

where r is the separation between the atoms and a and b are constants.
a: Plot the potential as a function of x if in appropriate units a = b = 1

18



b: For what value of r is the potential a minimum?
c: How much energy does it take to separate the two atoms?
d: What is the "spring constant" associated with small amplitude oscillation?

Problem 2.1.6
(Problem 1 of 2000 midterm)
The potential energy of a particle moving in the x� y plane is

U(x; y) = k

2
(x2 � y2)

while the kinetic energy is

T =
1

2
( _x2 + _y2)

a: Write down the equations of motion.
b: The particle starts from rest from the point x0; y0. Find the subsequent
motion.
c: Describe the motion qualitatively assuming that x0 6= 0; y0 6= 0.

Problem 2.1.7
(Problem 1 of 1999 �nal)
Three particles A;B;C each have mass m and they move in the x; y plane
under the in
uence of forces between them. These forces satisfy Newton's
third law. To ascertain if there are any additional, external, forces acting
the coordinates of the particles are measured at times t = 0; t = 1; t = 2 (in
appropriate units) The results are

T ime A B C
0 (1; 1) (2; 2) (3; 3)
1 (1; 0) (0; 1) (3; 3)
2 (0; 1) (1; 2) (2; 0)

Is there a net external force acting on the system of particles?

2.2 Friction

LAST TIME

We began our discussion of mechanics:
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� by introducing Newton's Laws:

{ �rst law postulates existence of inertial systems

{ second law de�nes inertial mass as ratio between force and accel-
eration

{ third law is equivalent to law of conservation of momentum

� we de�ned conservative forces and conservation of energy

� we also discussed

{ work

{ kinetic energy

{ potential energy

TODAY
Consider dissipative systems ) energy not conserved.

We distinguish two types of dissipative forces:

Drag: force between moving body and surrounding 
uid (air,water...)

Friction: tangential motion-resisting force between solid bodies. We will
discuss friction �rst.

CAUSES OF FRICTION

� Adhesion. If two solids are pressed together, bonds are formed be-
tween surface atoms on opposite sides and they need to be broken as
surfaces slide past each other

� Asperities. For rough surfaces to slide past over each other, one sur-
face must be lifted over high spots of the other.

� Ploughing and plastic deformation. A hard material may scratch
softer material. Asperities may deform in ways which do not recover
after surfaces slide past each other.

20



� Electrostatic e�ects (in insulators).

These e�ects are too complex to compute theoretically (at least by me). Need
phenomenological description!

STATIC FRICTION

mg

N

f

θ

x

h

Two surfaces are pressed together with a normal force N . If the surfaces are
at rest, and we apply tangential force Fk, they will remain at rest if

Fk < �sN

i.e. Fk will be balanced by an opposing frictional force. �s = coeÆcient of
static friction. Consider a block resting on an incline plane as in the �gure.
If the angle of the plane exceeds thestatic angle of repose �s = tan�1 �s
the block will start sliding down the plane.

KINETIC FRICTION

If Fk > �sN sliding starts. The opposing frictional force is written

f = �kN
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�k is the coeÆcient of kinetic friction. If a block slides down a plane with
angle of inclination less than �k = tan�1 �k = kinetic angle of repose, the
friction cannot overcome the force of gravity and the block will decelerate.
If � > �k the block will accelerate.

Generally �k < �s. When
�k < � < �s

both the state of rest and accelerated motion along inclined plane are pos-
sible. Which motion is selected depends on initial conditions!

This is one reason why avalanches can be so treacherous. A peaceful looking
snow slope can suddenly be set in motion by a "weak" cause such the sound
of a plane 
ying by.

"LAWS" OF FRICTION

� �k and �s are, to a good approximation, independent of N , surface
area and surface roughness. However, the force of friction is sensitive
to surface contamination (e.g. lubrication).

� �k is typically weakly dependent on speed with a minimum at a nonzero
speed.

� We will see that we sometimes have an instability if

d�k
dv

< 0

The corresponding situation occur in some electronic circuits and is
then called negative resistance.

� �s typically increases slowly with time.

� Often a good approximation to assume that �k independent of speed.

� The study of the e�ects of friction on moving machine parts (and of
methods, such as lubrication, of obviating them) is called tribology.
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STICK AND SLIP

As an example consider a slider block of massm that lies on top of a conveyor
belt.

The block is attached to a �xed support by a friction-less spring with spring
constant k.

The extension of the spring is x and the speed of the conveyor belt is u.

The coeÆcients of static and kinetic friction are �s and �k, respectively. We
neglect the velocity dependence of �k.

THE PHASE PLANE

Suppose we start with the block at rest with respect to the belt at x = 0.
The block will �rst follow the belt until the spring force exceeds the static
friction at which point it will start slipping.
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The subsequent equation of motion is

m
d2x

dt2
+ kx = mg�k

It is instructive to transform this equation into two �rst order equations

dx

dt
= v

m
dv

dt
= �kx +mg�k

The trajectories of the blocks are then curves in the v � x plane. We call
this plane the phase plane.

We can eliminate time from the coupled �rst order equations. Multiply the
second equation by v. The left hand side becomes

mv
dv

dt
=
m

2

dv2

dt

Substituting v = dx=dt on the rhs:

(�kx +mg�k)
dx

dt
= �1

2

d

dt
k(x� mg�k

k
)2

Hence
d

dt
[
m

2
v2 +

k

2
(x� mg�k

k
)2] = 0

and the trajectories are the ellipses

m

2
v2 +

k

2
(x� mg�k

k
)2 = const

We rescale the ellipses into circles by

s =
v

�kg

s
k

m
; y =

k

mg�k
x

24



to obtain
s2 + (y � 1)2 = c2

LIMIT CYCLE:

The phase plane coordinates of the slip point P are

v0 = u; x0 =
mg�s
k

and become in the new units

s0 =
u

�kg

s
k

m
; y0 =

�s
�k

If the block starts out at rest with respect to the conveyor belt it will follow
the line s = s0 to the right until it reaches y = y0. It will then keep repeating
a path in which it follows the circle

(y � 1)2 + s2 = s20 + (y0 � 1)2

until it sticks to the belt at

s = s0; y = 1� (y0 � 1) = 2� y0

it will then follow the path along s = s0 until it again reaches y = y0.

The periodic trajectory is an attractor to trajectories which starts close to
it. Such an orbit is called a limit cycle.

EQUILIBRIUM POINT

We could also have started the system with

v = 0; x =
mg�k
k

The forces are then balanced and the block will remain at rest.
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We have assumed that
�k = const

in or model. If �k has a minimum as a function of velocity for some

vm > u

the equilibrium will become unstable.

The rosin which a violin player rubs on the bow has the property that the
kinetic friction decreases with increasing velocity up to high velocities. The
purpose of rubbing with rosin is to make the undesirable equilibrium point
unstable.

SMALL OSCILLATIONS

Next, start the block at rest with respect to the spring support with extension
x close to, but not at, the equilibrium value. The block will then exercise
simple harmonic motion around the equilibrium. If the spring has a small
damping the trajectories will slowly spiral in towards equilibrium (e.g. if we
don't rub rosin on the block and the belt!).

Some trajectories are shown below. A Maple worksheet producing the tra-
jectories is given at
http://www.physics.ubc.ca/ birger/n206l2.mws .

SUMMARY
We have

� discussed the laws of dry friction

� analyzed a slider block system

� de�ned the phase plane

� showed that it exhibited

{ a limit cycle
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Trajectories in phase plane
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{ an equilibrium point which could be stable or unstable

{ small oscillations about the equilibrium

FURTHER READING

� laws of friction see Rabinowicz[15]

� snow avalanches see McClung and Shaerer[13]

� slider block model for earth quakes

{ "classic" see Burridge and Knopo�[3]

{ text see Sholtz[18]

Example problems

Problem 2.2.1
(Problem 3 of problem set 2 2000)
A block is put on an inclined plane as shown in the �gure
The angle � of inclination is increased slowly from zero until the static angle
of repose is reached and the block starts to move (see �gure). The angle is
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then held constant. Find the subsequent motion assuming the coeÆcients of
dynamic and static friction are �k and �s respectively

Problem 2.2.2
(Problem 3 of 2002 problem set 1)
A particle slides down an inclined plane which forms an angle � = 30o with
the horizontal (see �gure). It starts out with a speed of 1 m s�1 and stops
after it has traveled 1 m along the plane. What is the kinetic angle of repose?

Problem 2.2.3
(Problem 2 of 2002 problem set 3)
An object is projected upwards along an inclined plane which makes 45o with
the vertical. The initial speed is 10 ms�1. The coeÆcient of kinetic friction
is 0.1. How far up the plane will it reach? What is the speed when it comes
back where it started? Assume the coeÆcient of static friction is too small
to hold the object.

2.3 Drag. Dimensional analysis

LAST TIME
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� discussed the laws of dry friction

� analyzed a slider block system

� de�ned the phase plane for this system

� showed that it exhibited

{ a limit cycle

{ an equilibrium point which could be stable or unstable

{ small oscillations about the equilibrium

TODAY discuss drag, i.e. the resistance to motion that is felt by a body
moving through a 
uid.

VISCOSITY
The concept of viscosity dates back to Newton who considered laminar 
uid

ow. In this type of 
ow a 
uid moves in parallel layers in such a way that
we have a velocity pro�le.

z

y

u y

A body moving in the y�direction relative to the 
uid sets up a velocity
gradient duy=dz. Newton assumed that

Fy
A

= ��duy
dz

A 
uid obeying the above law is calledNewtonian. The constant of propor-
tionality is the viscosity. The tangential force/area is de�ned as the shear
stress.
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UNITS OF VISCOSITY

� In SI-units the unit of viscosity is

N s m�2 = Pa s = kg m�1s�1

(N = Newton, Pa = Pascal)

� Another unit of viscosity is

1 centipoise = 10�3kg m�1s�1 = 10�2g cm�1s�1

� Some people prefer to use the kinematic viscosity � de�ned as

� =
�

�

where � is the mass density of the 
uid (kg m�3)

� The SI unit of kinematic viscosity is m2s�1.

� A non-SI unit of kinematic viscosity is the centistoke:

1 centistoke = 10�6m2 s�1 = 10�2cm2s�1

PROPERTIES OF VISCOSITY

� The important 
uids air,water and oil are all Newtonian to a very good
approximation.

� Viscosity of water � 1 centipoise. The viscosity of air at room tem-
perature is
� 2� 10�5Pa s = 2� 10�2centipoise.

� There are many Non-Newtonian 
uids.

If shear stress increase with duy=dz

� slower than linear ) 
uid is dilatant

� linear ) 
uid is Newtonian
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Bingham fluid

pseudoplastic

Newtonian

dilatant

S
he

ar
 s

tr
es
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Velocity gradient

δ

y

WallPaint

(a) (b)

τo

� faster than linear ) 
uid is pseudoplastic.

� If there is a stress-threshold for 
ow ) we have what is known as a
Bingham 
uid.

Comments:

� Examples of Bingham 
uids: Paints, pastes, jellies. Stress threshold
prevents paint from running if spread thinly. It can still be spread by
applying brush.

� Example of pseudoplastic: blood. Decreased resistance to 
ow at
higher speeds allows it to 
ow in narrow arteries.

� example of dilatant: corn starch dissolved in water. Solution 
ows
easily, but 
uid behaves as solid under strong impact.

STOKES FLOW

We return to the problem of estimating the drag force on falling object in
Newtonian 
uid.
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� Expect drag force to increase with viscosity � of 
uid.

� Expect drag to increase with size of object. Parameterize size by di-
ameter d.

� Expect drag force to depend on speed u of object

� At very low speeds 
ow surrounding object laminar.

� Laminar the 
ow is steady 
ow. We therefore don't expect the inertia
of 
uid to matter.

� If acceleration plays no role drag should not depend on the mass density
� of the 
uid. The only 
uid property that matters is the vscosity.

DIMENSIONAL ANALYSIS
When the 
ow is laminar expect the drag-force to obey a law of the form

F = constant d�u��
 (1)

Dimensional analysis has nothing to tell us about the multiplying constant.
However, as we shall see, it allows us to determine the constants �; � and

, while the constant will depend on the shape of the object!

Let [ ] denote "dimension of". We have

[F ] = kg m s�2; [d] = m;

[u] = m s�1; [�] = kg m�1s�1

Dimensional consistency of (1) requires

mass ! 1 = 

length ! 1 = � + � � 

time ! �2 = �� � 


Hence � = � = 
 = 1. We get Stokes law (For spherical objects const: =
3�)

F = const:�du
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TYPES OF FLOW
If the speed of the object passing through the 
uid is increased the nature of
the 
ow undergoes a number of qualitative changes.

An excellent elementary discussion of what happens next is given in the
Feynman lectures[5] (Volume II sect 41).

� Even for very low speeds vortices start to form around moving objects.

� As the speed increases the vortices shed into a "von K�arm�an vortex
street".

� At still higher speed we get intense vorticity in thin boundary layers.

On what do the critical speeds uc for transitions to di�erent regimes depend?

REYNOLDS NUMBER
Turbulent 
ow is unsteady and inertia now plays a role. Viscosity and size
of object will still be important. Try

uc = const:����d


[uc] = m s�1; [�] = kg m�1s�1,
[ � = density] = kg m�3; [d] = m
Dimensional consistency now requires

mass ! 0 = � + �
length ! 1 = �� � 3� + 

time ! �1 = ��

Giving � = 1; � = �1; 
 = �1 or

uc = const
�

�d

We de�ne the Reynolds number as

Re =
u�d

�
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DRAG COEFFICIENT
We now assume a drag force law

F = d u�f(Re)

where f is a function of the geometry of the object. In the case of a sphere
at very low Reynolds number , the drag force is given by f(Re) = 3�. We
could equally well have used drag law

F = �u2d2CD(Re)

By comparing we �nd that

f(Re) = Re CD(Re)

CD is the customary de�nition of the drag coeÆcient

PHYSICAL SIMILARITY

An important consequence of the above argument is the idea that 
ows with
the same Reynolds numbers are similar. This allows us to estimate impor-
tant properties in complicated situation by using scale models.

EXAMPLE
Suppose we need to be able to estimate the t

�
erminal velocity of an object

which is to be dropped from high altitude. When the terminal velocity um
is reached the drag force Fo on the object is equal and opposite to the force
of gravity:

Fo = mg

We have at our disposal an 1:10 scale model (do = 10dm) of the object and
a wind tunnel in which we can measure the force Fm on the model for an
adjustable 
ow speed um.

For physical similarity the Reynolds numbers in the two situations must be
the same

uo�odo
�o

=
um�mdm
�m
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If the density � and the viscosity � is the same in the two cases

umdm = uodo

The drag force
F = �u2d2CD(Re)

will then be the same in the two cases.

The terminal velocity is one tenth of the air speed in the wind
tunnel, when the drag force is mg.

Suppose next one wishes to make the experiment in a water tank instead of
a wind tunnel. We have

�m = 10�3Pa s; �o = 2 10�5Pa s

�m = 103 kg m�3; �o = 1:29 kg m�3

Physical similarity then requires that

umdm
1000

10�3
= uodo

1:29

2 10�5

or um = 0:64uo for a 10:1 scale model. The ratio between the drag forces is
then:

Fm
Fo

=
1000

1:29
0:642

1

102
= 3:2

If the 
ow speed in the tank is adjusted so that the force is 3:2 mg
the speed will be 0.64 times the terminal speed of the object in air!

Alternatively, we could increase pressure of wind tunnel. The viscosity of
a gas is approximately independent of pressure. The density is proportional
to pressure. Increase the pressure by a factor of 10, the velocity should be
kept unchanged for Reynolds number to stay the same. The drag force on
the model would be 1/10th of the real force!

BEHAVIOR OF DRAG COEFFICIENT

� For most object shapes the drag force is approximately / u for Re �
1. The drag coeÆcient is then inversely proportional to the Reynolds
number.
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� In the approximate range 10 < Re < 103 the drag coeÆcient CD(Re)
is approximately proportional to the inverse square root of Re.

� For Reynolds numbers up to about 105 CD(Re) stays about constant.

� If the Reynolds number is increased further there is a sudden drop in
the drag coeÆcient and the behavior then depends, not only on the
Reynolds number, but on the roughness of the sphere's surface (hence
the dimples on the golf-ball).

� If the velocity of 
ow approaches that of sound, the above analysis
breaks down.

SUMMARY

� We de�ned the viscosity of a 
uid andNewtonian and non-Newtonian

uids.

� Dimensional analysis was used to analyze drag.

� We de�ned the Reynolds number and the drag coeÆcient.

� We introduced concepts of physical similarity and scaling.

� We reviewed the empirical behavior of the drag coeÆcient.

We have seen that the equations of motion in mechanics problems involve
one or more di�erential equations. If you don't know how to solve these
equations, or if the solution is complicated, you can often save yourself a lot
of work by using a software package such as Maple. You will �nd some hints
on this in the Maple worksheet located at
http://www.physics.ubc.ca/ birger/n206l4.mws (or .html)

Example problems

Problem 2.3.1
(Problem 3 of 1999 problem set 3)
An object with mass m characteristic size d is falling in air � = 1:29 kg m�1,

g = 10m s�2. The drag coeÆcient is CD =
q
1000=Re for Re < 1000,
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CD = 1 for Re > 1000. (Re is the Reynolds number). The viscosity of air is
� = 2 10�5Pa s. What is the terminal velocity if

a: m = 1 kg; d = 0:1m.

b: m = 10�3kg; d = 10�2m.

c: m = 10�6kg; d = 10�3m.

Compare with the speed the object would have reached in free fall from a
height of 100 m and zero drag.

Problem 2.3.2
(Problem 2 of 2000 problem set 2)
A 1kg object is dropped from height 1000m with zero initial velocity. Assume
the drag coeÆcient CD de�ned in Lecture2.3 is constant = 1. What is the
speed when it hits the ground, and how long does it take to get there?
Assume the density of air is 1:29 kg m�3, the diameter of the falling object
is 0:07 m.

Problem 2.3.3
(Problem 1 of 2001 problem set 2)
Assume that the drag coeÆcient of a spherical object moving through a 
uid
such as air or water can be �tted to

CD =
�

Re
+ �

� = 7:75 and � = 0:17. The drag force is related to the drag coeÆcient by

F = �u2d2CD

�(� 1:29 kg m�3 for air at STP) mass density of 
uid

d = diameter of object

u = speed of object relative to the 
uid

Re is the Reynolds number

Re =
u�d

�
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�(� 2� 10�5 Pa s for air at STP) viscosity of 
uid

Find the terminal velocity of a falling

a: Soap bubble of diameter d = 0:01 m and mass 10�7kg

b: Rain drop of diameter 10�4m and mass 0:5� 10�9kg

c: Basket ball of diameter 0:25 m and mass 0:6 kg.

Problem 2.3.4
(Problem 2 of 2001 problem set 2)

a: In the three cases of the previous problem, how long will it take for the
objects listed above to reach 50% of the terminal velocity starting from
rest.

b: How far have the objects fallen when 50% of the terminal velocity is
reached? (This may be a good place to practice the numerical methods
discussed in class using Maple, if you don't have the time to do this,
you can get a rough estimate by assuming that, when the objects start
falling the drag coeÆcient is small, and the distance traveled is of the
order gt2=2.)

Problem 2.3.5
(Problem 3 of 2001 problem set 2)
A particle of massM and initial speed v is moving horizontally. How far will
the body travel before it comes to rest if the only net force on the particle is

a: a force of friction
F =Mg�k

b: a drag force proportional to the speed of the particle.

c: a drag force proportional to the square of the speed?

Problem 2.3.6
(Problem 4 of 2002 problem set 2)
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A particle of mass m is moving horizontally with initial velocity v0. It is
subject to a drag force

F = �v + �v2

How far will it travel before it comes to rest?

Problem 2.3.7
(Problem 1 of 2002 problem set 2)
A badminton bird falls vertically from rest. Let y(t) be the distance it has
traveled. Experimentally it was found that y(t) can be �tted to the formula

y(t) =
v2T
g
ln(cosh(

gt

vT
))

where
g = 9:81m s�2; vT = 6:8m s�1

Plot the drag force on the bird for velocities < vT

Problem 2.3.8
(Problem 1 of 2001 midterm)
a:
Two particles move along the same path under the in
uence of a conservative
force. The potential energy along the path is the same for both particles,
but one of them has twice the mass of the other. What is the ratio of the
times taken to traverse the path?
b:
Two particles follow the same path under the in
uence of a conservative
force. They have the same mass but the potential energy of the �rst is twice
that of the other. What is the ratio of the times taken to traverse the path?

2.4 Divergence and curl. Stokes theorem.

LAST Lectures

� Discussed friction.

� De�ned viscosity and Newtonian and non-Newtonian 
uids.
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� Dimensional analysis was used to analyze drag.

� De�ned the Reynolds number. .

� Reviewed the behavior of the drag coeÆcient.

TODAY I start to discuss problems in 2 and 3 dimensions. In one dimension
forces that only depend on position (not on velocity) are always conserva-
tive. In Lecture 2.1 I argued that in higher dimension force is conservative
if its line integral between two points

�
Z ~rf

~ri
F � d~r

is independent of the path.

POSITION DEPENDENT FORCE FIELDS

Today I will restrict my attention to forces that depend on position alone
(i.e. not on the speed of the particle). In this case we assign a force vector
~F to every point ~r in space. We call ~F (~r) a vector �eld.

In lecture2.1 we introduced the vector operator r , or nabla (or del) by

r = î
@

@x
+ ĵ

@

@y
+ k̂

@

@z

When r operates on a scalar we call it the gradient.

We also showed in lecture 2.1 that if the line integral over the force was
independent of the path we could construct a potential V (~r) so that

rV = �~F

The three �gures below illustrate three di�erent force �elds. The �rst is the
�eld associated with the force

Fx = y; Fy = x
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and is clearly not conservative. The two others are the �elds associated with
the potentials

V = �x2 � y2; V = �x2 + y2

respectively and are conservative. The �gures were produced from the Maple
worksheet
http://www.physics.ubc.ca/~birger/n206l5a.mws
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x

Figure 1: A nonconservative force �eld.

THE DIVERGENCE AND THE CURL
Just as in ordinary vector multiplication there are two ways of applying the
operator r to a vector �eld:

The divergence is de�ned as the scalar
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Figure 2: A conservative force �eld.

r � ~F � @Fx
@x

+
@Fy
@y

+
@Fz
@z

We will not have much to say about the divergence for the time being.

The curl (sometimes called rot) is de�ned as the vector product
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Figure 3: Another conservative force �eld.

r� ~F �
�������
î ĵ k̂
@
@x

@
@y

@
@z

Fx Fy Fz

�������
= î(

@Fz
@y

� @Fy
@z

) + ĵ(
@Fx
@z

� @Fz
@x

) + k̂(
@Fy
@x

� @Fx
@y

)

We now argue that a necessary and suÆcient condition for a force �eld to be
conservative is that

r� ~F (~r) = 0

everywhere in the region of interest. You will get a more detailed discussion
in MATH 217 (or 317).
First note that the curl of a gradient is identically zero!.

r�rV = 0
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To see this substitute

Fx = �@V
@x

; Fy = �@V
@y

;Fz = �@V
@z

;

into

r�rV = î(
@Fz
@y

� @Fy
@z

) + ĵ(
@Fx
@z

� @Fz
@x

) + k̂(
@Fy
@x

� @Fx
@y

)

Since
@2V

@x@y
=

@2V

@y@x

we see that each second derivative occurs twice with opposite sign.
Hence the terms add up to zero!

I will next attempt to give a physical interpretation of the curl of a vector
�eld in terms of the line integral along a closed path around a surface element.

Consider a closed line integral around a little square with sides dx and dy in
the x� y � plane. I

infinitesimal

~F � d~r

=
Z x+dx

x
Fx(x

0; y)dx0 +
Z y+dy

y
Fy(x + dx; y0)dy0

�
Z x+dx

x
Fx(x

0; y + dy)dx0 �
Z y+dy

y
Fy(x; y

0)dy0

= (
@Fy
@x

� @Fx
@y

)dxdy

In the last step I have used

Fy(x+ dx; y0) = Fy(x; y
0) + dx

@Fy
@x

Fx(x
0; y + dy) = Fx(x

0; y) + dy
@Fx
@y

Next we note that

= (
@Fy
@x

� @Fx
@y

) = (r� ~F )z
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and introduce the vector surface element

d~a = n̂dxdy

where n̂ is the unit normal to the surface area element (k̂ here). We �nd

I
infinitesimal

~F � d~r = r� F � d~a

y

x

x,y

dy

dx

y

x

If we now consider the line integrals around a large loop as the sum over line
integrals over many little loops we get Stokes theorem

I
~F � d~r =

Z
A
r� ~F � d~a

The closed loop integral over any vector function ~F is the area
integral over the projection of r� ~F on the normal to the enclosed
surface A! If the curl=0 everywhere the force �eld is conservative!

We illustrate Stokes' law and how to evaluate the curl in the Maple work
sheet available at
http://www.physics.ubc.ca/~birger/n206l5b.mws
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If you check out this work sheet you will learn that Stokes law must be
applied with some caution. You may easily verify that the force �eld

Fx = y=(x2 + y2); Fy = �x=(x2 + y2); Fz = 0

has r� ~F = 0, but the line integral of the force around the origin is clearly
nonzero (see �gure below). The problem arises from the singularity at the
origin where the curl is unde�ned. Vector �elds of this type are important in
understanding vortices in 
uid 
ow, and they play an important rôle in the
theories of super
uidity and superconductivity.
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Figure 4: The curl of this �eld is zero everywhere, (except at the origin), but
it is still non-conservative!

SUMMARY
We have

� discussed force �elds in two and three dimensions.

� de�ned the divergence and curl
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� demonstrated Stokes theorem

� showed that a conservative potential has no curl

� showed that if the curl of a �eld vanishes identically in a region the
force �eld is conservative.

� showed by an example that singularities in the force �eld can be treach-
erous.

� showed how force �elds and vector calculus are handled by Maple.

Example problems

Problem 2.4.1
(Problem 4 of 1999 problem set 4)

a: For what value of the constant c is the force �eld

~F = xyî+ cx2ĵ+ z3k̂

conservative?

b: Is the force �eld
~F = yî+ xĵ + z3k̂

conservative?

Problem 2.4.2
(Problem 4 of 2000 problem set 2)

a: Is the force �eld
~F = axyzî + cyx2ĵ+ z3k̂

conservative for any values of the constants a and c?

b: Is the force �eld
~F = zyî+ xzĵ + xyk̂

conservative?
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3 Lagrangian mechanics.

3.1 Generalized coordinates and forces

LAST TIME

� Discussed force �elds in two and three dimensions and de�ned the di-
vergence and curl.

� Demonstrated Stokes theorem.

� Showed that r� ~F = 0 for conservative force �eld.

� Showed that if the curl of a �eld vanishes identically in a region where
the force �eld is conservative.

� Found that singularities in the force �eld can be treacherous.

� Showed how force �elds and vector calculus is handled by Maple.

TODAY
Start moving away from Newtonian mechanics and introduce an alternative
Lagrangian approach. The motivation for this is:

� When solving complicated problems it is often easier to work with
scalar quantities such as the kinetic and potential energies than it is
to work with vector quantities such as forces and torques.

� Mechanics problems commonly involve constraints, most commonly
due to rigidity of bodies in contact. These constraints are maintained
by normal forces and other reaction forces. Often these forces are not
of any particular interest to us and life would be easier if we could avoid
making explicit references to them altogether.

EXAMPLE: Consider the following problem:
A block slides without friction down a wedge which in turn is free to move
without friction horizontally as shown in �gure. Let X; Y andx; y be the
coordinates of representative points on the wedge and block respectively.
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Let s represent distance down the inclined plane of the wedge relative some
position at height h. The constraint conditions are then

x = X + s cos�

y = h� s sin� (2)

Y = 0

where � is the angle of the wedge. The constraints are maintained by normal
forces ~N;~n (see free body diagrams above). The equations of motion are
then

M �X = �n sin�
M �Y = �Mg +N � n cos�

m�x = n sin� (3)

m�y = �mg + n cos�

The sets of equations (2) and (3) constitute seven equations altogether. We
can use �ve of them to eliminate the constraint forces N and n and the
coordinates Y; x; y. We are left with two equations of motion for X and d
respectively. We �nd after some algebra

(M +m) �X +m�s cos� = 0

m�s+M �X cos� = mg sin�

The variables s andX, which remain after we have eliminated the constraints
are examples of generalized coordinates. We refer to the number of gen-
eralized coordinates as the number of degrees of freedom (two in the
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present problem1. We can choose generalized coordinates in many di�erent
ways, but their number is an intrinsic property of the problem and always
the same.

EXAMPLE
Consider the dumbbell depicted to the left below. Assume that the distance
r is �xed. We have one equation of constraint

r2 = (x1 � x2)
2 + (y1 � y2)

2 + (z1 � z2)
2

There are thus 5 degrees of freedom. A possible choice of generalized coor-
dinates would be the coordinates x; y; z of the center of mass and the polar
coordinate � and � of the vector connecting the two masses.

The distances between the vertices of a triangle is �xed. There are thus 3
equations of constraints and 9 coordinates. This leaves us with 6 degrees
of freedom. A possible choice of generalized coordinates would be x; y; z
coordinates of the center of mass, polar coordinates �; � of the normal n̂ to
the plane of the triangle, and the angle  of rotation of the triangle with
respect to n̂.

SOME DEFINITIONS
Suppose we have a mechanics problems described byM coordinates x1; x2:::xM
in an inertial frame of reference. Let there be M � N equations of con-
straints so that the systems can be described by N generalized coordinates
q1; q2 � � � qN . If the relationship between the generalized and the old coordi-
nates can be written

x1 = x1(q1; q2 � � � qN ; t)
x2 = x2(q1; q2 � � � qN ; t)

� � �
� � �

xM = xM(q1; q2 � � � qN ; t)
(4)

1Beware! In courses of thermodynamics such as PHYS 203, 313 degrees of freedom
are counted di�erently. Sometimes two thermodynamic degrees of freedom make up one
mechanical degree)
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we say that the constraints are holonomic. For the constraints to be holo-
nomic the functions x1(� � � qi � � �); xm(� � � qi � � �) must not depend explicitly on
the generalized velocities

_qi =
dqi
dt

The constraint of rolling without slipping is that the velocity is zero at
the point of contact, between a rolling object and the plane on which it rolls.
Such constraints are in general non-holonomic.

For the constraints to be holonomic they must be given by equations not
inequalities. The condition that a system of particles are con�ned within a
box of a certain volume is a non-holonomic constraint.

Note that the conditions relating the coordinates in the inertial frame to the
generalized coordinates may depend explicitly on time (e.g the generalized
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coordinates may be coordinates in a frame of reference which is moving non
uniformly). The constraints are still holonomic. If there is no explicit time
dependence the constraints are scleronomic otherwise they are rheonomic.

We have if all constraints are holonomic

_xi(q1 � � � qN ; _q1 � � � _qN ; t) =
X
k

@xi(q1 � � � qN ; t)
@qk

_qk +
@xi(q1 � � � qn; t)

@t

or
@ _xi
@ _qk

=
@xi(q1 � � � qN)

@qk

This relationship will prove useful in what follows (it is referred to as dot
cancelation in Hand and Finch[9]. Note that dot cancelation will in general
be violated if constraints are velocity dependent!

The projections of the forces on the generalized coordinates are called gen-
eralized forces. Let Fi be the component of the system force acting on the
ith coordinate. The kth generalized force is then

Fk =
X
i

Fi
@xi
@qk

If the forces are conservative they can be derived from a potential

V (x1; x2 � � �xM) = V(q1; q2 � � � qN)

Fi = �@V
@xi

we �nd for the generalized force

Fk = �X
i

@V

@xi

@xi
@qk

= � @V
@qk

we will modify the de�nition of generalized force slightly in lecture 3.5

SUMMARY We have introduced some new concepts which will be very im-
portant in what follows. In particular we have de�ned:

� generalized coordinates, velocities and forces.
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� holonomic, scleronomic and rheonomic constraints.

� degrees of freedom.

Next time we will use these concepts and de�ne the Lagrangian and derive
the Lagrangian equations of motion.

Example problems

Problem 3.1.1
(Problem 1 of 2000 problem set 2)
Consider a chain of particles connected in such a way the distance between
the successive particles in the chain is kept constant but the angle of between
bonds is random (freely jointed chain, a very idealized model of a polymer).
How many degrees of freedom are there if the chain has N particles and the
ends are free. Find a set of generalized coordinates to describe the situation

(a) For a chain in three dimensions.

(b) For a chain constrained to lie in a plane.

3.2 Lagrangian equations of motion

LAST TIME

� Introduced generalized coordinates, velocities and forces.

� De�ned holonomic, scleronomic and rheonomic constraints.

� Showed how to determine number of degrees of freedom.

TODAY
we will use these concepts and de�ne the Lagrangian and derive the La-
grangian equations of motion.

Let us assume that we are dealing with a system which can be described by
the Cartesian coordinates

x1; x2 � � �xM
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in an inertial reference frame. The kinetic energy is

T =
1

2

MX
i=1

mi _x
2
i

The equations of motion are given by Newton's second law

_pi = mi�xi = Fi

where pi is the ith component of the momentum, and Fi is the component of
the force acting in the direction of xi. These forces may include holonomic
forces of constraint. Let us assume that when these have been eliminated
we have N degrees of freedom described by generalized coordinates

x1 = x1(q1; q2 � � � qN ; t)
x2 = x2(q1; q2 � � � qN ; t)

� � �
� � �

xM = xM(q1; q2 � � � qN ; t)
We now imagine that these equations have been substituted into the expres-
sion for the kinetic energy

T (� � � _xi � � �) = T (� � � qk � � � ; � � � _qk; t)
We have

@T
@qk

=
MX
i=1

mi _xi
@ _xi
@qk

=
MX
i=1

pi
@ _xi
@qk

Next

_xi(� � � qk � � � ; � � � _qk � � � ; t) � dx(� � � qk � � � ; t)
dt

=
NX
k=1

@xi
@qk

_qk +
@xi
@t

and we �nd
@ _xi
@ _qk

=
@xi(q1 � � � qN ; t)

@qk

and
d

dt

@xi
@qk

=
NX
j=1

@2xi
@qj@qk

_qj +
@2xi
@qk@t

=
@ _xi
@qk

54



We use these result to write

@T
@qk

=
MX
i=1

pi
d

dt

@xi
@qk

(5)

and
@T
@ _qk

=
MX
i=1

mi _xi
@ _xi
@ _qk

=
MX
i=1

pi
@xi
@qk

(6)

Next take the time derivative of (6)

d

dt

 
@T
@ _qk

!
=

MX
i=1

 
_pi
@xi
@qk

+ pi
d

dt

@xi
@qk

!
(7)

For the �rst term inside the sum on the right hand side of(7) we use the
de�nition of generalized force from lecture 3.1

Fk =
MX
i=1

Fi
@xi
@qk

while for the second term we use (9) to �nd

d

dt

 
@T
@ _qk

!
� @T
@qk

= Fk

We know assume that the generalized force can be split up into two contri-
butions

Fk = �@V(� � � qk; � � �)
@qk

+Qk

The �rst contribution is a conservative force derived from a velocity
independent potential. The second term represents "left-overs" such as
e.g. friction or drag forces.

We also de�ne the Lagrangian

L = T � V
Since we have assumed that the potential and the constraints are velocity
independent

@V
@ _qk

= 0
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we �nd Lagrangian equation of motion

d

dt

 
@L
@ _qk

!
� @L
@qk

= Qk

k = 1; 2 � � �N

Note that there is one equation for each degree of freedom. In the special
case that all forces are conservative and derived from a velocity independent
potential

d

dt

 
@L
@ _qk

!
� @L
@qk

= 0

You might think that we have only taken something relatively simple (New-
ton's equations) and made it into something complicated (Lagrange's equa-
tions). Actually, this is not the case: we will �nd that in most cases the La-
grangian approach is the easiest to work with, when solving problems of even
moderate diÆculty. Furthermore, we will �nd that the more complicated the
problem the greater the advantage of using the Lagrangian approach.

EXAMPLE
As our �rst example consider the slider block problem of the lecture 3.1. The
kinetic energy is in terms of the generalized coordinates s and X is

T =
M _X2

2
+
m

2
[( _X + _s cos�)2 + _s2 sin2 �]

The potential energy is
V = mg(h� s sin�)

We have
@L
@ _s

= m cos� _X +m _s

@L
@ _X

= (m+M) _X +m cos� _s
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@L
@X

= 0

@L
@s

= mg sin�

The equations of motion are thus

(m+M) �X +m cos� �s = 0

m cos� �X +m�s�mg sin� = 0

These equations of motion are the same as we found last time using Newto-
nian mechanics. The main di�erence is that there is no need to bother about
the free body diagram or the normal forces N and n.

EXAMPLE
The pendulum

r

mg

θ

-mg sin θ eθ

Instead of using the Cartesian coordinates of the mass it is convenient de-
scribe the motion by the angle �. The length of the pendulum, r, is assumed
to be constant (i.e. is a holonomic constraint).

The kinetic and potential energies are

T =
mr2 _�2

2
;V(�) = �mgr cos �
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With L = T � V the equation of motion becomes

@L
@�

� d

dt
(
@L
@ _�

) = �mgr sin � �mr2
d _�

dt
= 0

giving the equation of motion:

�� +
g

r
sin � = 0

We will discuss the properties of the solutions to the equation of motion in
lectures3.7 and 3.8

SUMMARY
We have de�ned the Lagrangian

L = T � V

and derived the Lagrangian equations of motion

d

dt

@L
@ _qk

� @L
@qk

= Qk; k = 1 � � �N

where Qk are generalized nonconservative forces. If all forces are conservative
Qk = 0.

Example problems

Problem 3.2.1
(Problem 1 of 2000 problem set 3)
A bead of massm slides without friction along the hyperbola xy = c = const:
Gravity acts in the negative y direction. Use the constraint to eliminate the
coordinate x from the kinetic energy, and write down the Lagrangian, and
the equation of motion for the coordinate y.

Problem 3.2.2
(Problem 2 of 2000 problem set 3)
Find the equations of motion for an "elastic pendulum": a particle of mass
m is attached to an elastic string of sti�ness K and un-stretched length l0.
Assume the mass moves in a �xed vertical plane.
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Problem 3.2.3
(Problem 3 of 2000 problem set 3)
The point of support of a simple pendulum is being elevated at constant
acceleration a so that the height of the support is at2=2 the vertical velocity
at. The acceleration of gravity is g. Find the di�erential equation of motion
for the motion of the pendulum in the accelerating frame.

Problem 3.2.4
(Problem 4 of 2000 problem set 3)
In class we found the equations of motion for a block of mass m that is free
to slide down a frictionless wedge of mass M the angle of the wedge is �.
The wedge in turn is free to slide on a smooth horizontal surface. Solve the
equations of motion assuming the block and wedge starts rest and the time
is too short for the block to reach the bottom of the wedge.

Problem 3.2.5
(Problem 1 of 2001 problem set 4)
a: A weightless spring of sti�ness k is connected to a mass m. The system
is moving horizontally. The kinetic energy of the system is

T =
m

2
_x2

while the potential energy is

V =
k

2
x2

Show that the Lagrangian equation of motion is

m�x + kx = 0

The period of oscillation of this system is

� = 2�

r
m

k

b: Assume that the mass M of the spring is signi�cant and is distributed
uniformly along the spring. Also assume that the velocity of any part of the
spring is proportional to its distance from the point of suspension. Find the
period of oscillation of the mass spring system.
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Problem 3.2.6
(Problem 2 of 2001 problem set 4)
The mass spring system of problem 3.2.5 is suspended vertically so that
gravity plays a role. Also the un stretched length of the spring is not zero
but L giving for the potential energy of the mass m

V = �mgx + k(x� L)2

2

a:
What is now the period of oscillation, assuming the spring is mass-less?
b:
The spring is not mass-less but distributed uniformly along its length as in
problem 1b. Find the period of oscillation.

Problem 3.2.7
(Problem 3 of 2001 problem set 4)
Two blocks of equal mass m are connected by a 
exible rope of length L. One
block is placed on a smooth horizontal table, the other hangs over the edge.
Find the Lagrangian equation of motion with the height h of the hanging
mass as a generalized coordinate, if

a: The mass of the rope can be neglected.

b: The mass M of the rope is uniformly distributed along its length.

Problem 3.2.8
(Problem 2 of 2002 problem set 3)

A block is put on a frictionless inclined plane as shown in the �gure. The
plane is moving up and down vertically with amplitude

z = a sin!t

a: Find the equation of motion using x as a generalized coordinate.
b: Under what conditions on a and ! will the block start to rattle, because
the normal force is inadequate to keep the block down on the plane.
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Problem 3.2.9
(Question 3 of 2002 problem set 3)
Write down the Lagrangian for a double pendulum restricted to move under
gravity in a vertical plane. A mass m1 is connected by a light rod of length
l1 to a �xed support and a mass m2 is connected to m1 with a rod of length
l2. Use as generalized coordinates the angle �1 and �2 of the rods with the
vertical. Find the generalized momenta associated with these coordinates.

Problem 3.2.10
(Question 2 of 2002 midterm)
Two particles, each of mass m are connected by a massless spring with spring
constant k and un-stretched length l0. The masses are constrained to move
along the x�axis of the system.
a: Select a set of generalized coordinates and write down the equations of
motion for the system.
b: Solve the equations of motion assuming that initially the particle are
separated by the distance l0. The particle to the left is initially at rest, while
the other particle has initial velocity v0 to the right.

Problem 3.2.11
(Question 3 of 2002 midterm)
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A pendulum of mass m is constrained to move in a vertical plane and has a
�xed support. The length r of the pendulum is varied sinusoidally

r = r0 + a sin(!t)

a: Find the equation of motion using the angle � with the vertical as gener-
alized coordinate.
b: Simplify the equation of motion in the small angle approximation cos � �
1, sin � � �.

Problem 3.2.12
(Question 2 of 2001 midterm)
The potential energy of a particle moving in the x� y plane is

U(x; y) = k

2
(x2 � 2y)

with k > 0, i.e. the potential energy is quadratic in x and linear in y. There
is no friction. The kinetic energy is

T =
m

2
( _x2 + _y2)

a: Write down the equations of motion.
b: The particle starts with initial velocity _x(0) = v0; _y(0) = 0 from the point
x0 = 0; y0 = 0. Find the subsequent motion and describe the motion quali-
tatively.

Problem 3.2.13
(Question 3 of 2000 midterm)
A bead of mass m can slide without friction along a horizontal circular hoop
of radius r

(x� x0)
2 + y2 = r2

The x� component of the center of the hoop undergoes forced harmonic
motion

x0 = a sin!t

Write down the equation of motion for the bead using the angle � as gener-
alized coordinate.

x� x0 = r cos �; y = r sin �
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Problem 3.2.14
(Question 1 of 1999 midterm)
A bead of mass m slides without friction along a helix, which in cylindrical
coordinates (r; �; z) can be described as

� = !z; r = a

where ! and a are constants (2�=! is the pitch of the helix). Gravity acts in
the negative z direction. The bead starts with zero velocity at height z=0.
Find z(t) for the subsequent motion.

MX

mx

y
θ r

Problem 3.2.15
(Question 2 of 1999 midterm)
The point of support of a simple (rigid) pendulum (length r massm) is forced
to move in the horizontal direction according to

x = a sin(!t)

where ! is constant and t is time. Find how the movement of the support
will modify the di�erential equation of motion for the angle �.

3.3 Calculus of variations.

LAST TIME
We de�ned the Lagrangian

L = T � V
and derived the Lagrangian equations of motion

d

dt

@L
@ _qk

� @L
@qk

= Qk; k = 1 � � �N
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where Qk are generalized nonconservative forces. If all forces are conservative
Qk = 0.

TODAY
We will derive the Euler-Lagrange equations of calculus of variations.

The generic problem of variational calculus is the following:
Consider a function

L(z(t);
dz

dt
; t)

which depends on another function z(t) in region

t1 � t � t2

Typically L is a function of dimension energy, or represents an incremental
cost, gain or pro�t.

Problem:
Find the function z(t) for which the action

S =
Z t2

t1
L(z(t);

dz

dt
; t)dt

is an extremum (e.g. maximum, minimum). To make this problem well
posed we must add to it boundary conditions at the ends.

Calculus of variation plays a role in this course because we can reformulate
Lagrangian dynamics as a problem in calculus of variations. This refor-
mulation turns out to be particlar important when considering extensions of
classical mechanics such as general relativity, quantum mechanics and
statistical mechanics. The calculus of variation comes into its own right in
a number of economically signi�cant optimization problems. The connec-
tion between mechanics and variational calculus can thus be helpful in �nding
solutions to problems which at �rst sight appear quite "non-mechanical".

Example 1:
A particle slides under the in
uence of gravity along a frictionless slide z(x)
starting from rest. The particle starts at height z1, horizontal position x1.
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It ends up at z2, x2. How do we design the slide z(x) so that the particle
traverses it in the shortest possible time?

Example 2:
A rubber band is strung between to poles a horizontal distance d apart. The
height of the pole at x = 0 is z1. At the other end the height is z2. The
elastic energy of the band depends on its length S. The band carries a load
W (x). What is the shape z(x) of the band which minimizes the gravitational
+ elastic energy?

Example 3:
A clothesline is hung between to �xed supports a horizontal distance d apart.
The height of the support at x = 0 is z1. At the other end the height is z2.
The length of the clothesline is S. The clothesline carries a load W (x).
What is the shape z(x) of the clothesline which minimizes the gravitational
potential energy?

Problem 3 is di�erent from the other two problems because there is a con-
straint (length of the line), in addition to boundary conditions at ends of
the clothesline.

We will �rst consider the situation where there are no additional constraints.

Return to the generic problem:
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(z1,t1)

(z1,t1)δz

z(t)

z(t)+δz(t)

Let us use the notation

z0 � dz

dt

rather than _z since t need not represent time. Consider two di�erent functions

z(t); and z(t) + Æz(t)

where Æz is in�nitesimal. The derivatives too will be in�nitesimally di�erent
in the two cases

z0(t) and z0 + Æz0

where

Æz0 =
d

dt
Æz

We require that at the ends

0 = Æz(t1) = Æz(t2)

The variation in S is

ÆS =
Z t2

t1
dx[L(z + Æz; z0 + Æz0; t)� L(z; z0; t)]

For extremum

0 = ÆS =
Z t2

t1
dt[L(z + Æz; z0 + Æz0; t)� L(z; z0; t)]
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for an arbitrary variation Æz.
We have

ÆS =
Z t2

t1
dt[Æz(t)

@L

@z
+ (

d

dt
Æz)

@L

@z0
]

We integrate the last term by parts

Z t2

t1
dt(

d

dt
Æz)

@L(z; z0; t)

@z0

= Æz(t)
@L(z; z0; t)

@z0

�����
t2

t1

�
Z t2

t1
dtÆz(t)

d

dt

 
@L(z; z0; t)

@z0

!

Since
Æz(t1) = Æz(t2) = 0

we must have

Æz(t)
@L(z; z0; t)

@z0

�����
t2

t1

= 0

We are left with

ÆS =
Z t2

t1
dtÆz(t)[

@L(z; z0; t)

@z
� d

dt
(
@L(z; z0; t)

@z0
)]

For ÆS to be zero for arbitrary variations Æz(t) the expression in the square
bracket [ ] must be identically zero. This gives us the

EULER-LAGRANGE EQUATION

@L(z; z0; t)

@z
� d

dt
(
@L(z; z0; t)

@z0
) = 0

The total derivative with respect to t involves derivatives with respect to
both explicit and implicit dependence:

d

dt
(
@L(z; z0; t)

@z0
)
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=

 
@

@t
+
dz

dt

@

@z
+
d2z

dt2
@

@z0

!
@L(z; z0; t)

@z0

The above results can easily be generalized to the case where there is more
than one dependent variable. Suppose we want to �nd extremal values of
the integral

S =
Z t2

t1
L(z1 � � � zN ; dz1

dt
� � � dzN

dt
; t)dt

assuming that z1 � � � zN have �xed values at the endpoints t1; t2 of the inte-
gration.

We now carry out independent variations

zi ) zi + Æzi

for each dependent variable zi. Following the same procedure as before
we �nd

d

dt

@L

@ dzi
dt

� @L

@zi
= 0

for all i = 1 � � �N .

SUMMARY

� We isolated a generic class of variational problems.

� The goal was to �nd a function z(x) for which the integral over some
property L(z; dz=dx; x) has an extremal value.

� We derived the Euler-Lagrange equation for the solution to the prob-
lem.

� If we have several dependent variables z1(t); z2(t); zN(t) we getN Euler-
Lagrange equations, one for each dependent variable.
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Example problems

Problem 3.3.1
(Problem 3 of 2000 problem set 4)
The principle of least action can be extended to "Lagrangians" that contains
higher time derivatives than �rst of the generalized coordinate qi. Show that,
if

S =
Z b

a
dtL(qi; _qi; �qi) = extremum

subject to �xed values of qi and _qi at the ends, the corresponding Euler-
Lagrange equation becomes

d2

dt2

 
@L
@ �qi

!
� d

dt

 
@L
@ _qi

!
+
@L
@qi

= 0

Apply this result to obtain the equation of motion for

L = �mq�q
2

� q2

3.4 Examples of calculus of variations problems.

LAST TIME

� We isolated a generic class of variational problems.

� The goal was to �nd a function z(t) for which the integral over some
property L(z; dz=dt; t) had an extremal value.

� We derived the Euler-Lagrange equation for the solution to the prob-
lem.

� If we have several dependent variables z1(t); z2(t); zN(t) we getN Euler-
Lagrange equations, one for each dependent variable.

Today we will begin with working out as an example the slide problem in-
troduced last time. The problem is called the brachistochrone problem
and is historically important (Bernoulli late 1600's):
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Assume that the particle starts at rest at horizontal position x = 0, height
z = 0. Suppose the lower end of the slide is at x = d; z = �h (we let z be
negative in the downwards direction).
>From conservation of energy

mgz = �mv
2

2

We have a choice to calculate either x(z) or z(x). Selecting x as the dependent
variable we write

v2 = v2x + v2z = v2z(1 + (
dx

dz
)2)

This gives (x0 � dx
dz
)

t =
Z h

0

dz

vz
=
Z h

0
dz

s
1 + (x0)2

�2gz

or

S � t; L(x; x0; z) �
s
1 + (x0)2

�2gz

The Euler Lagrange equation now reads

@L(x; x0; z)

@x
� d

dz
(
@L(x; x0; z)

@x0
) = 0

L does not depend explicitly on x so

d

dz

@

@x0

s
1 + (x0)2

�2gz = 0

or

@

@x0

s
1 + (x0)2

�2gz = c1
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x0q
(1 + (x0)2)(�2gz)

= c1

where c1 is a constant. Remembering that

x0 =
dx

dz
=

1

dz=dx

we �nd

�z[1 + (
dz

dx
)2] = c = const

or
dz

dx
=

s
c+ z

�z (8)

We note that

� This equation can be integrated to yield a solution with one additional
constant c2.

� The constants c and c2 (or combinations of them) can be determined
from the heights at x = 0 and x = d.

� For small x and z; dz
dx
/ z�1=2. i.e. the optimum slide will start out

with vertical slope.

Using the method of "the inspired guess" we see that equation (1) can be
solved by making the substitution

z = �c sin2 �
2

into the di�erential equation

dz

dx
=
dz

d�

d�

dx
= �cos �

2

sin �
2

There is a sign ambiguity here. We let positive � correspond to positive x,
negative z, and pick the minus sign above. Next with

dz

d�
= �c sin �

2
cos

�

2
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we �nd

c sin2
�

2

d�

dx
= 1

Employing the trigonometric relation

sin2(
�

2
) =

1� cos �

2

we obtain with
a =

c

2

dx = a(1� cos �)d�

and we obtain the parametric relations (letting x = z = 0 correspond to
� = 0)

x = a(� � sin �); z = �a(1� cos �)

which are equations for a cycloid, the trajectory in the x � z-plane of a
point on the rim of a wheel of radius a rolling along the x�axis. We plot the
curves for some values of a below

Solutions to Brachistochrone problem

a=2
a=1.5a=1a=0.5

–4

–2

0

z  

0 5 10x

We will encounter these curves again in lecture 4.1

We discuss the solution in more detail in the Maple worksheet
http://www.physics.ubc.ca/~birger/n206l9a.mws
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EXAMPLE
Fermat's principle in optics.
The (group) velocity of a light ray in a medium with index of refraction
n is

v =
c

n

where c is the velocity of light in vacuum. Fermat's principle states that the
path taken by a ray of light in an inhomogeneous medium is the one which
can be traversed in shortest possible time.

θ
A

B

z

x

dz

dx

We assume that a ray starts at the point A = (x1; z1) and ends at the point
B = (x2; z2). Hence

t =
1

c

Z z2

z1
dz n(x; z)

s
1 + (

dx

dz
)2 = minimum

To be speci�c we assume that the index of refraction depends on z only.
Writing

L(x;
dx

dz
; z) = n(z)

s
1 + (

dx

dz
)2

and obtain
@L

@x
= 0

@L

@ dx
dz

=
n(z)dx

dzq
1 + (dx

dz
)2
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Since L doesn't depend on x the Euler-Lagrange equation is

d

dz

@L

@ dx
dz

= 0

or
n(z)dx

dzq
1 + (dx

dz
)2

= constant: (9)

We note (see �gure above) that

tan � =
dx

dz
; sin � =

dx
dzq

1 + (dx
dz
)2

This allows us to rewrite (2) as

n(z) sin � = const

which you may recognize as Snell's law of geometrical optics. E.g. if light
passes from one medium with index of refraction n1 to another with index
n2 we must have

n1 sin �1 = n2 sin �2

SUMMARY
We have given two historically important examples from the calculus of vari-
ation:

� the Brachistochrone problem

� Fermat's principle and Snell's law.

� We obtained numerical solutions to the �rst problem using Maple.

Further reading: The book by Fowkes and Mahony [6], o�ers several
worked examples of the application of calculus of variations to non-mechanical
problems. The two Mathematical methods books, Riley, Hobson and Bence
[19] and Arfken and Weber[2] both have chapters on calculus of variation.
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Example problems

Problem 3.4.1
(Problem set 5 2001)
Variational principle for a soap �lm.

–1

0

1

z/b

–1 0 1
r/a

Two parallel rings with equal radius a are placed with their centers 2b apart
on the z�axis. An axially symmetric soap �lm is stretched between the
rings (see �gure). Since (neglecting gravity) the free energy of the �lm is
proportional to the surface area, the stable shape will be one that minimizes
this quantity. Let r(z) be the radius of the �lm at height z
a:
Show that the total surface area is given by

S = 2�
Z b

�b
r

s
1 + (

dr

dz
)2dz

b:
The problem now is to �nd the function r(z) that minimizes S. Use the
"energy" �rst integral to �nd a �rst order di�erential equation for r(z).
c:
Integrate the di�erential equation and show that the solution can be written

�r = cosh(�z + �)
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The curve r(z) is called a catenary and is also the curve describing a heavy
chain or cable of �xed length hanging from �xed supports (e.g. a power line
hanging between two hydro poles). Here

cosh(x) =
ex + e�x

2
; sinh(x) =

ex � e�x

2

is the hyperbolic cosine and sine respectively, satisfying

cosh2(x)� sinh2(x) = 1;
d cosh(x)

dx
= sinh(x);

d sinh(x)

dx
= cosh(x)

d:
The constants � and � are determined by the boundary conditions r(�b) = a.
Because of the symmetry of the problem � = 0. Choosing the unit of length
to be a, we are left with the transcendental equation

� = cosh(b�)

by plotting the left and right hand side of the equation above for some values
of b show that the equation admits two solutions when b is smaller than a
critical value bc. At bc there is one solution while for b > bc there are no real
solutions. Find bc numerically to three signi�cant �gures
e:
For some values of b the minimum surface consists of �lms stretched over the
two rings and connected by a "wormhole" of in�nitesimal radius (see �gure).
This is commonly referred to as Goldschmidt's solution.
Which of the three possible surfaces (corresponding to the two solutions of
the transcendental equation and Goldschmidt's solution)has the smallest area
if b < bc, but close to that value?
f:
Pick a value of b < bc which is not close to bc. Which surface has now the
smallest area?
Bonus question:
You have probably learned in a di�erential equations course that trajectories
don't cross. Here we have two solutions starting at r = a; z = �b meeting at
r = a; z = +b (or three if we admit Goldschmidt's solution). How come?
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–1

0

1

z/b

–1 0 1
r/a

3.5 Hamilton's principle

LAST TIMES

� We isolated a generic class of variational problems.

� The goal was to �nd a function z(x) for which the integral

S =
Z x2

x1
L(z(x);

dz

dx
; x)dx

over some property L(z; dz=dx; x) had an extremum.

� We derived the Euler-Lagrange equation

@L(z; z0; x)

dz
� d

dx
(
@L(z; z0; x)

@z0
) = 0

for the solution to the problem.

� We analyzed, as an example, the brachistochrone problem and Fermat's
principle.
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PRINCIPLE OF LEAST ACTION
(or Hamilton's principle)

The Euler-Lagrange equation for the variational principle and the Lagrangian
equation of motion (derived in lecture 3.2 for a conservative system) are of
the same form. To see this let the independent variable x represent time and
the dependent variable z be a generalized coordinate

L(z; z0; x)) L(q; _q; t)
This suggests that Newtonian mechanics can be derived from a variational
principle. We now reformulate the mechanics of conservative systems to
achieve this. We assume that a conservative system is characterized by a
Lagrangian which is a functional of the generalized coordinates and veloc-
ities of the particles constituting the system. The actual trajectory is then
the one for which the action

S =
Z t2

t1
Ldt

is extremal subject to boundary conditions at the endpoints. The integration
is with respect to time. Usually the action will be a minimum, hence the
name principle of least action.

We consider this to be a postulate taking the place of Newton's laws as
the foundation of mechanics. It then remains to construct the Lagrangian
-something which, of course, depends on the problem at hand. Also, we are
not saying that Newton was wrong- we want the Lagrangian formulation to
reproduce Newton's law when applicable.

Caveat: I mention in passing that the actual path is not always a mini-
mum for the entire path, but only for suÆciently short segments. This is
no problem in practice. In deriving the equation of motion we only use the
extremum condition.

The Euler-Lagrange equation is linear in the Lagrangian. We can multiply
L by a constant without changing the equation of motion. We choose the
Lagrangian to have dimension of energy.
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Example:
Particle in one dimension subject to velocity independent force:
We put v = dx=dt. If the Lagrangian is

L = L(x; v; t)
the equation of motion is

@L
@x

� d

dt
(
@L
@v

) = 0

We write T = 1
2
mv2 for the kinetic energy

@T
@x

= 0;
d

dt
(
@T
@v

) = m
dv

dt
= ma

where a is the acceleration. Similarly if V (x) is the potential energy

@V
@x

= �f ; @T
@v

= 0

If we put L = T � V we see that equation of motion becomes the familiar

f = ma

GENERALIZED COORDINATES
In our previous example x was the Cartesian coordinate of the particle. It
need not be, as discussed lecture 3.1. We may use any set of generalized
coordinates that amount to imposing holonomic constraints on Cartesian
coordinates.

MANY DEGREES OF FREEDOM
Most often we are dealing with systems requiring a number of generalized
coordinates to describe the motion.

Suppose N coordinates are required to specify the motion (after we have
substituted for the holonomic constraints). We say that the system has N
degrees of freedom.
The variational principle is now

ÆS = Æ
Z t2

t1
L(q1; q2 � � � qN ; _q1; _q2; � � � _qN)dt = 0
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We can carry out the variation independently for each of the coordinates and
obtain a set of N Euler-Lagrange equations

@L
@qi

� d

dt
(
@L
@ _qi

) = 0

i.e. one equation for each coordinate.

Example
PENDULUM WITH MOVABLE SUPPORT

MX

mx

y
θ r

A pendulum of length r, mass m. Its support has mass M and it can slide
without friction horizontally (coordinate X). The horizontal and vertical
components of the pendulum mass are

x = X + r sin �; y = �r cos �
The velocity components are

_x = _X + r cos � _�; _y = r sin � _�

Hence the Lagrangian is
L = T � V
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=
M

2
_X2 +

m

2
[ _X2 + r2 _�2 + 2 _X _�r cos �] +mgr cos � (10)

We will come back to the equations of motion for this system later.

GENERALIZED FORCES AND MOMENTA.
When the kinetic energy is on the form

T =
1

2
m _x2

and V(x) is velocity independent, the equation of motion can be written

@L
@x

= f =
d

dt

@L
@ _x

= m
dv

dt
= _p

where p is the momentum and f the force

In the general case:

pi =
@L
@ _qi

= generalized momentum
In lecture 3.1 I de�ned the generalized conservative force as the partial deriva-
tive of the potential energy with respect to the generalized coordinate. We
now modify the de�nition so that

fi =
@L
@q

= generalized force

The Lagrangian equations of motion can thus be written:

fi =
dpi
dt

If the Lagrangian does not depend explicitly on one of the coor-
dinates the corresponding generalized force is zero and the corre-
sponding generalized momentum is conserved!

Example THE PENDULUM

L =
mr2 _�2

2
+mgr cos �
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The generalized force is

f� =
@L
@�

= �mgr sin �
Physically the generalized force associated with the angle � is the torque!
The generalized momentum is

p� =
@L
@ _�

= mr2 _�

which we recognize as the angular momentum. The Lagrangian equation of
motion is thus just

Rate of change of angular momentum=torque

Example
PENDULUM WITH MOVABLE SUPPORT
The Lagrangian (1) doesn't depend explicitly on X hence

pX =
@L
@ _X

= (M +m) _X +m _�r cos �

is conserved. A bit of re
ection will convince you that this is just the equation
for the conservation of linear momentum in the x�direction.

So there is nothing new!
We could have obtained the above results without resorting to Lagrangians.
However, if the system is complicated the Lagrangian approach o�ers the
possibility of proceeding in a systematic fashion, without having to worry
about free body diagrams, normal forces, or pseudo forces due to acceleration
of coordinate system.
The systematic, algebraic, approach makes it much easier to avoid errors!

SUMMARY
We have

� developed Lagrangian dynamics from the principle of least action

� shown that for a conservative system with velocity-independent forces
we could reproduce Newtonian dynamics if we put for the Lagrangian

L = T � V
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� introduced generalized momenta

� modi�ed the de�nition of generalized force

� shown that if Lagrangian did not depend on a generalized coordinate
the corresponding momentum was conserved.

Example problems

Problem 3.5.1
(Problem 1 of 2002 problem set 3)

r

z

y

x

θ

φ

The velocity ~v of a particle in spherical coordinates can be written

~v = _rêr + r sin � _�ê� + r _�ê�

The potential energy is kr2=2 with k > 0. The particle is constrained to the
plane (� = �=2)
a: Write down the Lagrangian for the system. Are the generalized momenta
associated with the coordinates r; � conserved?
b: Find an expression for the law of conservation of energy. For given val-
ues of the conserved generalized momenta what is the smallest value of the
energy?
c: Describe the trajectory of the particle in case b:.
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3.6 Conservation of energy. Galilean relativity

LAST TIME

� Developed Lagrangian dynamics from Hamilton's principle.

� Showed that for a conservative system with velocity-independent forces
we could reproduce Newtonian dynamics if we put for the Lagrangian

L = T � V

� Introduced

{ generalized momenta

{ and modi�ed the concept of generalized force

� Showed that if Lagrangian did not depend on a generalized coordinate
the corresponding momentum was conserved.

TODAY
we discuss how the law of conservation of energy appears in Lagrangian
dynamics,

Consider a Lagrangian which does not depend explicitly on time

L = L(q1 � � � qN ; _q1 � � � _qN )

Let us compute the total time derivative of this Lagrangian

dL
dt

=
NX
i=1

 
@L
@qi

_qi +
@L
@ _qi

�qi

!
(11)

We assume that the generalized coordinates and velocities also satisfy the
Lagrangian equation of motion:

@L
@qi

� d

dt
(
@L
@ _qi

) = 0 (12)
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Substituting (2) into (1) yields

dL
dt

=
NX
i=1

 
_qi
d

dt
(
@L
@ _qi

) +
@L
@ _qi

�qi

!

=
NX
i=1

d

dt
( _qi
@L
@ _qi

)

It follows that

d

dt

 
NX
i=1

_qi
@L
@ _qi

� L
!
= 0

Just as we de�ned last time the generalized momentum as

pi =
@L
@ _qi

we now de�ne the energy as

E =
NX
i=1

_qi
@L
@ _qi

� L =
NX
i=1

pivi � L

We conclude that with the energy de�ned as above, and if the
Lagrangian does not depend explicitly on time, then energy is con-
served!

EXAMPLE
Suppose the kinetic energy is

T =
m _q2

2

and
L = T ( _q)� U(q)

We have

E = m _q2 � m _q2

2
+ U(q) = T + U
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as expected

EXAMPLE

MX

mx

y
θ r

Let us next consider the pendulum with movable support that we encountered
in the last lecture 3.5:

L = T � U
=
M

2
_X2 +

m

2
[ _X2 + r2 _�2 + 2 _X _�r cos �] +mgr cos �

where the generalized coordinates are � and X. Again it is easy to see that

_�
@L
@ _�

+ _X
@L
@ _X

= 2T

So again
E = T + U

We next argue that our new de�nition of energy agrees with what we had in
Newtonian mechanics whenever the Lagrangian is on the form

L(� � � qi � � � ; � � � _qj � � �) = T � U
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where the kinetic energy is a quadratic function of the velocities

T =
NX

i;j=1

aij(q1 � � � qN) _qi _qj (13)

and the potential energy U is independent of the velocities. The two examples
above are special cases of this situation. We have

NX
k=1

_qk
@T
@ _qk

=
NX

k;j=1

akj(q1 � � � qN ) _qk _qj +
NX

i;k=1

aik(q1 � � � qN ) _qi _qk = 2T (14)

Hence
E = 2T � T + U = T + U

The result (3) is a special case of Euler's theorem for homogeneous functions.

ADDING A TOTAL TIME DERIVATIVE TO THE LAGRANGIAN
We have earlier seen that multiplying the Lagrangian by a constant has no
e�ect on the equations of motion. We next show that adding a total time-
derivative of a function of the coordinates has no e�ect on the equations of
motion.
Consider two systems: one described by the Lagrangian L(q; _q; t) and the
other by

L0(q; _q; t) = L(q; _q; t) + d

dt
f(q; t)

(Here 0 indicates "new function", not time derivative.) The action associated
with the second system is

S 0 =
Z t2

t1
dtL0 =

Z t2

t1
dt(L+

d

dt
f(q; t)) = S + f(q(t2); t)� f(q(t1); t)

Since the coordinates at the end-points are held �xed in our variational prin-
ciple we see that the two systems have the same equation of motion!
Question: What is wrong with adding to the Lagrangian a total derivative
of the form

d

dt
f(q; t)
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GALILEAN RELATIVITY
Some of you have encountered the special theory of relativity in PHYS 200.
In that course you learned how to carry out a Lorentz transformation to a
coordinate system which moves with uniform relative velocity V with respect
to another system. In classical mechanics the situation is a bit simpler.
Suppose in a given coordinate system the position of a particle is ~r and the
velocity is ~v. In a coordinate system which moves with constant velocity ~V
with respect to the �rst the position is r0 and the velocity v0.

~r = ~r0 + ~V t

~v = ~v0 + ~V

in classical mechanics observers in both systems can agree on the time (t =
t0).
The kinetic energy of the particle in the original coordinate system is

mv2

2
=
m(v0)2

2
+m~V � d~r

0

dt
+
mV 2

2

This looks di�erent from the contribution to the Lagrangian

T 0 = m(v0)2

2

we would have had constructed the Lagrangian starting from the primed
system. However, since the di�erence

m~V � d~r
0

dt
+
mV 2

2
=

d

dt
(~V � ~r0 + mV 2t

2
)

is a total time derivative (when ~V is a constant) it has no e�ect on the
dynamics. The equivalence of the primed an unprimed systems is called the
principle of Galilean relativity.

SUMMARY
We have

� de�ned the energy of a Lagrangian system

� shown that if the Lagrangian does not depend explicitly on time the
energy is conserved
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� demonstrated that it is harmless to add a total time derivative

d

dt
f(q; t)

to the Lagrangian

� discussed the principle of Galilean relativity.

Example problems

Problem 3.6.1
(Question 1 of 1999 problem set 4)
A particle of mass m moves towards a plane separating two regions one with
potential energy U1 another with potential energy U2. Assume that U1 > U2.

a: Assume the particle starts out in region 1 towards the separating plane
with speed v1, and at an angle �1, with respect to the plane normal.
Find the speed and angle �2 with respect to the normal in region 2.

b: The particle starts in region 2 towards the separating plane. What
are the conditions on �2 and v2 for the particle to be re
ected at the
boundary.

Hint The momentum component parallel to the plane is conserved.

Problem 3.6.2
(Question 1 of 2000 problem set 4)
Consider the Lagrangian (~v = d~r=dt)

L = �m0c
2

s
1� v2

c2
� V (~r)

a: What is the equation of motion?
b: What is the energy?
c: What is the momentum

Problem 3.6.3
(Question 2 of 2000 problem set 4)
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Consider the variational principle

Z B

A

(1 + ( dy
dx
)2))1=2

y
dx = minimum

Where A corresponds to x = �1; y = 1, B to x = 1; y = 1 Use the "en-
ergy" �rst integral to �nd an expression for the curve. Try to simplify your
expression.

Problem 3.6.4
(Question 1 of 2000 problem set 5)

a

r

θ κq2/r2

mg

A particle with charge q and mass m moves along a circle of radius a in
a �xed vertical plane. Another charge q is �xed at the bottom position of
the circle. The Coulomb potential energy if the charges are separated by a
distance r is

U(r) =
�q2

r

a: Write down the Lagrangian with the angle � as a generalized coordinate.

b: Find the equation of motion. Show that � = �; _� = 0 is a solution.
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c: Under what condition is � = � a stable equilibrium position (minimum
in the potential energy)? It is convenient to express the condition in
terms of dimensionless parameter

� =
�q2

mga2

d: When � = � is unstable, what is then the stable equilibrium position?

Problem 3.6.5
(Question 1 of 2002 midterm)
A particle of massm is constrained to move in the x�y� plane. The potential
energy of the particle is U = 0 for y > 0, U = const: = U0 for y < 0. Initially
y > 0 and the velocity of the particle is vx = v sin �, vy = �v cos � with
0 < � < �, i.e. the particle is heading for the lower region at an angle � with
the vertical. There is no friction or drag in the region y > 0, but there is a
drag force in the region y < 0

~F = ��~v
where � is a constant.
Assume that � = �=4, and that in appropriate units m = v = 1, U0 = �1
a: What is the angle with the vertical in the lower region?
b: Assume that in the units used above � = 1 and that the particle enter the
lower region at the origin of our coordinate system. Where does the particle
stop?

Problem 3.6.6
(Question 3 of 2002 �nal)
In particle accelerators the particles typically reach relativistic speeds. As-
sume the Lagrangian for a particle in a constant force �eld to be

L = �m0c
2

s
1� v2

c2
+ qx

where v = _x. The particle starts from rest at x = 0 at time t = 0
a: What is the momentum of the particle at position x?
b: Find a formula for the velocity of the particle at time t. What is the
limiting speed as t!1.
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3.7 The pendulum

LAST TIME

� De�ned the energy of a Lagrangian system

� Showed that if the Lagrangian does not depend explicitly on time the
energy is conserved

� Showed that adding a total time derivative to the Lagrangian is harm-
less

� Discussed the principle of Galilean relativity.

TODAY we will discuss a simple conservative system, the pendulum.

r

mg

θ

-mg sin θ eθ

As shown in lecture 3.2 the Lagrangian for the pendulum can be written

L = T � U =
mr2 _�2

2
+mgr cos �
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The equation of motion is

@L
@�

� d

dt
(
@L
@ _�

) = �mgr sin � �mr2
d _�

dt
= 0

giving:
�� +

g

r
sin � = 0

SMALL AMPLITUDE APPROXIMATION
If � << 1 then sin � � � and

d2�

dt2
+
g

r
�

This solution describes simple harmonic motion

� = A cos(!t� �)

where

! =

r
g

r

and the constants A and � are determined from the initial condition:
E.g. if � = 0; t = 0 then � = ��

2
. If d�=dt = 0; t = 0 then � = 0; or �

(depending on whether the pendulum is moving to the left or right initially)
The period is

� =
2�

!
= 2�

s
r

g

FINITE AMPLITUDE

If the amplitude is not small we have to solve the nonlinear equation

d2�

dt2
+
g

r
sin � = 0

(nonlinear because sin � is a nonlinear function of the dependent variable �.)

We will see in lecture 3.8 that we can �nd solutions in terms of elliptic
functions. Even if we know nothing about such functions all is not lost!
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1. We can still solve the di�erential equation numerically, see e.g the
Maple worksheet at
http://www.physics.ubc.ca/ birger/n206l4.mws (or .html)

2. Much information about the solution can be gained from the law of
conservation of energy.

It is hard to make sense of a numerical solution unless one has �rst a quali-
tative idea of what is going on. Do second part �rst!

CONSERVATION OF ENERGY

We can without any loss og generality choose the potential energy to be zero
for � = �=2

U(�) =
Z �

�=2
d�0mgr sin �0 = �mgr cos �

The kinetic energy is

T =
1

2
mr2(

d�

dt
)2

The total energy along a trajectory is thus

E = T + U =
1

2
mL2(

d�

dt
)2 �mgr cos � = const

Solve for the angular velocity

d�

dt
= �

s
2E
mr2

+
2g

r
cos �

implicit equation for � in terms of t

t = �
Z �

�0

d�0q
2E
mL2

+ 2g
r
cos �0

Signs ) movement to the left(�) or right(+) .

DIMENSIONLESS VARIABLES
Now is a good time to get rid of some of the constants cluttering up our
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equations. After all we don't want to redo the calculation each time we go
to Mars (or change the mass or length of the pendulum).

De�ne dimensionless time x

t =

s
r

g
x

The di�erential equation for � becomes

d2�

dx2
+ sin � = 0

Next, introduce the dimensionless energy �

E = mgr�

Equation for � becomes less forbidding

x = �
Z �

�0

d�0q
2(�+ cos �0)

THE DIFFERENT CASES
Solving the integral still poses a problem, but we can learn a lot about the
qualitative properties, without performing the integration.

In a "real" world the expression inside the square root must be positive

� + cos � > 0

We have
�1 � cos � � 1

� The smallest possible value of � is �1.

� If �1 < � < 1 there are critical angles

�c = � cos�1(��)
The pendulum will oscillate between ��c and �c.
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� 1 < �. The pendulum becomes a rotor!

OSCILLATIONS NEAR EQUILIBRIUM:

If � = �1, the pendulum stays at rest at the bottom, equilibrium, position
� = 0.
On the other hand if

�+ 1 =
Æ

2

with Æ << 1 Then �c << 1 and

x =
Z �

�0

d�0q
2(�+ cos �0)

�
Z �

�0

d�0q
Æ � (�0)2

= sin�1(
�p
Æ
)� sin�1(

�0p
Æ
))

By suitably choosing the constant �0 this becomes

� =
p
Æ sin(x� x0)

We recover the simple harmonic motion with period 2�!

THE UNSTABLE EQUILIBRIUM

If � = 1, the position � = � is an unstable equilibrium.

An in�nitesimal perturbation is enough for the pendulum to fall o� the top.

The pendulum will take an in�nite time to reach the top position again. To
see this note that the integral

Z � d�0q
2(1 + cos �0)

=1

It follows that the period of oscillation will approach1 as �! 1 from below.
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Similarly the period of rotation will approach 1 as � approaches unity from
above!

ROTATING PENDULUM
If � > 1 the pendulum will be rotating. The period in reduced units will be

X =
Z 2�

0

d�q
2(�+ cos �)

We can calculate the period for large � by Taylor expanding with z = 1
�
cos �

1p
1 + z

= 1� z

2
+
3z2

8
� 5z3

16
+
35z4

128
� � �

We have Z 2�

0
d� cosn � = 0; for n odd

Z 2�

0
d� cos2 � = �

Z 2�

0
d� cos4 � =

3�

4

Giving for the period in reduced units

X =
�p
2�
(2 +

3

8�2
+

105

512�4
� � �)

This series will diverge as �! 1.

TURNING POINTS
Suppose we start the pendulum from � = 0 with positive angular velocity. It
will then proceed according to

x =
Z �

0

d�0q
2(�+ cos �0)

until time X1=4 when it reaches �c . It will then pick up the negative root

x = X1=4 �
Z �

�c

d�0q
2(�+ cos �0)
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Time will still run forwards since d�0 < 0. It will continue this way until
� = ��c and x = 3X1=4 pick up the positive root again until �c and so on...

The period of oscillation in reduced units will be

X = 4
Z �c

0

d�q
2(�+ cos �)

The integrand diverges as � approaches �c but the integral is still �nite.

SUMMARY

� We have illustrated some properties of conservative systems using the
pendulum as an example.

� The total energy played a crucial role in determining the qualitative
properties of the behavior.

� At the lowest energy the pendulum was at rest in equilibrium.

� At higher energy the pendulum would do simple harmonic motion
about the equilibrium.

� At higher energies still there was a change-over to a new type of be-
havior (rotation).

Example problems

Problem 3.7.1
(Question 1 of 1999 problem set 3)
Consider a pendulum in which a mass is connected to a �xed support by a
string rather than a rod. In class derived the equation of motion in reduced
units

2
d2�

dx2
+ sin � = 0

and showed that the energy parameter

� = (
d�

dx
)2 � cos �
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was a constant of the motion. If a string is used rather than a rod the
pendulum will collapse if the tension in the string turns negative. For which
values of � will this happen?

Problem 3.7.2
(Question 2 of 1999 problem set 4)
Determine the period of oscillation as a function of energy when a particle
of mass m moves in a �eld where the potential energy is

V (x) = V0 tan
2(x); ��

2
< x <

�

2

Check that you get the expected result in the limit of small amplitudes when
tan(x) � x

Problem 3.7.3
(Question 1 of 2001 midterm)
A particle is constrained to the sphere r = 1 and the potential energy is

k cos2(�)

where k > 0, i.e. the potential energy is a minimum near the equator not at
the top and bottom position. You may take the mass m and k to be 1. Any
friction or drag on the particle can be neglected.
a: Write down the Lagrangian for the system. The generalized momentum
p� associated with the coordinate � is conserved. Can the angular velocity
_� change sign?
b: Find an expression for the law of conservation of energy E. For a given
non-zero value of p�, and allowed values of E, show that the particle can
never reach the top (� = 0) or bottom (� = �) position.
c: Given a non-zero value of p� and an allowed value of the energy, locate
the smallest and largest values of � for the orbit?

Problem 3.7.4
(Question 2 of 2000 midterm)

The velocity ~v of a particle in spherical coordinates can be written

~v = _rêr + r sin � _�ê� + r _�ê�
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r

z

y

x

θ

φ

The potential energy is mgr cos �. The particle is constrained to the surface
(r = const) (spherical pendulum).
a: Write down the Lagrangian for the system, and conservation laws for mo-
mentum and energy.
b: How can the largest and smallest angles �max; �min be found? You don't
need to solve the equation satis�ed by the angles.
c: Can the angular velocity _� ever change sign?

Problem 3.7.5
(Question 5 of 2000 �nal)
The potential and kinetic energy of a particle with mass m are given by

U(q) = kq4; T =
m

2
_q2; k > 0

a: Describe qualitatively the motion for a given value of the energy E =
T + U .
b: Find an expression for the period of oscillation in terms of a de�nite
integral (you don't need to evaluate the integral).
c: By which factor will the period change if

1. The energy is doubled, but m and k kept constant.

2. The mass is doubled, but E and k kept constant.
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3. The constant k is doubled, but E and m kept constant.

3.8 Lessons from the pendulum

Today we want to follow up the discussion of the pendulum by using what
we learned to make some important generalizations. More details in the form
of a maple worksheet is available at
http://www.physics.ubc.ca/~birger/n206l14.mws The �rst topic is:

ELLIPTIC INTEGRALS.
Elliptic integrals are de�ned as integrals over rational functions R(x;

p
y)

where y is a polynomial in x of order 3 or 4.

ellipticintegral =
Z b

a
R(
p
y; x)dx

An exhaustive description of elliptic integrals is given in Chapter 17 of
Abramowitz and Stegun [1965]. Of special interest to us are the incom-
plete elliptic integrals of the �rst kind which in Maple are de�ned as

EllipticF(z; k) =
Z z

0

dtp
1� t2

p
1� k2t2

and the complete elliptic function of the �rst kind, which is obtained simply
by setting the upper limit of integration to unity

EllipticK(k) = EllipticF(1; k)

In 2.2 we found for the dimensionless time passed for the pendulum to swing
from � = 0 to the maximum position � = �

x =
Z �

0

d�q
2(�+ cos(�))

we will assume that �1 < � < 1 so that the pendulum swings between two
angles �� and � with cos(�) = ��. The period in reduced units is � = 4x.
By a few substitutions this expression can be converted to a complete elliptic
integral of the �rst kind. First rewrite the integral for the period

� = 2
p
2
Z �

0

d�q
( cos(�)� cos(�))
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and introduce the new integration variable

t =
sin(�=2)

sin(�=2)

and the constant

k = sin(
�

2
)

We �nd that the integral then becomes on the form given for the complete
elliptic integral of the �rst kind and

� = 4 ellipticK(k)

The elliptic function can be called by Maple and evaluated numerically. It
is then a simple matter to plot the period of the pendulum in reduced units
as a function of the amplitude and a plot the period as a function of the
amplitude is given below. For small amplitudes the period Theta becomes
2� in agreement with the small amplitude approximation!

Period vs. amplitude for pendulum
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TRAJECTORIES IN PHASE PLANE
The phase plane of the pendulum has the angle � and the angular velocity
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! as coordinate axes. In the �gure below I used the law of conservation of
energy to construct the trajectories:

Phase portrait of pendulum
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The top curve corresponds to a pendulum rotating counterclockwise, while
the bottom curve corresponds to clockwise rotation. The two intersecting
curves correspond to the case where the energy � is zero. In this case the
pendulum just barely makes it to the top position. Traversing these trajecto-
ries takes an in�nitely long time and they separate regions of the phase plane
associated with oscillatory and rotary motions. Such a trajectory is referred
to as a separatrix. Inside the separatrix we have oscillatory back and forth
motion.

Maple has a package DEtools which contains commands that allow us to
analyze the behavior in the phase plane even if the exact result is not known.
We illustrate this by introducing a damping term. In the �gures below em-
ploy the command phaseportrait is employed to illustrate the use of this
command. In both cases the damping proportional to the angular velocity.
In the �rst �gure the damping is weak, while in the second �gure the motion
is over damped. See the maple worksheet at
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http://www.physics.ubc.ca/~birger/n206l14.mws
for details.
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Next some terminology. Let us describe the system by two coupled di�eren-
tial equations

d�

dt
= !

d!

dt
= f(!; �)

The equilibrium points where the time derivatives of both ! and � are
zero are singular points of the di�erential equations. Singular points where
there are two trajectories arriving at the equilibrium point, and two trajec-
tories leaving it are called saddle points. If there are trajectories starting
arbitrarily near the equilibrium point that moves away from it, the equilib-
rium is unstable. The saddle point is an example of an unstable equilib-
rium. In the case of zero damping the trajectories starting near the point
! = � = 0 will undergo harmonic motion around the equilibrium point.
Such a singular point is called a center (or a vortex). Since trajectories near
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a center stays in the neighborhood without approaching or moving away
from the singular point we say that the center is neutrally stable. When
the damping coeÆcient is positive all trajectories starting near the point
! = � = 0 will approach the equilibrium point making it asymptotically
stable, or an attractor. The equilibrium when damping is small is made
approached through damped oscillations. The equilibrium is then called
a focus. When the damping coeÆcient becomes larger the motion is over
damped and the equilibrium point is called a node. If the damping co-
eÆcient changes sign the trajectories change direction and the equilibrium
becomes an unstable focus or node.

The type of singularities can be determined by linearizing the di�erential
equation around the singular point

d!

dt
� a! + b�

d�

dt
� c! + e�
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The solution will be on the form

! = �1 e
(�1t) + �1 e

(�2t)

� = �2 e
(�1t) + �2 e

(�2t)

where �1; �2 are roots of the characteristic equation

�2 � (a+ d)�+ ad� bc = 0

If the real part of the roots are both negative the equilibrium is asymp-
totically stable. If at least one root has a positive real part it is unstable.
If the roots are purely imaginary further investigation may be required, but
if the system is conservative the singular point is a center. If the roots are
real we are dealing with a node, if they are complex we have a focus. An
equilibrium point which is asymptotically stable is an attractor. Attractors
are not necessarily points in phase space. In lecture 2.2 we considered a
stick-and-slip slider block problem in which all trajectories, suÆciently close
by, approached a limit cycle. Later on we will encounter more complicated
such structures called strange attractors. In much of this course we will limit
ourselves to conservative systems. The law of conservation of energy then for-
bids trajectories of di�erent energy from approaching each other. Attractors,
strange or otherwise, foci and nodes are forbidden for conservative systems.
The only equilibrium points allowed for conservative systems are centers and
saddle points!
Problem 3.8.1
(Question 2 of 1999 problem set 3)
Calculate the period X in reduced units for a pendulum with amplitude �=3
(60o). Compare with the period in the small amplitude approximation.

Problem 3.8.2
(Question 1 of 2001 problem set 3)
As the amplitude is increased in a mass spring oscillating system, nonlineari-
ties in the spring becomes increasingly important. An important such system
is the human eardrum, where it has been known for a long time that the ear
can "hear" frequencies which are not present in the incident signal and sum
and di�erences of frequencies present in the acoustic input. Let us model an
eardrum by a nonlinear oscillating system by the equation of motion

m�x +R _x+ k1x+ k2x
2 + k3x

3 = g(t)

106



where R; k1; k2; k3 are constants

a: Show by dividing the equation by a constant and employing a suitable
unit of time that the equation can be simpli�ed to

�x + x+ � _x + ax2 + bx3 = f(t)

b: Show that if a 6= 0 and positive we can choose a unit of length so that
a = 1.

c: Consider �rst the case � = b = f = 0; a = 1. Plot the potential energy
function for this system in the range x = �2::1. Imagine that the
system is put in motion with _x = 0 and some positive value of x. What
is the maximum value of x for period1c oscillations to occur? What
happens if this value is exceeded?

d: Consider next the case a = �1. How does the behavior of the system
change qualitatively?

Problem 3.8.3
(Question 3 of 2001 problem set 3)
Consider the nonlinear oscillator

�x+ x + x3 = 0

a: Plot the potential energy function for this system in the range x =
�2::2. Imagine that the system is put in motion with _x = 0 and some
positive value of x. Describe qualitatively the subsequent behavior of
the system.

b: Answer the same questions as in a: for

�x� x + x3 = 0
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3.9 The forced pendulum.

LAST TIMES
Discussed the unforced pendulum as an example of an integrable system,
where we could use the energy �rst integral to classify the di�erent types of
solution.
TODAY
We will discuss the forced oscillations of the pendulum. Since the Lagrangian
now is time-dependent, energy is no longer conserved, and the situation be-
comes more complicated. We will not have time to go into all the details, and
refer to the very readable presentation of the Pendulum lab by Franz-Josef
Elmer of the University of Basel for more details:
http://monet.physik.unibas.ch/ elmer/pendulum/index.html

EQUATIONS OF MOTION OF FORCED PENDULUM

Horizontal forcing
Assume �rst that the point of support of a simple (rigid) pendulum (length
r mass m) is forced to move in the horizontal direction according to

X = a sin(!t)

where ! is constant and t is time. We �rst need to �nd how the movement of
the support will modify the equation of motion for the angle �. In lecture 3.5
we calculated the kinetic and potential energy of a pendulum with a support
that was free to move horizontally

L = T � V

=
M

2
_X2 +

m

2
[ _X2 + r2 _�2 + 2 _X _�r cos �] +mgr cos �

In the present situation the coordinate X no longer represents a degree of
freedom, but rather a constraint, giving

L =
m

2
[ _X2 + r2 _�2 + 2 _X _�r cos �] +mgr cos �

=
m

2
[a2!2 cos2(!t) + r2 _�2 + 2a! cos(!t) _�r cos �] +mgr cos �
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We have
@L
@ _�

= mr2 _� +mar! cos(!t) cos �

@L
@�

= �mgr sin � �mar! cos(!t) _� sin �

If we add to the equation of motion a phenomenological damping force, pro-
portional to the angular velocity, we obtain for the case of horizontal forcing

�� � a

r
!2 sin(!t) cos � +

g

r
sin � + 
 _� = 0

Vertical forcing
Next consider the case of vertical forcing. Following the procedure of lecture
3.5 we put

x = r sin �; y = Y � r cos �

_x = r _� cos �; _y = _Y + r _� sin �

with
Y (t) = a sin(!t); _Y = a! cos(!t)

We �nd
T =

m

2
(r _�2 + a2!2 cos2(!t) + 2ar! _� cos(!t) sin �)

V = mg(a sin(!t)� r cos �)

and
@L
@ _�

= mr2 _� +mar! cos(!t) sin �

@L
@�

= mar! _� cos(!t) cos � �mgr sin �

which yields the equation of motion for vertical forcing

�� � a

r
!2 sin(!t) sin � +

g

r
sin � + 
 _� = 0
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where we have again added a phenomenological forcing term.

SMALL AMPLITUDE APPROXIMATION
We �rst consider the case of small amplitudes. We may then approximate

cos � � 1; sin � � �

Horizontal forcing
The equation of motion is now

�� +
g

r
� + 
 _� =

a

r
!2 sin(!t)

which is the familiar equation for the forced harmonic oscillator. If the
damping term is nonzero, the system settles, after a transient, into simple
periodic motion, with frequency equal to that of the driving. The amplitude
of the forced oscillation is

�max =
a!2

rq
(!2 � g

r
)2 + (!
)2

The phase of the forced motion di�ers from that of the forcing, depending
on the damping. If the damping is zero, we will have a superposition of

oscillations at the natural frequency
q
g=r and the forcing frequency !. When

the two frequencies are equal (resonance) the motion becomes unstable, and
the amplitude grows linearly with time, without bound, until nonlinear terms
in the equation of motion come into play. Since you are familiar with the
forced harmonic motion from other courses, I will not pursue this case further.

If we increase the amplitude of the forcing, nonlinear terms in the equation of
motion take over. What then happens, is that the resonance frequency shifts
towards smaller frequencies (longer period). As shown in the pendulum lab,
this foldover e�ect leads to instabilities and hysteresis. Another nonlinear
e�ect is that the motion no longer is purely sinusoidal. This opens the
possibility of super harmonic resonance, where the driving frequency is
a fraction of the fundamental frequency of the pendulum.
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Vertical forcing
The small amplitude approximation is now

�� +
g

r
� + 
 _� =

a!2

r
sin(!t)�

This di�erential equation is a special case of Hill's equation

�x + a(t) _x + b(t)x = 0

where the coeÆcients a(t); b(t) are periodic, with period T . It has many im-
portant applications. To mention a few: in solid state physics the Schr�odinger
equation for a particle in a periodic potential can be put in this form, if we
let t be a spatial coordinate, and T the period of the lattice. The e�ect of
Jupiter on the orbits of the other planets can be approximated by a periodic
perturbation, as can the e�ect of a nearby moon on the debris in the rings
of Saturn. Periodic pumping is a technique learned early by most children
trying to get a swing to move higher, when no parent is available to push
(although �nding the proper equations is not as easy as doing it).

If the damping term is zero the equation of motion is an example of the
Mathieu equation

�x+ (a� 2q cos(2t))x = 0

STABILITY OF TRAJECTORIES
An important qualitative question in problems involving Hill's equation, or
the Mathieu equation, is whether the trajectories are stable.

It is often convenient to write higher order di�erential equations as a set of
coupled �rst order equations. Let us introduce y = _x as a new variable so
that Hill's becomes

_y = �a(t)y � b(t)x

_x = y
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A set of n linear �rst order equations can then be written on matrix form, as

d~y

dt
=

0
BBB@

_y1
_y2
� � �
_yn

1
CCCA = A(t)

0
BBB@

y1
y2
� � �
yn

1
CCCA

The general solution to this set of equations is a linear combination of n
linearly independent solutions

~y(t) = c1~y1 + c2~y2 � � � cn~yn
We de�ne the fundamental solution matrix

Y (t) = (~y1; ~y2; � � � ; ~yn)
The choice of the basis, ~yi. is not unique, but if X(t) and Y (t) are two dif-
ferent solution matrices, one can always �nd a constant matrix C connecting
them

X(t) = Y (t)C

In fact, since
X(t) = Y (t)Y �1(0)X(0)

C = Y �1(0)X(0) (15)

If the matrix A of a system of linear di�erential equations is periodic.

A(t+ T ) = A(t)

Y (t + t) and Y (t) are solutions to the same di�erential equation, and we
must have

Y (t + T ) = Y (t)C

If you have access to a numerical procedure for solving the di�erential equa-
tion you can �nd the matrix C by using (2) and assume that Y (0) is the
unit matrix. The elements of Y (T ) = C can then be found by systemat-
ically integrating the di�erential equation for each i; i = 1 � � �n assuming
yi(0) = 1; yj(0) = 0 for i 6= j.

The stability of the system can be investigated by computing the eigenvalues
�i of C.
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� If all eigenvalues j�ij < 1, all solutions will approach ~y = 0 as t!1.
The system is then asymptotically stable.

� If one or more eigenvalues have j�ij = 1 (and they are distinct) and
the remainder of the eigenvalues have j�jj < 1 the system is neutrally
stable. The solution will remain bounded for all times.

� If j�ij > 1 for one or more value of i the system is unstable the
amplitude will grow out of bounds for "almost all" initial conditions.

It can be shown that in the undamped case (Matthieu equation)the product
of eigenvalues �1�2 = 1. The system is then either neutrally stable, or
unstable, asymptotic stability is not possible.

The above method of stability analysis is illustrated in the Maple worksheet
at
http://physics.ubc.ca/~birger/n2-6l16b
with results that agrees with the discussion of parametric resonance in the
Pendulum lab. With damping, the solution of linearized equation either de-
cays to zero (stable case) or grows without bounds (unstable case). The
existence unstable regions is commonly referred to as parametric reso-
nance. The feature that the solution remains unstable, even in the presence
of damping, distinguishes parametric resonance from the ordinary resonance
of the harmonic oscillator. The main resonance occurs when the driving fre-
quency is twice the natural frequency, this is another distinguishing feature
as is the existence of super harmonic resonances when the driving frequency
is 1/2,1/3 etc of the natural frequency

!0 =

r
g

r

In the unstable region the solution will grow until the nonlinear terms in the
equation of motion take over, and force the solution to remain bounded. Just
as in the case of horizontal forcing one sees a foldover e�ect with hystere-
sis. In the presence of damping there are also regions in parameter space in
which there are trajectories, which after a transient, settles on a periodic
orbit with a period which is either the same as the driving frequency or a
multiple of it. There is also a regime in which the orbits are chaotic, with
no period, and never repeating itself.
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We can visualize the di�erence regime by the following procedure:

1. Select an initial point �1; y1 in the ��y plane and integrate the equation
of motion over one period of the driving, generating a new point �2; y2.

2. Repeat the procedure many times generating the sequence

(�1; y1); (�2; y2):::(�n; yn)

3. Plot the resulting sequence of points in the � � y plane.

The mapping
(�n; yn)) (�n+1; yn+1)

is called a stroboscopic map, and is a special case of the Poincar�e map
in which one selects a suitable plane, Poincar�e section in phase space
which all orbits cross. The mapping of the coordinates of one crossing to
the next crossing, in the same direction, is called the Poincar�e map. We
describe how one can compute stroboscopic plots in the Maple worksheet at
http://physics.ubc.ca/~birger/n206l16c.mws (or .html)

The driven pendulum behaves quite di�erently, depending on whether there
is damping or not. If there is no damping the motion can be "quasiperiodic",
i.e. appear to involve a small number of incommensurate frequencies. In that
case the points on the stroboscopic plot will appear to lie on a smooth curve.
The trajectory can also be fully chaotic with the mapping appearing to �ll
a region of the phase plane. For the same parameter values there will often
be regions which are excluded from the chaotic trajectory. If the system is
started with initial conditions in the excluded region, it will typically exhibit
quasiperiodic behavior.

If there is damping the system will, after an initial transient, approach an
attractor. This attractor is a single point in the stroboscopic plot, if its
period is the same as the forcing frequency. If the period is a multiple of
the forcing frequency, it consists of a �nite number of points. We also can
have a stroboscopic plot with a "strange attractor", that doesn't �ll a two
dimensional region of the phase plane, but requires more points than a curve.
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Such objects are called fractals and typically exhibit self-similar features.
The motion on the strange attractor is also called chaotic.

Both trajectories on the strange attractor, and fully chaotic maps that �ll
a region of the phase plane, exhibit extreme sensitivity to initial con-
ditions. This implies that trajectories that start close to each other in the
phase plane will diverge. Arbitrarily small rounding o� errors, or other in
accuracies in the numerical di�erential equations solver, then makes it prac-
tically impossible to integrate the motion on a chaotic orbit for very long.
This doesn't mean that one cannot compute the properties of the attractor
numerically, since it is an attractor, small numerical errors will not make the
computed trajectory move away from it. An analogous situation occurs in
weather forecasting. Even though we cannot predict the weather for much
more than a week ahead, we may still be able to simulate the climate!

The forced pendulum is a good lead-in to the very rich �eld of study non-
linear dynamics. Because of time limitations we have only been able to
scratch the surface of this large and important �eld of research, but I hope I
have been able to provide something of the 
avor of the subject!

Further reading: The pendulum lab of Franz-Josef Elmer
http://monet.physik.unibas.ch/ elmer/pendulum/links.html contains several
links and references to textbooks. See also Richard H. Enns and George C.
McGuire[4] and Lynch[12].

Example problem
Problem 3.9.1
(Question 2 of 2001 problem set 3)
Use the Maple commands odeplot and the numeric option of dsolve (see
lecture 5) to explore the behavior of the forced "drum"

�x + x+ x2 + � _x = f(t)

a: Assume that
f(t) = c sin(!t)

with ! = 0:2 and starting with x = _x = 0. Estimate the maximum
amplitude of the forcing term c before the drum ruptures, assuming
zero damping �.
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b: Introduce a damping � = 0:2 and answer the questions in a:.

4 Non -inertial frames of reference. Kine-

matics of rotation.

4.1 Rotating the coordinate system, Euler angles.

LAST TIMES

� Discussed the pendulum in the context of Lagrangian mechanics.

� The constraints were such that the system had one degre of freedom.

� For the unforced pendulum closed expressions for the trajectories could
be found using the law of conservation of energy.

� In the case of the forced pendulum the situation became much more
complicated. A rich variety of qualitatively di�erent solutions appeared
as parameter values were changed.

� We introduced the method of Poincar�e section to analyze the di�erent
forms of behavior

TODAY
Want to start discussing problems in three spatial dimensions. Let us begin
simply by considering coordinate systems in which the axes are oriented
di�erently:

ROTATING A CARTESIAN COORDINATE SYSTEM
Let ~A be the vector

~A = îAx + ĵAy + k̂Az

The same vector in a coordinate system (̂i0; jh0; k̂0) which is rotated with
respect to the �rst can be written

~A = î0Ax0 + ĵ0Ay0 + k̂0Az0
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x’

y’
z’

x

y

z

A

Same vector in two coordinate
systems, one rotated with
respect to the other

We have
Ax0 = î0 � ~A = (̂i0 � î)Ax + (̂i0 � ĵ)Ay + (̂i0 � k̂)Az

Ay0 = ĵ0 � ~A = (̂j0 � î)Ax + (̂j0 � ĵ)Ay + (̂j0 � k̂)Az

Az0 = k̂0 � ~A = (k̂0 � î)Ax + (k̂0 � ĵ)Ay + (k̂0 � k̂)Az
In matrix form

0
B@ Ax0

Ay0

Az0

1
CA =

0
BB@

î0 � î î0 � ĵ î0 � k̂
ĵ0 � î ĵ0 � ĵ ĵ0 � k̂
k̂0 � î k̂0 � ĵ k̂0 � k̂

1
CCA
0
B@ Ax
Ay
Az

1
CA :

I will call the matrix

R =

0
BB@

î0 � î î0 � ĵ î0 � k̂
ĵ0 � î ĵ0 � ĵ ĵ0 � k̂
k̂0 � î k̂0 � ĵ k̂0 � k̂

1
CCA

the transformation matrix
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We can reverse the role of the primed and unprimed coordinates

0
B@ Ax
Ay
Az

1
CA =

0
BB@

î � î0 î � ĵ0 î � k̂0
ĵ � î0 ĵ � ĵ0 ĵ � k̂0
k̂ � î0 k̂ � ĵ0 k̂ � k̂0

1
CCA
0
B@ Ax0

Ay0

Az0

1
CA

The new transformation matrix is

R0 =

0
BB@

î � î0 î � ĵ0 î � k̂0
ĵ � î0 ĵ � ĵ0 ĵ � k̂0
k̂ � î0 k̂ � ĵ0 k̂ � k̂0

1
CCA

In more compact notation if
~A0 = R ~A

and
~A = R0 ~A0

then R' is the inverse of R
R0 = R�1

UNIT MATRIX

When I multiply a matrix with its inverse the result is the unit matrix

R�1R = RR�1 = 1

where

1 =

0
B@ 1 0 0

0 1 0
0 0 1

1
CA

It is customary to write Æik for the components of the unit vector and call it
the Kronecker Æ

Æik =

(
1 for i = k
0 i 6= k
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TRANSPOSE OF A MATRIX
If you turn the rows of a matrix into columns and columns into rows the
e�ects is to transpose the matrix. For example the transpose of

R =

0
BB@

î0 � î î0 � ĵ î0 � k̂
ĵ0 � î ĵ0 � ĵ ĵ0 � k̂
k̂0 � î k̂0 � ĵ k̂0 � k̂

1
CCA

is

RT =

0
BB@

î � î0 î � ĵ0 î � k̂0
ĵ � î0 ĵ � ĵ0 ĵ � k̂0
k̂ � î0 k̂ � ĵ0 k̂ � k̂0

1
CCA

We see that for rotations of the coordinate system

RT = R0 = R�1

i.e. the transpose is the same as the inverse

ROW AND COLUMN VECTORS
When using matrix notation there will be two kind of vectors:
Column vectors such as

~A =

0
B@ Ax
Ay
Az

1
CA

and row vectors such as
~BT = (Bx; By; Bz)

The transpose of a row vector is a column vector and vice versa

The scalar product of two vectors is then the matrix product

~BT ~A = (Bx; By; Bz)

0
B@ Ax
Ay
Az

1
CA

= BxAx +ByAy +BzAz = ~AT ~B

Suppose we make a coordinate transformation

~A0 = R ~A; ~B0 = R~B

119



To transpose a matrix product we reverse the order

(R~B)T = ~BTRT

Recall that the inverse of the transformation matrix is its transpose. We �nd

( ~A0)T ~B0 = ~ATRTR~B = ~AT ~B

The scalar product does not depend on the orientation of the coordinate
axes.
Another way of saying the same thing:
The scalar product is invariant under rotation
We may use this fact by choosing to evaluate products in the most convenient
coordinate system.

DECOMPOSITION INTO PARALLEL AND PERPENDICULAR COM-
PONENTS

A

B

B

Bθ

~B = (Bk; B?; 0)
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Bk = jBj cos �; B? = jBj sin �

Find

~A � ~B = AB cos �

j ~A� ~Bj = ABj sin �j

DOT AND CROSS PRODUCT

Cross-product = area spanned by the two vectors

B

A

|C|=|A B|=AB |sin(θ)|=area

θ

C=A B

Scalar triple product = volume spanned by three vectors:

CONSTRUCTION OF TRANSFORMATION MATRIX
EXAMPLE 1: Rotation about z�axis by �.

î0 � î = ĵ0 � ĵ = cos�; î0 � ĵ = ĵ0 � î = sin�

k̂0 � k̂ = 1
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b

a

c

R1 =

0
B@ cos� sin� 0
� sin� cos� 0

0 0 1

1
CA

EXAMPLE 2:
Rotation about x�axis by �:

ĵ0 � ĵ = k̂0 � k̂ = cos �; ĵ0 � k̂ = �k̂0 � ĵ = sin �

î0 � î = 1

R2 =

0
B@ 1 0 0

0 cos � sin �
0 � sin � cos �

1
CA

If we carry out a series of rotations the net result can be worked out using
the rules of matrix multiplication. For instance a rotation about the x�axis
followed by a rotation about the z�axis is represented by the rotation matrix

R = R1R2

(note the order of successive rotations right to left.) The order of rotations
matters. Consider the case where � = � = 90o
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x’

x

y

φ y’

y

z

θ

y’ z’

x-y plane after rotation
by angle φ about z-axis

y-z plane after rotation
by angle θ about x-axis

R = R1R2 =

0
B@ 0 1 0
�1 0 0
0 0 1

1
CA
0
B@ 1 0 0

0 0 1
0 �1 0

1
CA =

0
B@ 0 0 1
�1 0 0
0 �1 0

1
CA

while

R2R1 =

0
B@ 1 0 0

0 0 1
0 �1 0

1
CA
0
B@ 0 1 0
�1 0 0
0 0 1

1
CA =

0
B@ 0 1 0

0 0 1
1 0 0

1
CA

We describe this situation by saying that in general rotation matrices do not
commute. However, as we shall see in lecture 4.2 matrices corresponding to
in�nitesimal rotations do commute.

We wish to start on an alternative approach to describing the orientation of
a body in terms of three orientational angles. A standard way to do this is
through the Euler angles �; �;  .
In the �gure above the three Cartesian coordinate axes labeled 1,2,3 represent
the orientation of a set of axes,

�xed on the body, typically in principal axes directions. The three axes
labeled X; Y; Z are �xed in space. The orientation of the body-centered

123



X

Y

Z

1

2

3

ψ
φ

θ

Line of nodes

coordinate system can be thought of as coming from three successive rota-
tions:

1. by an angle � about the Z-axis

2. by an angle � about the new x-axis, which we will call the line of
nodes

3. by an angle  about new z�axis.
We see from the �gure that a unit vector in the direction of the line of nodes
can be written

êN = ê1 cos � ê2 sin 

The unit vector in the direction of the space Z�axis can be written

k̂ = ê3 cos � + ê2 sin � cos + ê1 sin � sin 

The rotation matrix R after all three rotations have been carried out is
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R =

0
B@ cos sin 0
� sin cos 0

0 0 1

1
CA
0
B@ 1 0 0

0 cos � sin �
0 � sin � cos�

1
CA
0
B@ cos� sin� 0
� sin� cos � 0

0 0 1

1
CA

SUMMARY
We have

� Discussed transformations corresponding to rotation of coordinate sys-
tem

� Explored matrix notation for vectors

� Showed that rotations leave dot product invariant

� Given physical interpretation of dot and vector product

� Shown how rotation transformation can be constructed from direction
cosines

� De�ned the Euler angles describing the orientation of a rigid body.

Note: The Rotation matrices here correspond to the case where the
same vector is represented in two di�erent coordinate systems. We
could equally well have rotated a vector in a single coordinate system.
The resulting rotation matrices would be the inverse (or transpose) of the
matrices discussed here. This may explain a discrepancy between my no-
tation and the one used in some math texts in current use. In the present
course we use these matrices almost exclusively to go from a body centered
coordinate system to a space centered system when describing the orientation
of a given solid body, hence our choice.

Example problem Problem 4.1.1
(Question 2 of 2001 problem set 1)

a: Find the components of the vector

~a = �î + ĵ+ k̂

in a coordinate system which is rotated about the î�axis by 600 coun-
terclockwise.
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b: The vector ~b is obtained by rotating the vector ~a above by 600 coun-
terclockwise about the î�axis. What are the components of ~b in the
î; ĵ; k̂ coordinate system.

4.2 Velocity and acceleration in di�erent coordinate

systems

LAST TIME

� Discussed how to rotate the coordinate system and de�ned the Euler
angles.

TODAY

� Describe particle trajectories in

{ Cartesian

{ plane polar

{ cylindrical

{ spherical coordinates.

� Need to discuss velocity and acceleration in these systems.

CARTESIAN COORDINATES

The trajectory of a particle is just the time dependent position vector

~r(t) = x(t)̂i + y(t)̂j+ z(t)k̂

The three unit vectors do not change in time and the velocity vector is
obtained simply by di�erentiating the components:

~v(t) =
d~r

dt
=
dx

dt
î+

dy

dt
ĵ +

dz

dt
k̂

Similarly the acceleration is

~a(t) =
d~v

dt
=
d2x

dt2
î+

d2y

dt2
ĵ +

d2z

dt2
k̂
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EXAMPLE: A ROLLING CYLINDER.

A cylinder (radius �) is rolling in the xy�plane
The axis moves with speed s along î .

Find the x� and y� coordinates of the position and speed of a point P on
the surface.

We have for the position vector to P ,

~r = ~r1 + ~r2

~r1 is the cylinder axis
~r2 extends from the axis to P

r1

r2

v
r

Trajectory

x

y
P

ρ

~r1 = st̂i+ �ĵ

~r2 = � sin(!t)̂i+ � cos(!t)̂j

The rolling constraint is that P has zero speed when touching the x�axis
This gives ! = s=� We �nd
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~r = [st + � sin(
st

�
)]̂i+ �[1 + cos(

st

�
)]̂j

~v = s[1 + cos(
st

�
)]̂i� s sin(

st

�
)̂j

The corresponding curves in the x � y plane are called cycloids. We have
come across them before in the brachistochrone problem lecture 3.4.

PLANE POLAR COORDINATES
The coordinates in this system are r; �

~r = r cos �î + r sin �î = r~er

r(t)

y

x

eθ er

i

j
θ

Trajectory

The Cartesian components of the polar unit vectors are

êr = cos �î+ sin �ĵ

ê� = � sin �î + cos �ĵ

The calculation of velocity and acceleration along a trajectory is now com-
plicated by the fact that êr and ê� are changing along the path.

The unit vector time derivatives are

dêr
dt

=
d�

dt
(� sin �î + cos �ĵ) =

d�

dt
ê�
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dê�
dt

= �d�
dt
(cos �î + sin �ĵ) = �d�

dt
êr

We have for the velocity

~v =
d

dt
(rêr) =

dr

dt
êr + r

dêr
dt

which yields

~v =
dr

dt
êr + r

d�

dt
ê�

The acceleration is

~a =
d2r

dt2
êr +

dr

dt

dêr
dt

+ (
dr

dt

d�

dt
+ r

d2�

dt2
)ê� + r

d�

dt

dê�
dt

or

~a = [
d2r

dt2
� r(

d�

dt
)2]êr + [r

d2�

dt2
+ 2

dr

dt

d�

dt
]ê�

EXAMPLE
A racing car moves in a circular path of radius a the speed of the car is s(t).
Find the velocity and acceleration in plane polar coordinates.

We have
dr

dt
= 0

d�

dt
=
s(t)

a
>From which we �nd

~v = s(t)ê�
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~a = �s
2

a
êr +

ds

dt
ê�

i

k

j

eρ

ρφ

ek

eφ

r

z

x

y

r=ρ eρ+z ez
eρ=i cos φ+ j sin φ

eφ=−i sin φ+ j cos φ

Trajectory

Cylindrical
coordinates

The vector k̂ does not change along the trajectory and we �nd

~v =
d�

dt
ê� + �

d�

dt
ê� +

dz

dt
êz

~a = [
d2�

dt2
� �(

d�

dt
)2]ê� + [2

d�

dt

d�

dt
+ �

d2�

dt2
]ê� +

d2z

dt2
êz

We have
dêr
dt

= (
d�

dt
cos � cos�� d�

dt
sin � sin�)̂i

+(
d�

dt
cos � sin�� d�

dt
sin � cos �)̂j� d�

dt
sin �k̂
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i

k

j
eθ

φ

eφ er

r

x

y

Trajectory

θ

x = r sin θ cos φ
y = r sin θ sin φ
z = r cos θ

er = i sin θ cos φ + j sin θ sin φ + k cos θ

eθ = i cos θ cos φ + j cos θ sin φ - k sin θ

eφ = -i sin φ + j cos φ

SPHERICAL COORDINATES

which simpli�es to
dêr
dt

=
d�

dt
sin �ê� +

d�

dt
ê�

The velocity is given by

~v =
dr

dt
êr + r

dêr
dt

from which we �nd
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~v =
dr

dt
êr + r

d�

dt
sin �ê� + r

d�

dt
ê�

By di�erentiation once more one can obtain an expressions for the accelera-
tion.

We have for the acceleration

~a =
d~v

dt
=
d2r

dt2
êr +

dr

dt

dêr
dt

+(
dr

dt

d�

dt
+ r

d2�

dt2
)ê� + r

d�

dt

dê�
dt

+(
dr

dt

d�

dt
sin � + r

d2�

dt2
sin � + r

d�

dt
cos �)ê�

+r
d�

dt
sin �

dê�
dt

We need
dê�
dt

= �d�
dt
êr +

d�

dt
cos �ê�

dê�
dt

= �d�
dt
êr +

d�

dt
cos �ê�

which yields the unfortunately rather messy expression

~a = [
d2r

dt2
� r(

d�

dt
)2 � r(

d�

dt
)2 sin2 �]êr

+[r
d2�

dt2
+ 2

dr

dt

d�

dt
� r(

d�

dt
)2 sin � cos �]ê�

+[2
dr

dt

d�

dt
sin � + 2r

d�

dt

d�

dt
cos � + r

d2�

dt2
sin �]ê�
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SUMMARY

We have derived formulas for the velocity and acceleration of a particle in

� Cartesian

� plane polar

� cylindrical

� spherical

coordinate systems.
Clearly, particularly in the spherical coordinate system, the expressions are
only only useful when, for some reason, several of the terms vanish.

The selection of which system to use depends on the symmetry of the prob-
lem!

Example problem

Problem 4.2.1
(Question 1 of 1999 problem set 1)
Prove that

d

dt
[~r � (~v � ~a)] = ~r � (~v � d~a

dt
)

Problem 4.2.2
(Question 3 of 1999 problem set 1)
A sphere of radius R is spinning about the z � axis with angular velocity
! in an inertial frame. An object is moving with speed v at 450 N on the
surface of the sphere in the southerly direction in a coordinate system �xed
on the sphere. Find the components of the velocity and acceleration in
the inertial frame, in spherical coordinates.

4.3 Non-inertial reference frames

LAST TIME
Derived formulas for velocity and acceleration in
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� Cartesian

� plane polar

� cylindrical

� spherical

coordinates TODAY
Wish to discuss non-inertial frames of reference

ACCELERATED FRAMES OF REFERENCE
Suppose a system is described by the Lagrangian

L =
m _x2

2
� U(~x)

in an inertial frame of reference. In Newtonian mechanics this the equation
of motion would be

m
d2~x(t)

dt2
= f(~x)

where
f(~x) = �rU(~x)

We wish to be able to describe this situation in a non-inertial coordinate
system where the position of a particle is ~r0 and the second coordinate system
is moving with velocity ~R(t) with respect to the �rst.

NEWTONIAN DESCRIPTION
Let ~x be the coordinate in the inertial frame

~x = ~r0 + ~R(t) (16)

We write

~A(t) =
d~V

dt
=
d2 ~R

dt2

~f(~r0) = f(~x); ~U(~r0) = U(~x)
The functions with ~ (tilde) are obtained by substituting the coordinate
transformation (1) in the original function.

m
d2~r0

dt2
= f(~x)�m

d2 ~R

dt2
= ~f(~r0)�m~A(t)
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The interpretation of this result is in principle straight-forward:
the acceleration of the primed coordinate system introduces a pseudo
-force �m~A

LAGRANGIAN VERSION
The particle velocity is ~v0 in the non-inertial frame. In the inertial frame

~w = ~v0 + ~V (t)

L =
m

2
((v0)2 + 2~v0 � ~V + V 2)� ~U(~r0)

The last term in the kinetic energy doesn't depend on any of the coordinates
and will not a�ect the equations of motion. The second last term can be
written

m~v0 � ~V =
d

dt
(m~r0 � ~V )�m~r0 � d

~V

dt
Since total time derivatives don't contribute to the equations of motion we
�nd for the transformed Lagrangian

L0 = mv02

2
� ~U(~r0)�m~r0 � ~A

The equation of motion for this Lagrangian is easily seen to be the same as
what we found in the Newtonian case.

ROTATING FRAMES OF REFERENCE
Let us now bring in a further frame of reference which is rotating with respect
to the primed reference. We saw in lecture 3.9 that transformation matrices
associated with a �nite angle in general don't commute, i.e. the order in
which successive rotations are carried out does matter. This is not the case
for in�nitesimal rotations. Consider e.g. an in�nitesimal rotation d�z
about the z�axis

R1 =

0
B@ cos�z sin�z 0
� sin�z cos�z 0

0 0 1

1
CA =

0
B@ 1 d�z 0
�d�z 1 0
0 0 1

1
CA+O(d�2z)

Similarly an in�nitesimal rotation d�x about the x�axis can be written

R2 =

0
B@ 1 0 0

0 1 d�x
0 �d�x 1

1
CA+O((d�2x)
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We now note that to lowest order in the in�nitesimals (i.e. neglecting
terms such as d�2x; d�

2
z; d�xd�z) we have

R = R2R1 = R1R2 =

0
B@ 1 d�z 0
�d�z 1 d�x
0 �d�x 1

1
CA

Because of the additivity property of the rotations we can represent an arbi-
trary in�nitesimal rotation as a vector

d~� = d�xî + d�y ĵ+ d�zk̂ = d�n̂

where n̂ is a unit vector in the direction of the instantaneous axis of
rotation and d� = jd~�j.

O

Axis of rotation

dr

r

n

dφ

From the �gure above we see that the displacement d~r of a point a distance
~r from a point O on the axis of rotation can be written

d~r = d�n̂� ~r = d~�� ~r

The corresponding rotation matrix is

R =

0
B@ 1 d�z d�y
�d�z 1 d�x
�d�y d�x 1

1
CA
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The velocity ~v of a point P a distance ~r from a point 0 on the instantaneous
axis of rotation is then

~v = ~! � ~r

Consider a frame of reference in which the origin O is moving with respect
to an inertial frame. In addition the frame rotates with angular velocity

~! = !n̂

about an axis through O. Let ~r be the position and ~v the velocity of a particle
in the rotating frame and let ~v 0 be the velocity of the same particle in the non-
rotating (primed) coordinate system moving with velocity ~V , acceleration ~A
with respect to the inertial frame

~v 0 = ~v + ~! � ~r

while the vector ~r and ~r 0 are the same vector, (but with di�erent coordi-
nates) in the rotating and non-rotating frames). U(~r) is the potential energy
expressed in terms of the coordinates of the rotating frame.
We have for the Lagrangian

L =
m

2
(v2 + 2~v � (~! � ~r) + (~! � ~r)2)�m~A � ~r � U(~r)

ENERGY AND MOMENTUM IN ROTATING FRAME
we use the notation

@L
@~v

= î
@L
@vx

+ ĵ
@L
@vy

+ k̂
@L
@vz

@L
@~r

= î
@L
@x

+ ĵ
@L
@y

+ k̂
@L
@z

The generalized momentum in the rotating frame of reference is

~p =
@L
@~v

= m~v +m~! � ~r = m~v0

i.e. the momentum has the same value as in the non-rotating frame.
The energy is

E = ~p � ~v � L = mv2 +m~v � (~! � ~r)
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�m
2
(v2 + 2~v � (~! � ~r) + (! � ~r)2) +m~A � ~r + U(~r)

=
1

2
mv2 � m

2
(! � ~r)2 +m~A � ~r + U(~r)

i.e the energy in the rotating frame contains an extra centrifugal term.

EQUATIONS OF MOTION
We have

d~p

dt
= m

d~v

dt
+m

d~!

dt
� ~r +m~! � ~v

Remembering that
~a � (~b� ~c) = c � (~a�~b)

@

@~r
(~v � (~! � ~r)) =

@

@~r
(~r � (~v � ~!)) = ~v � ~!

@

@~r
(~! � ~r) � (~! � ~r) =

@

@~r
((~! � ~r)� ~!) � ~r

= 2(~! � ~r)� ~!

Collecting terms we �nd

md~v

dt
= �@U

@~r
�m~A+ 2m~v � ~! +m~r � d~!

dt
+m~! � (~r � ~!)

The terms on the right hand side are

�@U
@~r

) original force

�m~A) due to accel: of non� rotating frame

2m~v � ~! ) Coriolis force

m~r � d~!

dt
) due to non� uniform rotation

m~! � (~r � ~!)) centrifugal force
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DEFLECTION OF FALLING BODY
The problem is to �nd the de
ection of a freely falling body from the vertical
due to the rotation of the earth. Since the de
ection will be small we only
calculate it to lowest order in the !. We have

U = �m~g � ~r
where ~g is in the �z�direction (downwards).
Neglecting the centrifugal force as being of order !2

d~v

dt
= 2~v � ~! + ~g

Next put
~v = ~v1 + ~v2

where
~v1 = ~gt

is the velocity in the absence of rotation, assumed to be zero initially. To
lowest order in !

d~v2
dt

= 2~v1 � ~! = 2t~g � ~!

If the initial height is h

~r = ~h+
g

2
t2 +

t3

3
~g � ~!

At latitude �
j~g � ~!j = g! cos(�)

and directed eastwards. If the time of 
ight is

t =

s
2h

g

the easterly de
ection is

y =
1

3
(
2h

g
)3=2g! cos �

SUMMARY
We have obtained equations of motion or a body moving
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� in a frame of reference accelerated with respect to an inertial frame of
reference

� in a frame of reference rotating with respect to an inertial frame.

In the latter case we found centrifugal, Coriolis and terms due to non-uniform
rotation.

We illustrated the e�ect of the Coriolis force by using a freely falling body
as an example.

Example problem Problem 4.3.1
(Question 1 of 1999 problem set 5)

A projectile is �red straight up with initial speed v0. Assuming g is
constant and ignoring air resistance, show

that the bullet will hit ground west of the initial point
of outward motion by an amount

4!v30 cos�

3g2

Problem 4.3.2
(Question 2 of 1999 problem set 5)

a: Find the magnitude and direction of the Coriolis force on a 1kg object
moving north parallel to the earth surface at a latitude of 45o N with
speed 1km s�1

b: What is the magnitude and direction of the centrifugal

force under the same conditions as in a. The radius of the earth is
approximately 6:4 106m.

Problem 4.3.3
(Question 1 of 2002 problem set 4)
In 1953 there was a severe 
ood along the Dutch coast (approximately 50oN).
At one place water 
owed from west to east with a speed of 1.25 m s�1 through
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a sea arm whose width is 4.8 km. Calculate the di�erence in sea levels at the
two coasts. Which coast would have the highest sea level? (Apparently the
actual height di�erence was three times larger due to wind shear).

Problem 4.3.4
(Question 2 of 2002 problem set 4)

A vector ~A has coordinates
A = (1; 1; 1)

in a Cartesian coordinate system. What are the coordinates in a system
rotated with respect to the �rst by the Euler angles

� = �; � =
�

2
;  =

�

4

Problem 4.3.5
(Question 4 of 2002 �nal)
a: A particle is dropped from rest (in the reference frame of the earth rotating
about its axis with angular velocity !) at height h directly above you. Find
the Coriolis de
ection from you when it reaches the ground. You may assume
that the acceleration of g is constant and that ! is small enough that the
Coriolis force is small compared to mg.
b: Estimate the minimum height from which it can be dropped and miss
you. The latitude of Vancouver is approximately 49o. If you wish to duck
the falling object, in which direction should you move?

Problem 4.3.6
(Question 3 of 2001 �nal)
An object with mass m moves in a horizontal plane with velocity v on the
surface of the earth at latitude �.
a:
Show that the magnitude of the horizontal component of the Coriolis force
is independent of the direction of motion of the particle. Find a formula for
the magnitude of the force.
b: Is the direction of the deviation to the right or to the left in the

1. northern hemisphere?

2. southern hemisphere?
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Problem 4.3.7
(Question 2 of 2000 �nal)
A bead of mass m slides without friction on a smooth circular wire in a
vertical plane. The wire is rotating about its vertical diameter with angular
velocity !. The acceleration of gravity is g
a:
Under what conditions is the bottom position stable?
b:
The bead oscillates back and forth with small amplitude about the bottom
position under conditions which are stable under a:. What is the period of
oscillation?
c:
When the bottom position is unstable �nd the stable equilibrium angle � of
the bead with respect to the vertical.

We have for the kinetic energy of a particle, expressed in terms of the coordi-
nates in a frame of reference which is rotating with constant angular velocity
! with respect to an inertial frame

T =
m

2
(v2 + 2~v � (~! � ~r) + (~! � ~r)2)

5 Central forces

5.1 Angular momentum. Central forces. Kepler's laws

. LAST TIMES

� Discussed coordinate transformations involving rotation

� Expressed velocity and acceleration in di�erent coordinate systems

� Introduced non inertial frames of reference

TODAY
We will allow some time for all this material to settle in and instead discuss
3-dimensional motion of a pair of masses which interact by forces which only
depend on the distance between them.
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� Historically the most important such problem is the motion of a planet
around its sun under the in
uence of gravity, the "Kepler problem".

� If there are no external forces the center of mass motion will be uniform
and the center of mass momentum is conserved.

� Will show that trajectories associated with the relative motion are de-
termined from laws of conservation of energy and angular momentum.
Again there is no need to solve the equations of motion explicitly.

RELATIVE AND CENTER OF MASS MOTION
Let us consider two massesM (e.g. the Sun) andm (a planet e.g. the Earth).

The position of the sun is ~R while the planet is at ~r, with the velocities being
~V and ~v, respectively. The position of the center of mass is

~rcm =
m~r +M ~R

M +m

we also introduce the relative coordinate

~rrel = ~r � ~R

We �nd

~r = ~rcm +
M

M +m
~rrel

~R = ~rcm � m

M +m
~rrel

~v = ~vcm +
M

M +m
~vrel

~V = ~vcm � m

M +m
~vrel

KINETIC AND POTENTIAL ENERGY AND THE LAGRANGIAN
The kinetic energy of the system is

T =
m~v2

2
+
M~V 2

2
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which we can write in terms of the relative and center of mass velocities as

T =
(M +m)v2cm

2
+
�v2rel
2

where � is the reduced mass

� =
Mm

M +m

We express ~rrel in spherical polar coordinates (see lecture 4.2. Dropping the
subscript rel for the relative coordinates r; �; �)

~vrel =
dr

dt
êr + r

d�

dt
sin �ê� + r

d�

dt
ê�

we �nd

T =
(M +m)v2cm

2
+
�

2
( _r2 + r2 sin2 � _�2 + r2 _�2)

We assume that the potential energy of interaction only depends on the
magnitude of the relative coordinate. The force associated with such a
potential is called a central force. In the special case of the gravitational
interaction the potential energy is

U(r) = �GmM
r

where G = 6:672 10�11 Nm2kg�2. Let us describe the center of mass motion
in a Cartesian coordinate system

vcm = vxî+ vy ĵ+ vzk̂

The Lagrangian is thus

L = T � U =
(M +m)[v2x + v2y + v2z ]

2
+
�

2
( _r2 + r2 sin2 � _�2 + r2 _�2)� U(r)

CONSERVATION CENTER OF MASS MOMENTUM
The Lagrangian doesn't depend on the position of the center of mass. The
center of mass momentum is thus conserved and the components vx; vy; vz
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of the corresponding velocity components are also constant. Without loss of
generality we choose to work in the reference frame where they are all zero.

ANGULAR MOMENTUM CONSERVATION
The Lagrangian doesn't depend on the angle �. The corresponding general-
ized momentum

p� =
@L
@ _�

= �r2 _� sin2 � = c = const

Suppose we choose coordinate axes so that the initial relative position and
velocity lies in the plane � = const. We then have c = 0 and _� will remain
zero. The Lagrangian equation for � is

d

dt

@L
@ _�

=
d

dt
�r2 _� =

@L
@�

= �r2 sin � cos � _�2

With this choice we see that since _� = 0 the angular momentum takes the
form

�r2 _� = l = const

and is a constant of the motion

This result can be interpreted physically as follows:

r

dr

dθ

� The radius vector ~r from the sun to the planet remains in the plane
de�ned by ~vrel.
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� In this plane the radius vector will span an area

dA = r2d�

in a time interval dt.

� The area swept per unit time is

dA

dt
= r2 _� =

l

�
= const

This result is known as Kepler's second law.

Some texts, e.g. the one by Hand and Finch employ a di�erent but equivalent
choice of coordinates. Instead of assuming that the orbit lies in the plane
� = const, they place it in the plane � = �=2 (x � y plane of the spherical
polar coordinate system).

RADIAL EQUATION OF MOTION
The Lagrangian equation for r is

d

dt

@L
@ _r

= ��r =
@L
@r

= �r(sin2 � _�2 + _�2)� dU
dr

If we choose the orbit to lie in the plane � = const and substitute the
expression angular momentum l we �nd

��r =
l2

�r3
� dU
dr

In the special case of the Gravitational interaction we �nd

��r =
l2

�r3
� k

r2

where k = GMm.

It is important to note that we substitute the angular momentum conser-
vation law into the equation of motion not into the Lagrangian. If we
do the substitution into the Lagrangian we would get the wrong equation
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of motion. The reason for this is that if we interprete the conservation law
l = �r2 _� as a constraint this constraint would be non-holonomic!

ENERGY CONSIDERATIONS
Since the Lagrangian doesn't depend on time the energy

E = T + U = const: =
� _r2

2
+

l2

2�r2
+
k

r

>From
v2rel = _r2 + r _�2

we �nd

_r2 =
2E

�
� l2

�2r2
+

2k

�r

Our analysis of this equation proceeds in an analogous way to what we did
for the pendulum (lecture 3.7). For dr=dt to be real the right hand side of
this equation must be positive.
The values of r for which _r is zero are turning points for r(t).
By inspecting the above expression we �nd

� If l = 0 we have d�=dt = 0. The orbits will head straight towards, or
away from, the center of mass.

{ If E > 0 there is no turning point for large r The orbits will extend
to or from r =1

{ If E < 0 the orbits will turn back towards the sun when

k

r
= �E

� If l 6= 0 we note that

lim
r!0

� l2

m2r2
= �1

Hence, there will always be a closest approach r = rmin

� If E > 0 The turning point at r = rmin is the only one. We shall show
that the orbits are hyperbolas.
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� If E = 0 the orbits still extends to and from r = 1. We shall show
that these orbits are parabolas.

� If E < 0 there is a second turning point at some r = rmax. The orbits
will be bounded and we shall show that they are ellipses.

� The families of curves hyperbolas, parabolas and ellipses are called
conic sections. Before we proceed we need to review conic sections!

SUMMARY
We have discussed the problem of two bodies in space interacting via a central
potential and

� separated the center of mass and relative motion

� introduced the concept of reduced mass

� showed that for particles in central force �eld angular momentum is
conserved.

� looked at Newton's law of gravitation as example of a central force
�eld.

� started to classify the di�erent types of orbits for the special case of a
gravitational potential.

Example problem Problem 5.1.1
(Question 3 of 2000 problem set 6)
Two particles with mass m1 and m2 interact with gravitational forces. They
start out from rest a distance r apart and are allowed to fall into each other.
How long does it take for them to collide?

5.2 Kepler problem continued. Properties of the or-

bits

LAST TIME
Discussed the two body problem with central forces and
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� separated the center of mass and relative motion and introduced the
concept of reduced mass

� showed that for particles in central force �eld angular momentum is
conserved.

� showed that Kepler's second law (equal area equal time) was a conse-
quence of angular momentum conservation.

� looked at Newton's law of gravitation as example of a central force
�eld, and started to classify the di�erent types of orbits for the special
case of a gravitational potential.

CONSERVATION OF ANGULAR MOMENTUM
Let us recall our notation:
M = mass of sun
m = mass of planet
� = Mm

M+m
= reduced mass

~r = radius vector from sun to planet
k = GMm parameter describing gravitational interaction strength.

~vrel =
dr

dt
êr + r

d�

dt
ê� = relative velocity of planet

In vector notation
~l = m~r � ~vrel = angular momentum.
We argued last time that conservation of angular momentum implied that
the orbits were restricted to the plane containing ~r and ~vrel i.e. the plane
perpendicular to ~l.
The angular momentum is

l = �r2
d�

dt

CONSERVATION OF ENERGY
The total energy in the c.m. frame is conserved:

E =
�v2

2
� k

r
= const:
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The kinetic energy is

�v2

2
=
�

2
(
dr

dt
)2 +

�r2

2
(
d�

dt
)2 =

�

2
(
dr

dt
)2 +

l2

2�r2

Substitution into the expression for the energy gives

dr

dt
= �

s
2E

�
+
2k

�r
� l2

�2r2

EQUATION FOR ORBIT
Combining the previous equation with

d�

dt
=

l

�r2

gives

d�

dr
= �

l
�r2q

2E
�
+ 2k

�r
� l2

�2r2

� = �
Z ldr

r2q
2�[E + k

r
]� l2

r2

This integral can be evaluated to yield

� = cos�1
l
r
� k�

lq
2�E + �2k2

l2

+ constant (17)

CHECK FOR DIMENSIONAL CONSISTENCY
The above is a complicated expression with lots of constants. In order to see
if it may be correct, let us check for dimensional consistency

[
l

r
] = kg m s�1

[k] = m3kg s�2

[
k�

l
] =

m3kg2s�2

kg m2s�1
= kg m s�1
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[
q
2�E] =

q
kg kg m2s�2 = kg m s�1

[

s
�2k2

l2
] = kg m s�1

OK!

EQUATION FOR THE ORBIT
We choose the orientation � = 0 so that the integration constant in (1) is
zero.

cos � =
l
r
� k�

lq
2�E + �2k2

l2

(18)

Let us de�ne

p =
l2

�k

� =

s
1 +

2El2

�k2
(19)

p has dimension length, while � is dimensionless. With these new constants
the equation for the orbit (2) simpli�es to

r = p� r� cos � (20)

CIRCULAR ORBITS
The expression inside the square root in (3) de�ning � must be positive.
Physically this means that there is a minimum energy Emin compatible
with a given angular momentum

Emin = ��k
2

2l2

When E = Emin; � = 0. The equation for the orbit is then just

r = p

i.e. the orbit is a circle of radius p.

ELLIPTIC ORBITS
If Emin < E < 0, we have 0 < � < 1. The equation (4) for the orbit will then
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describe an ellipse.
Let us �rst note that if the plane of the ellipse is taken to be the x� y plane
the equation for an ellipse in Cartesian coordinates can be written

(x� x0)
2

a2
+
(y � y0)

2

b2
= 1 (21)

where
x0; y0 = coordinates of center.
a = semi major axis.
b = minor axis.
The eccentricity is de�ned as the distance from the center to the focus

� =
a2 � b2

a2

To see that (4) can be written on the form (5) we introduce Cartesian coor-
dinates

r2 = x2 + y2

x = r cos �; y = r sin �

Squaring (4) we obtain
x2 + y2 = (p� �x)2

by rearranging terms we �nd

a =
p

1� �2

b =
pp

1� �2

x0 =
�p�
1� �2

= ��a
This demonstrates that the orbit is an ellipse with the sun in the focus- which
is known as Kepler's �rst law.

PARABOLIC ORBIT
If E = 0, � = 1. The equation for the orbit is then

r = p� �x

152



Squaring both sides gives

x2 + y2 = p2 + x2 � 2p�x

or
y2 = p2 � 2p�x

which is the equation for a parabola. The closest approach to the sun is p=2.
The x� axis is the axis of the parabola. The intercepts along the y � axis,
when x = 0, are �p.

HYPERBOLIC ORBITS
If E > 0, � > 1 we have

y2 � (�2 � 1)x2 = p2 � 2p�x

This expression can be written as the equation of the hyperbola

y2

b2
� (x� x0)

2

a2
= 1

where

x0 =
�p�p
�2 � 1

a =
p

�2 � 1

b =
pp
�2 � 1

as r!1
x

r
= cos � =

1

�

The angles of the asymptotes of the hyperbolas are thus

� = � cos�1
1

�

The attached Maple worksheet at http://www.physics.ubc.ca/~birger/n206l18.mws
(or .html) plots the orbits in the three cases � < 1; � = 1; � > 1.
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TIME DEPENDENCE OF THE ORBITS
The law of conservation of energy gave us an expression for the radial velocity
which we can integrate to yield

t = �
Z drq

2E
�
+ 2k

�r
� l2

�2r2

after some algebra using the de�nitions of the parameters p; � and a we �nd
after some algebra that this equation can be rewritten

t = �
s

�

2jEj
Z rdrq

a2�2 � (r � a)2

Let us introduce the new variable � by writing

r = a� a� cos �

dr = a� sin �d�

Substitution into the integral for t gives after a bit of algebra we �nd

t =

s
a3�

k

Z
d�(1� � cos �)

This integral can easily be performed and choosing the constant of integration
so that so that t = 0 at the closest approach to the sun (perihelion) we �nd
the following parametric description of the orbits

r = a(1� � cos �g

t =

s
a3�

k
(� � � sin �)

During one full orbit � will increase by 2�, hence we �nd for the period of
the orbit
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T = 2�

s
a3�

k

Put in words we �nd that the square of the period is proportional to the
cube of the semi-major axis which is Kepler's third law.
SUMMARY

� We continued our discussion of the Kepler problem.

� We showed that the laws of conservation of angular momentum and
energy allowed us to solve for the orbits in polar coordinates.

� When the energy is minimum value compatible with the angular mo-
mentum the orbits are circles.

� If Emin < E < 0. The orbits are ellipses with the sun in the focus.

� When E = 0 the orbits are parabolas.

� If E > 0 the orbits are hyperbolas.

� we also found parametric expressions for the time dependence of the
elliptic orbits and a simple formula for the period.

Example problem

Problem 5.2.1
(Question 1 of 2000 problem set 6) Two masses m and M are connected by
a weightless string of length a. Mass m rests on a friction-less table and the
string is threaded through a small hole. Mass M is connected to the other
end of the string and is constrained to only move up and down. Assume that
the string is long enough so that the mass M will not hit the bottom of the
table.
a: Write down the Lagrangian using the polar coordinates r; � of the mass
m as generalized coordinates.
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b: The angular momentum l associated with the polar angle � and the energy
E will be conserved. Eliminate _� from the expression for the energy. Write
the resulting expression as

E =
m +M

2
_r2 + Ueff(r)

c: Use a sketch Ueff (r) to describe the orbits of m qualitatively for di�erent
parameter values.
d: Under what circumstances will the orbits of m be circular.
e: How could you verify numerically for given parameter values if the orbits
r(�) are periodic? (You are not required to do the actual calculation, this is
the subject of one of the end of term projects.)

Problem 5.2.2
(Problem 2 of 2001 �nal exam)
A particle of mass m is attracted towards a �xed point (central force). The
potential energy is

U(r) = �ma
r2

where r is the distance to the �xed point and a is a constant (that is the force
is proportional to the inverse cube of the distance). The particle starts out

a distance ~c from the �xed point with a velocity
q
2a=c in a direction 45o

from ~c (away from the �xed point).
a:
Will the particle

1. move in an orbit bounded by a maximum and a minimum distance
from the �xed point?

2. hit the �xed point?

3. escape to in�nity?

b:
Find an equation r(�) for the orbit in a spherical coordinate system where
the initial velocity and position lies in the plane � = const.
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Problem 5.2.3
(Question 2 of 2000 problem set 6)
A particle moves in a central potential of the form

U(r) = �k
r
+
�

r2

a: Show that the equation for the orbit now can be written on the form

r = p� r� cos(��)

Are the formulas for p and � the same as for the Kepler problem? What is
the expression for �.

b: If � is small � will be close to unity and the orbits will be precessing
ellipses. Choose the unit of length so that p = 1 and plot the orbits for a
suitable value of �

Problem 5.2.4
(Question 3 of 1999 midterm)
The energy and angular momentum of a particle in a central potential V(r)
can be written in polar coordinates as

E =
m _r2

2
+
mr2 _�2

2
+ V (r)

M = mr2 _�

Assume the potential is on the form V (r) = � �
r2
When will a particle starting

with _r < 0 hit the origin? When will there be a closest approach rmin 6= 0

6 Rigid body dynamics

6.1 Kinetic energy of a rigid body.

LAST TIMES
discussed the Kepler problem.
TODAY
We wish to commence our discussion on rigid body dynamics. In lecture 4.3
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we derived a general formula for the Lagrangian in a non inertial frame of
reference.

L =
m

2
(v2 + 2~v � (~! � ~r) + (~! � ~r)2)�m~A � ~r � U(~r)

The origin of our coordinate system accelerates with acceleration ~A with
respect to an inertial frame of reference. In this system the position of a
particle is represented by the vector ~r, The non-inertial frame of reference
was also rotating with angular velocity ~! about an axis through its origin.
We also derived the equation of motion associated with this Lagrangian

md~v

dt
= �@U

@~r
�m~A+ 2m~v � ~! +m~r � d~!

dt
+m~! � (~r � ~!)

and identi�ed the di�erent terms. For this equation of motion to be valid
the acceleration ~A and angular velocity ~! must be externally imposed.
This assumption is reasonable enough when considering, say, a projectile on
earth, that is too small to have any detectable e�ect on the motion of the
earth.

TODAY
we wish to start examining the dynamics of a rigid body. Its motion will
still be described in terms of translation and rotation, but these will now be
the result of the forces and torques acting on the body.

We make the idealization of considering rigid bodies. Such an object can
be considered to consist of a set of points f�g each with mass m. We impose
the constraint that the distance between the di�erent points do not change
in time.

If we specify one point on a rigid body it may is still be rotated by an arbitrary
angle about an axis through this point. If we give the three coordinates of
the selected point, plus two angles specifying the orientation of the axis, plus
the angle of rotation we can in principle locate any point on the body. Hence
we need 6 coordinates to specify the position of a rigid body, which means
that a rigid body has 6 degrees of freedom (see also lecture 7 3.1).

Another way of arriving at the same result is to note that if you specify the
coordinates of a rigid body you need to specify the positions of three �xed
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points on it. If only one point is speci�ed the body is free to rotate about any
axis through that point. If two points are speci�ed one is still free to rotate
the body about an axis through the two points. If three points that do not
lie on as straight line are speci�ed the body is pinned down. However, the
nine coordinates describing the three points are constrained by the fact that
the distances r12; r13; r23 are �xed by the rigid body conditions. This leaves
6 degrees of freedom.

Of the 6 degrees of freedom it is convenient to let three describe the position
~R of a chosen point O on the body

~R = (Rx; Ry; Rz)

The other three degrees of freedom describes the orientation of the axes of a
coordinate system �xed on the rigid body (we will later show how to do this
through the Euler angles �; � and  de�ned in lecture 4.1).

Let ~P be some other point on the body. The position of this point in the
inertial frame is

~P = ~R + ~r

where ~r is the vector O! P . In some time interval dt the point O will move
a distance

d~R = ~V dt

where ~V is the velocity of the point O with respect to an inertial frame.

The point ~P will in the same time interval rotate an angle d� about some
axis n̂. We have

d~r = d� n̂� ~r

The angular velocity vector is

~! =
d�

dt
n̂

Hence
d~r

dt
= ~! � ~r
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O

Axis of rotation

dr

r

n

dφ

and the velocity of the point P in the inertial frame is

~v = ~V + ~! � ~r (22)

Now, suppose some-one comes along and says that the most important point
on the rigid body is not O but O0 located a distance ~a from O. The velocity
of the point O0 is

~V 0 = ~V + ~! � ~a (23)

The vector O0 ! P is
~r0 = ~r � ~a

Substituting (2) into (1) we �nd

~v0 = ~V 0 + ~! � ~r0

We conclude that the angular velocity vector does not depend on
our choice of reference point (O or O0). However, the translational
velocity will be di�erent see (2).

We wish to apply the Lagrangian formalism to the dynamics of a rigid body.
For this purpose we need a convenient description of its kinetic energy. The
kinetic energy of the mass point P is

T (P ) =
m

2
(~V + ~! � ~r)2 =

m

2
(V 2 + 2~V � (~! � ~r) + (! � ~r)2)
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The second term in the last expression can be rewritten

m~V � (~! � ~r) = m~r � (~V � ~!)

Let � be the angle between ~! and ~r. Then

(~! � ~r)2 = !2r2 sin2 � = !2r2 � (~! � ~r)2

The kinetic energy of the point P is thus

T (P ) =
m

2
V 2 +m~r � (~V � !) +

m

2
[!2r2 � (~! � ~r)2]

We next sum the kinetic energies of all the mass points � of the body noting
that ~V and ~! is the same for all the points. Let

M =
X
�

m

be the total mass. The position of the center of mass, ~rcm, is

~rcm =
1

M

X
�

~r�m

We �nd

T =
M

2
V 2 +M~rcm � (~V � !) +

1

2

X
�

m[!2r2� � (~! � ~r�)2]

It is often convenient to choose the reference point O to be the center of
mass. The expression for the kinetic energy then simpli�es to

T =
M

2
V 2 +

1

2

X
�

m[!2r2� � (~! � ~r�)2]

SUMMARY

� Of the 6 degrees of freedom of a rigid body 3 represent translational
motion of a reference point O on the body and 3 rotation of the body
about the reference point.
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� We showed that the angular velocity vector ~! is independent of the
choice of reference point unlike the translational velocity ~V .

� We have derived a general expression for the kinetic energy of a rigid
body.

� This expression simpli�es if the center of mass is chosen as the reference
point.

6.2 Moment of inertia tensor.

LAST TIME

� Showed that of the 6 degrees of freedom of a rigid body, 3 represent
translational motion of a reference point O on the body, 3 describe
rotation of the body about the reference point.

� Showed that the angular velocity vector ~! is independent of the choice
of reference point, unlike the translational velocity ~V .

� Derived a general expression for the kinetic energy of a rigid body.

� This expression simpli�es if the center of mass is chosen as the reference
point.

TODAY
We wish to introduce the concept of moment of inertia.

Recall the expression for the kinetic energy found last time

T =
M

2
V 2 +M~rcm � (~V � !) +

1

2

X
�

m[!2r2� � (~! � ~r�)2]

here
O = �xed reference point on body
~rcm = center of mass relative to O
m mass of point on body
~r� position relative to O of mass point
~! = angular velocity of body
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~V = translational velocity of O
M = mass of body.

We wish to rewrite the last term in the expression for the kinetic energy

1

2

X
�

m[!2r2� � (~! � ~r�)2] (24)

on component form, using the "dummy" indices i; j; k to represent any of the
three components x; y; z. In this notation

!2 =
X
i

!i!i

r2� =
X
k

r�kr�k

(~! � ~r�)2 =
X
ij

!ir�ir�j!j

Recalling the de�nition of the Kronecker Æ

Æij =

(
1 ; i = j
0 ; i 6= j

we also have
!2 =

X
ij

!i!jÆij

This allows us to rewrite (1) asX
�

X
ij

!i[Æij
X
k

r�kr�k � r�ir�j]!j �
X
ij

!iIij!j

where we de�ne the moment of inertia tensor (or matrix) as

Iij =
X
�

m

0
B@ y2� + z2� �x�y� �x�z�
�x�y� x2� + z2� �y�z�
�x�z� �y�z� x2� + y2�

1
CA

In vector notation we write X
ij

!iIij!j = ~! � I~!
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The kinetic energy of a rigid body is then

T =
M

2
V 2 +M~rcm � (~V � ~!) +

1

2
~! � I~!

In practice we will not be summing over discrete mass points but use a
continuum description of the rigid body. Let �(~r) be the mass density of
the body. The position of the center of mass of the body is then

~rcm =
1

M

Z
volume

d3r�(~r)~r

EXAMPLE
Center of mass of a solid hemisphere (half grapefruit)
For reasons of symmetry the c.m. must lie on an axis (we call this the
z � axis) through the center of the sphere, perpendicular to the cut. Let a
be the radius of the sphere. The mass of a slab of thickness dz parallel to
the cut is

dM = dz�(a2 � z2)�

the total mass is

M =
2��a3

3

we have

zcm =
��

M

Z a

0
z(a2 � z2)dz =

3a

8

The moment of inertia tensor for a continuous system can be written

I =
Z
volume

�(~r)d3r

0
B@ y2 + z2 �xy �xz

�xy x2 + z2 �yz
�xz �yz x2 + y2

1
CA

EXAMPLE
Moment of inertia of rectangular box (parallelepiped) about the c.m.
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Let a; b; c be the sides of the box parallel to the x; y; z-axes, respectively. We
have for a typical diagonal element of the moment of inertia tensor, calculated
with the center of mass as the reference point:

Ixx(cm) = �
Z a=2

�a=2
dx
Z b=2

�b=2
dy
Z c=2

�c=2
dz(y2 + z2) = �abc(

b2 + c2

12
) =

M(b2 + c2)

12

Similarly we have

Iyy(cm) =
M(a2 + c2)

12

Izz(cm) =
M(a2 + b2)

12

It is easy to see that the o�-diagonal elements are zero e.g.

Ixy = ��
Z a=2

�a=2
dx
Z b=2

�b=2
dy
Z c=2

�c=2
dz xy = 0

The moment of inertia matrix about the center of mass is thus

I(cm) =M

0
BB@

b2+c2

12
0 0

0 a2+c2

12
0

0 0 a2+b2

12

1
CCA

SHIFTING THE ORIGIN
We next consider the problem of calculating the moment of inertia matrix
about an arbitrary point, assuming the moments of inertia about the center
of mass are known.

Let the position of an arbitrary point P relative to the center of mass O be
~r. Let O0 be our new reference point and let the vector O ! O0 be ~a. The
position of P relative to O0 is thus

~r0 = ~r � ~a
A typical diagonal matrix element of the moment of inertia matrix about O0

is thus

I 0xx =
X
�

m[(y��ay)2+(z��az)2] =
X
�

m[y2�+a
2
y+ z

2
�+a

2
z�2ayy�� 2azz�]
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The last two terms in the square bracket are zero because y and z are coor-
dinates relative to the center of mass yielding for a typical diagonal matrix
element

I 0xx = Ixx +M(a2y + a2z)

Similarly for an o� diagonal matrix element

I 0xy = �X
�

m(x� � ax)(y� � ay) = Ixy �Maxay

We conclude that

I 0 = I +M

0
B@
a2y + a2z �axay �axaz
�ayax a2x + a2z �ayaz
�azax �azay a2x + a2y

1
CA

The moment of inertia about an arbitrary point is equal to the the moment
of inertia about the center of mass, plus the moment of inertia about the
point, if all the mass had been located at the center of mass. Some of you
will recognize this as a generalization of the parallel axis theorem that
you may have encountered in elementary mechanics.

EXAMPLE
Consider again the rectangular box we looked at earlier. The moment of
inertia at a corner located at

ax =
a

2
; ay =

b

2
; az =

c

2

relative to the center of mass is

I 0 =M

0
BB@

b2+c2

12
0 0

0 a2+c2

12
0

0 0 a2+b2

12

1
CCA+M

0
BB@

b2+c2

4
�ab

4
�ac

4

�ab
4

a2+c2

4
� bc

4

�ac
4

� bc
4

a2+b2

4

1
CCA

or

I 0 =M

0
BB@

b2+c2

3
�ab

4
�ac

4

�ab
4

a2+c2

3
� bc

4

�ac
4

� bc
4

a2+b2

3

1
CCA

SUMMARY
We have
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� de�ned the moment of inertia tensor

� expressed the kinetic energy of a rigid body in terms of this quantity

� given some examples of how it can be calculated.

Example problem Problem 6.2.1
(Question 2 of 2001 problem set 7) Three equal masses m are located at the
points (a; 0; 0); (0; a; 0); (0; 0; a) in a Cartesian coordinates system (�gure 2)

a

a
a

x

y

z

Figure 5:

a: Find the moment of inertia tensor about the origin.

b: Locate the center of mass.

c: Find the principal moments of inertia and directions of principal axes
about the center of mass.

6.3 Some moment of inertia problems.

LAST TIME
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� De�ned the moment of inertia tensor

� Expressed the kinetic energy of a rigid body in terms of this quantity

� Gave some examples of how it can be calculated.

TODAY
Solve a few sample problems involving moments of inertia.

EXAMPLE
Moment of inertia of a sphere about its center
By symmetry the three principal moments of inertia are equal

Ixx = Iyy = Izz = I

while all the o�-diagonal products of inertia are zero. We have with a the
radius of the sphere

Ixx + Iyy + Izz = 3I = 2
Z
�d3r(x2 + y2 + z2)

I =
2

3

Z a

0
dr 4�r2 r2 =

8��a5

15

The total mass is

M =
4��a3

3

Hence

I =
2Ma2

5

EXAMPLE
A massive cylinder and a cylindrical shell roll down an inclined
plane. Which is fastest?
The moment of inertia about its axis of a cylindrical shell of radius a and
thickness Æ << a is

�2�a3bÆ =Ma2

where b is the length of the cylinder, � the mass density and M the mass.
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The moment of inertia of a solid cylinder is

Izz = b�
Z a

0
dr2�rr2 =

�ba4

2
=
Ma2

2

If a cylinder has rolled down a vertical height drop h the kinetic energy will
be

Mgh =
MV 2

2
+
Izz!

2

2
where V is the speed of the center of mass and ! is the angular velocity. The
rolling constraint implies that V = a!. For the solid cylinder we �nd

Mgh =
Ma2!2

solid

2
+
Ma2!2

solid

4

or

!2
solid =

4gh

3a2

while we �nd for the shell

Mgh =
Ma2!2

shell

2
+
Ma2!2

shell

2

or

!2
shell =

gh

a2

i.e. the solid cylinder rolls faster!

EXAMPLE
The physical pendulum A rigid body that swings under the in
uence of
gravity about a �xed horizontal axis is called a physical pendulum. We label
that axis the x�axis. The constraint that the axis is �xed means that

~! = (!x; 0; 0)

The kinetic energy is then

T =
Ixx!

2
x

2
The radius of gyration is de�ned as

k =

s
Ixx
M
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whereM is the mass of the pendulum. We let l be the perpendicular distance
between the center of mass and the axis of rotation, and � the angle whose
angular velocity is !x with � = 0 corresponding to the case where the center
of mass is directly below the axis of rotation.

The Lagrangian of the pendulum is then

L =
Mk2 _�2

2
+Mgl cos �

with equation of motion

d

dt
(
@L
@ _�

)� @L
@�

=M(k2�� + gl sin �)

We conclude that the behavior of the physical pendulum is the same as
that of a mathematical pendulum ( pendulum with a point massM)with
e�ective length

leff =
k2

l
FINDING THE PRINCIPAL AXES

In general the moment of inertia tensor is non-diagonal, but since it is a real
symmetric matrix it can always be diagonalized with real and orthogonal
eigenvalues. If êi is an eigenvector of I with eigenvalue Ii

Iêi = Iiêi; i = 1; 2; 3

we refer to êi as a principal axis of I, and Ii as a principal moment. The
Cartesian coordinate system with axes êi is the principal axes frame. The
orthogonal rotation matrix R which diagonalizes the matrix I

RIR�1 =

0
B@ I1 0 0

0 I2 0
0 0 I3

1
CA

is

R =

0
B@ e1x e1y e1z
e2x e2y e2z
e3x e3y e3z

1
CA

Some general results:
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� If all three principal moments are equal (as e.g. for the moments of
inertia about the center of a sphere) the moment of inertia matrix is
proportional to the unit matrix, and any Cartesian frame is a principal
axis frame.

� If two principal moments are equal but di�erent from the third we talk
about a symmetric top. If e.g. I1 = I2 6= I3 we can choose the axes
perpendicular to e3 arbitrarily.

� If all three principal moments are di�erent we talk about an asym-
metric top.

� The principal moments satis�es the triangle inequality that the sum
of two principal moments is always larger than or or equal to the third.
If I1 + I2 = I3 the body is a plane sheet with normal along ê3.

Some comments about how to solve this numerically is given in the Maple
worksheet at http://www.physics.ubc.ca/~birger/p206l19.mws (or .html)
Example problems
Problem 6.3.1
(Question 3 of 1999 problem set 6) A sphere of radius a has a spherical cavity
of radius a=2 centered at a distance a=2 from the center of the center of the
sphere. Except for the cavity the mass is uniformly distributed.

a: Find the center of mass of the object. Find the moments of inertia
with respect to the center of the sphere.

b: Find the moments of inertia with respect to the center of mass.

Use coordinate systems in which the z-axis goes through the centers of the
sphere and the cavity.

Problem 6.3.2
(Question 1 of 2001 problem set 7)
A cylinder of massm radius a rolls down an inclined plane (Figure 1), starting
from rest at height h = 0. The angle of inclination is �.

a: Find the velocity and angular velocity of the cylinder as a function of
time.(The moment of inertia of the cylinder about its symmetry axis
is ma2=2).
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θ

z

x

N

mg

f

Figure 6:

b: Find the force of friction between the plane and the cylinder.

c: If the coeÆcient of static friction between the inclined plane and the
cylinder is �, What is the maximum value of the angle for the cylinder
to roll without slipping?

Problem 6.3.3
(Question 5 of 2002 �nal exam)
A sphere of radius r rolls without slipping under the in
uence of gravity down
a �xed larger sphere of radius R starting from rest near the top. Calculate
where it will fall o�.

Problem 6.3.4
(Question 5 of 2001 �nal exam)

A uniform rod of length r
q
(3), mass m, slides under the in
uence of gravity

with its ends on a smooth vertical circle of radius r.
a:
What is the equilibrium position of the rod?
b:
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Find the equation of motion of the rod using its angle � with the horizontal
as a generalized coordinate.
c: how much energy does the rod need to rotate rather than oscillate?

Problem 6.3.5
(Question 1 of 2000 �nal exam)
A thin square of side a, massm is located so that the corners are at [0,0,0],[a,0,0],[a.a,0],[0,a,0].
a: Find the moment of inertia tensor with respect to the origin.
b: Find directions of a set of principal axes.
c: What are the principal moments of inertia?

Problem 6.3.5
(Question 4 of 1999 �nal exam)

a: A uniform solid ball of mass m radius a rolls without slipping down an
inclined plane with angle of inclination �. What is the acceleration of
the ball along the plane.

b: Another ball with the same mass and radius rolls down the same plane.
The second ball is made of a denser material and contains a spherical
cavity at its center. The radius of the cavity is a=3. What is now the
acceleration of the second ball?

6.4 Lagrangian of a rigid body. Angular momenta and

torques.

LAST TIME
We solved some problems involving the moment of inertia tensor.
TODAY
We wish to make some general comments about the equations of motion of
a rigid body. In lecture 6.1 we found for the kinetic energy of a rigid body

T =
M

2
V 2 +M~rcm � (~V � ~!) +

1

2
~! � I~! (25)

Here
M = total mass of body
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~V = velocity of a reference point on the body.
~rcm = position of center of mass relative to reference point.
~! = angular velocity of body.
I = moment of inertia tensor.
We write for the Lagrangian of the body

L = T � U

LINEAR MOMENTUM
In a Newtonian description the total linear momentum of the body is

~P =
X
�

m~v�

where the velocity of the mass point � is

~v� = ~V + ~! � ~r�

so that
~P =M~V +M~! � ~rcm

If we use the vector identity

~rcm � (~V � ~!) = ~V � (~! � ~rcm)

and di�erentiate, we �nd (as expected) that the expression for the linear
momentum agrees with the Lagrangian de�nition of momentum

~P =
@L
@~V

=M~V +M~! � ~rcm

FORCES
We next assume that the total force ~F is the sum of forces distributed among
the mass points

~F =
X
�

~f�

Suppose one mass point is shifted by an amount Æ~r then

ÆU = ~f� � Æ~r�
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If we express U as the potential energy of all the mass points

~f� = � @U

@~r�

Suppose all the mass points are shifted by the same amount Æ ~R then

ÆU =
X
�

@U
@~r�

� Æ~r� = �Æ ~R �X
�

~f� = �Æ ~R � ~F

We thus can write
@L
@ ~R

= �@U
@ ~R

= ~F

The Lagrangian equation of motion associated with ~R is then nothing but

d~P

dt
= ~F

ANGULAR MOMENTUM
We write the total angular momentum ~l as the sum of the angular momenta
of all the mass points, then

~l =
X
�

m~r� � ~v� =
X
�

m~r� � (~V + ~! � ~r�)

=M~rcm � ~V +
X
�

m~r� � (~! � ~r�) (26)

In order to show that this expression is equivalent to the Lagrangian expres-
sion

~l =
@L
@~!

(27)

let us go back to the expression for the kinetic energy that we established
before we introduced the momentum of inertia tensor (lecture 6.1)

T =
M

2
V 2 +M~rcm � (~V � ~!) +

1

2

X
�

m(~! � ~r�)
2

Using
~rcm � (~V � ~!) = ~! � (~rcm � ~V )
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and
(~! � ~r�)

2 = ~! � (~r � (~! � ~r�))

we �nd
@T
@~!

=
@L
@~!

=M~rcm � ~V +
X
�

(m~r� � (~! � ~r�))

which shows that (2) and (3) agree.

TORQUES
The total torque ~N acting on a body is the sum of all the torques acting on
the mass points

~N =
X
�

~r� � ~f�

We write for the angular velocity

~! =
d~�

dt

and consider a small rotation of the body in which

Æ~r� = Æ~�� ~r�

The change in potential energy is

ÆU = �X
�

~f� � Æ~r� = �X
�

~f� � (Æ~�� ~r�) = �Æ~� �X
�

~r� � ~f� = �Æ~� � ~N

We thus have
@L

@~�
= �@U

@~�
= ~N

The Lagrangian equation of motion associated with ~� is thus

d~l

dt
= ~N

Finally, let us consider a shift in the reference point from O to O0 so that

~r0� = ~r� � ~a
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The torque about the new reference point is

~N 0 = ~N � ~a�X
�

f� = ~N � ~a� ~F

We conclude that if the net force on a rigid body is zero the torque is inde-
pendent of the reference point!

SUMMARY
We have analyzed the Lagrangian equations of motion for a rigid body in
terms of force ~F , torque ~N , momentum ~P and angular momentum ~l. We
found the equations of motion could be expressed as

d~P

dt
= ~F

d~l

dt
= ~N

Example problems
Problem 6.4.1
(Question 3 of 2001 problem set 7) A small steel ball rolls, without slipping,
back and forth in a vertical plane, inside a spherical bowl of radius b. The
radius of the ball is a.

b

θ

φ

s

s

a
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a: Write down the equation of motion using the angle � as generalized
coordinate (see �gure)

b: Find the period of small amplitude oscillations (sin � � �).

Problem 6.4.2
(Question 1 of 2002 �nal exam)
A car is started from rest with constant acceleration a, and with one of its
doors initially at right angles with the side of the car. Approximate the door
as a mass m distributed uniformly over a rectangle of height h and width w.
The door can rotate about a vertical axis along a side of the rectangle.
a: Derive an expression for the moment of inertia of the door about the axis
of rotation.
b: Find a formula for the time it takes for the door to close. (The formula
may involve an integral that you don't need to solve).
c: Make a rough estimate for the time for the door to close if the acceleration
is 1 ms�2. Assume reasonable values for the width and height of the door.

Problem 6.4.3
(Question 1 of 2001 �nal exam)
A uniform rod of mass m, length a, has one end attached to a smooth hinge
and can swing in a vertical plane (as a physical pendulum). The rod start
out in a horizontal position from rest and is allowed to fall.
a: Find the moment of inertia of the rod about a horizontal axis through the
hinge perpendicular to the rod.
b: Find the horizontal and vertical force on the hinge as a function of the
angle � of the rod with the vertical.
c: At what angle is the horizontal force on the hinge a maximum? In which
direction does it act?

Problem 6.4.4
(Question 3 of 2000 �nal exam)
A cylinder of radius a is balanced on top of a larger �xed cylinder of radius
b > a. The axes of the two cylinders are parallel. The balance is slightly
disturbed so that the top cylinder starts to roll down the �xed cylinder. The
coeÆcient of static friction is large enough that no slipping occurs as long
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as there is a normal force between the two cylinders. At a critical angle �c
between the line of centers and the vertical the rolling cylinder will separate
from the �xed one.
a: Find the equations of motion assuming the motion is rolling without
slipping.
b: Find the critical angle �c.

The moment of inertia of a cylinder about its axis is ma2

2
. The formula for

acceleration in plane polar coordinates is

~a = [
d2r

dt2
� r(

d�

dt
)2]êr + [r

d2�

dt2
+ 2

dr

dt

d�

dt
]ê�

Problem 6.4.4
(Question 3 of 1999 �nal exam)
A Thin uniform rod of length a and mass m is constrained to rotate with
constant angular velocity ~! about an axis through the center of the rod
making an angle � with the rod.

a: Find the magnitude and direction of the angular momentum.

b: Find the magnitude and direction of the torque.

6.5 Euler's equations for a rigid body.

LAST TIME
We analyzed the Lagrangian equations of motion for a rigid body in terms of
force ~F , torque ~N , momentum ~P and angular momentum ~l. We found the
equations of motion could be expressed as

d~P

dt
= ~F

d~l

dt
= ~N

The angular momentum vector ~l and momentum vector ~P in the above equa-
tions refer to an inertial frame, which in general will not be one in which the
moment of inertia tensor is diagonal. However, calculations are often much
simpler in a principal axis frame of reference.
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TODAY
We will consider a system in which the point of reference O is �xed. At
a given instant the body rotates with angular velocity ~! with respect to
the inertial frame. As we shall see, Euler's equation provides a convenient
framework for describing the time evolution of the components of the angular
velocity in the principal axis frame.

Suppose ~A is a vector in a direction which is �xed with respect to the rigid
body then in the inertial frame

d ~A

dt

������
inertial

= ~! � ~A

Suppose instead the vector ~A is changing at the rate

d ~A

dt

������
body

in the body centered reference frame. Then

d ~A

dt

������
inertial

= ~! � ~A+
d ~A

dt

������
body

We now let ê1; ê2; ê3 be a set of Cartesian unit vectors in the principal axis
directions on the body and let ~A = ~l be the angular momentum vector. On
component form

~! �~l = (!2l3 � !3l2)ê1 + (!3l1 � !1l3)ê2 + (!1l2 � !2l1)ê3

~l = I1!1ê1 + I2!2ê2 + I3!3ê3

where I1; I2; I3 are the eigenvalues of the moment of inertia tensor. Substi-
tuting into

~N =
d~l

dt

������
inertial

=
d~l

dt

������
body

+ ~! �~l

gives us Euler's equations
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N1 = I1
d!1
dt

+ (I3 � I2)!2!3

N2 = I2
d!2
dt

+ (I1 � I3)!3!1

N3 = I3
d!3
dt

+ (I2 � I1)!1!2

EXAMPLE
Free rotation of a symmetric top
An object for which

I1 = I2 6= I3

is called a symmetric top. The 3-axis is the symmetry axis. The earth
is a symmetric top to a very good approximation, with the symmetry axis
extending from the south to the north pole. The earth is slightly oblate
(fatter at the equator)

I3
I1
� 1:003

The angular velocity vector is slightly o� the N-S axis (by about 200 of arc).
External torques from the sun and the moon are suÆciently small that the
earth's rotation can be considered to be torque free. If we put ~N = 0 in
Euler's equation and I1 = I2 we get

0 = I1
d!1
dt

+ (I3 � I1)!2!3

0 = I2
d!2
dt

� (I3 � I1)!3!1

0 = I3
d!3
dt

We note that the component of the angular velocity about the symmetry
axis is conserved.

!3 = const

Let us de�ne


 =
I3 � I1
I1

!3
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The equations of motion for the remaining components of the angular velocity
are then

d!1
dt

= �
!2
d!2
dt

= 
!1

with solution
!1 = A cos(
t + �)

!2 = A sin(
t+ �)

ω3e3
North pole

ω1e1+ω2e2

The picture that emerges is as follows:
In the principal axis frame of reference, �xed on the body, the body appears to
be spinning about the symmetry axis with angular frequency !3. In addition
there is a component of the instantaneous axis of rotation perpendicular to
the symmetry axis. This component is rotating (or precessing) about the
symmetry axis with angular frequency 
. In the inertial frame the angular
momentum vector is constant. The body appears to be spinning about its
symmetry axis with angular velocity !3. This axis is tilted with respect to
the angular momentum direction, and it is precessing about it with angular
velocity 
.
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EXAMPLE

3

11

22

3

Stability of rotation near a principal axis.
Consider torque free rotation of an object (a tennis racket? a book?) for
which the three principal axes of inertia are di�erent. Let us assume that

I3 > I2 > I1

>From Euler's equations

0 = I1
d!1
dt

+ (I3 � I2)!2!3

0 = I2
d!2
dt

+ (I1 � I3)!3!1

0 = I3
d!3
dt

+ (I2 � I1)!1!2

Suppose the initial conditions are such that only one of the components of
the angular velocity, say !1, is nonzero. The object will then continue to
spin about the 1-axis inde�nitely. We now ask ourself the question is this
situation stable? If a small perturbation is added to the angular velocity
vector perpendicular to the axis of rotation, will this perturbation grow, stay
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the same or shrink? If the perturbation grows to become large the situation
is unstable, if the amplitude stays the same the motion is neutrally stable, if
the amplitude shrinks towards zero the motion is asymptotically stable. We
have the �rst situation if we attempt to stand a pencil about its sharp point.
The undamped pendulum which exhibits small oscillations about � = 0 is
an example of a neutrally stable situation. In the case of damped oscillation
around an equilibrium point this point is asymptotically stable.

Case 1:

Rotation about 1-axis.
Let us assume that initially the angular velocity vector ~! is close to the body
1-axis so that

!2; !3 << !1

The Euler equation for !1 allows us to make the approximation

!1 � 
 = const

Let us introduce the real constants (remember that I1 < I2 < I3)

a2 =
(I3 � I1)


I2

b2 =
(I2 � I1)


I3

The Euler equation for !2 and !3 then become

d!2
dt

= a2!3

d!3
dt

= �b2!2
with solution

!2 = Aa sin(abt + �)

!3 = Ab cos(abt + �)

We conclude that the solution remains bounded and that rotation about the
1-axis is neutrally stable
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Case 2:

Rotation about 2-axis.
Now, assume that initially the angular velocity vector ~! is close to the body
2-axis so that

!3; !1 << !2

The Euler equation for !2 now allows us to make the approximation

!2 � 
 = const

De�ne the real constants

c2 =
(I3 � I2)


I1

b2 =
(I2 � I1)


I3

The Euler equation for !1 and !3 then become

d!1
dt

= �c2!3

d!3
dt

= �b2!1
with solution

!2 = c(Aebct +Be�bct)

!3 = b(�Aebct +Be�bct)

If the boundary conditions are such that A 6= 0 the solution will grow
exponentially. We conclude that rotation about the 2-axis is unstable.

Case 3:

Rotation about 3-axis.
Finally, assume that initially the angular velocity vector ~! is close to the
body 3-axis so that

!1; !2 << !3

The Euler equation for !3 allows us to make the approximation

!3 � 
 = const
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With

c2 =
(I3 � I2)


I1

a2 =
(I3 � I1)


I2
The Euler equation for !2 and !3 then become

d!1
dt

= �c2!3
d!3
dt

= a2!2

with solution
!1 = Ac sin(bct + �)

!2 = �Ab cos(bct + �)

Hence, the rotation about the 3-axis is neutrally stable.

SUMMARY
We have derived Euler's equations for the rotation of a rigid body and given
a few examples of their application.

Example problems
Problem 6.5.1
(Question 1 of 1999 problem set 7)
A uniform block of mass m and dimensions a by 2a by 3a spins about a long
diagonal with angular velocity ! (as in Problem 2 of problem set 6). Find
the torque that must be exerted on the block to keep ! �xed in magnitude
and direction.

Problem 6.5.2
(Question 3 of 2001 problem set 8)

A cylindrical wheel of radius R rolls without slipping along a circular hori-
zontal path of radius a The jointed mechanism at A enables the wheel to be
tilted up or down in the vertical plane. Find the normal force exerted by the

oor on the wheel if the wheel is to keep to its path. The driving shaft is
rotated with constant angular velocity 
.
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A
R

Problem 6.5.3
(Question 2 of 2002 �nal exam)
a: A right cylinder has mass m, height h, radius r. Derive a formula for the
moment of inertia tensor about the center of mass. (Hint: When calculating
the moments of inertia about axes perpendicular to the axis of the cylinder
you may start with their sum and use a symmetry argument.)
b: The cylinder is rotating with angular velocity ! about an axis through
the center of mass. The axis of rotation reaches the top and bottom circular
surfaces at the edges (a distance r from the center of the circles). Find the
magnitude of the torque needed to maintain the rotation.
c: For what height to radius ratio will the torque in b: be zero.

Problem 6.5.4
(Question 4 of 2001 �nal exam)
A lamina is de�ned as a thin 
at body. Consider a lamina shaped lake a
rectangle of sides a and 2a, mass m
a:
Find the principal axes and moments of inertia of the body in a coordinate
system centered at one of the corners, with the x�axis along the side of
length a, the y�axis along a side of length 2a and the z� axis perpendicular
to the lamina.
b: The lamina rotates with constant angular velocity ! about the x�axis,
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which is in the vertical direction. Find the torque needed to sustain the
rotation.

Problem 6.5.5
(Question 4 of 2000 �nal exam)
A lamina is de�ned as a thin 
at body. Let the direction of the axis perpen-
dicular to the lamina be the body 3-axis.
a:
Show that for a lamina of arbitrary shape the principal moments of inertia
satisfy

I3 = I1 + I2

b:
Use Euler's equations of motion

N1 = I1
d!1
dt

+ (I3 � I2)!2!3

N2 = I2
d!2
dt

+ (I1 � I3)!3!1

N3 = I3
d!3
dt

+ (I2 � I1)!1!2

to show that when the torque ~N = 0

!2
1 + !2

2 = const

c: Under what condition will angular momentum component !3 be constant
as well.

6.6 Equation of motion for Euler angles. Symmetric

top

LAST TIME
Derived Euler's equations for the rotation of a rigid body and gave a few
examples of their application.

TODAY
We wish to present an alternative approach to the equations of motion in
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θ

Line of nodes

which we describe the orientation of a body in terms of three orientational
angles. A standard way to do this is through the Euler angles �; �;  .
In the �gure above the three Cartesian coordinate axes labeled 1,2,3 represent
the orientation of a set of axes, �xed on the body, typically in principal
axes directions. The three axes labeled X; Y; Z are �xed in space. The
orientation of the body-centered coordinate system can be thought of as
coming from three successive rotations:

1. by an angle � about the Z-axis

2. by an angle � about the new x-axis, which we will call the line of
nodes

3. by an angle  about new z�axis.
Our strategy is to express the three principal axis components !1; !2; !3 of
the angular velocity in terms of the rate of change, _�; _�; _ , of the Euler angles.
Substituting into he kinetic energy of rotation

T =
1

2
(I1!

2
1 + I2!

2
2 + I3!

2
3) (28)
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then allows us to construct a Lagrangian from which we can derive equations
of motion for the Euler angles.

We see from the �gure that a unit vector in the direction of the line of nodes
can be written

êN = ê1 cos � ê2 sin 

The unit vector in the direction of the space Z�axis can be written

k̂ = ê3 cos � + ê2 sin � cos + ê1 sin � sin 

We �nd
d~ 

dt
= _ ê3

d~�

dt
= _�(cos ê1 � sin ê2)

d~�

dt
= _�(sin � sin ê1 + sin � cos ê2 + cos �ê3)

Substitution into

~! =
d~ 

dt
+
d~�

dt
+
d~�

dt

then gives
!1 = ~! � ê1 = _� cos + _� sin � sin 

!2 = ~! � ê2 = � _� sin + _� sin � cos 

!3 = ~! � ê3 = _� cos � + _ 

These expressions can then be substituted into (1) to get an expression for
the kinetic energy which together with possible potential energy terms can
be used to construct the Lagrangian.

The general case
I1 6= I2 6= I3

is rather complicated and we will specialize to the case of the symmetric
top for which

I1 = I2 6= I3
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We �nd

T =
I3
2
( _� cos � + _ )2 +

I1
2
( _�2 + _�2 sin2 �)

Consider a top in which a point on the symmetry axis a distance a below
the c.m. is �xed in space. Let us assume that the force of gravity acts in the
spatial Z-direction. The potential energy is then

U = mga cos �

and the Lagrangian is

L =
I3
2
( _� cos � + _ )2 +

I1
2
( _�2 + _�2 sin2 �)�mga cos �

The Lagrangian doesn't depend on the angles  and � so the corresponding
components of the angular momentum will be conserved. We have

p � l3 =
@L
@ _ 

= I3( _� cos � + _ ) = const

p� � lZ =
@L
@ _�

= I3( _� cos � + _ ) cos � + I1 sin
2 � _� = const

We use these conservation laws to express _� and _ in terms of l3 and lZ :

_� =
lZ � l3 cos �

I1 sin
2 �

_ =
l3 � I3 _� cos �

I3
=
l3
I3
� cos �

lZ � l3 cos �

I1 sin
2 �

If we substitute these expressions into the formula for the energy

E =
I3
2
( _� cos � + _ )2 +

I1
2
( _�2 + _�2 sin2 �) +mga cos �

we �nd an expression on the form

E =
I1
2
_�2 + Ueff(�)
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i.e. we have equivalent one degree of freedom problem with an e�ec-
tive potential

Ueff =
(lZ � l3 cos �)

2

2I1 sin
2 �

+mga cos � +
l23
2I3

This expression is a bit easier to interprete if we make the substitution

u = cos �

As � increases from � = 0 to � = � u decreases from u = 1 to u = �1.

Ueff =
(lZ � l3u)

2

2I1(1� u2)
+mgau+

l23
2I3

We note that Ueff !1 as u! 1 and u! �1 and is �nite in between. For
any allowed value of the energy there must therefore be turning points u1
and u2 where _� = 0. The angle � will then nutate between these turning
points. The azimuthal angle of the symmetry axis of the top will be

�� �

2

Looking at the expression for _�

_� =
lZ � l3u

I1(1� u2)

we note that depending on the magnitude of l3 and lZ _� may or may not
change sign in the interval u1 < u < u2. In the latter case the precession of
the top will be monotonic in the former case the direction of precession
will not be constant. We will discuss the problem of the heavy symmetric
next time using Maple.

SUMMARY
We have

� de�ned the Euler angles, �; �;  describing the orientation of a rigid
body

� expressed the principal axis components of the angular velocity in terms
of the time derivatives of the Euler angles.
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� in the special case of the heavy symmetric top found an explicit ex-
pression for the kinetic energy of a rigid body in terms of the Euler
angles.

� commenced an analysis of the behavior of the heavy symmetric top.

7 Hamiltonian mechanics

7.1 Hamiltonian equations of motion. Legendre trans-

form.

LAST TIME
Finished our discussion of rigid body motion
TODAY
Start on our last major topic: Hamiltonian mechanics. The Hamiltonian
approach o�ers a gateway to generalizations of classical mechanics to new
areas of science ranging from quantum mechanics to thermodynamics and
statistical mechanics and beyond. Unfortunately, since there is not much
time left of the term we can only touch on a few highlights.

In the Lagrangian approach the basic dependent variables are the generalized
coordinates and velocities

L = L(qi; _qi; t)
In the Lagrangian equations of motion

d

dt

 
@L
@ _qi

!
� @L
@qi

= 0; i = 1; 2:::N

the generalized coordinates and velocities are treated di�erently. For this
reason we have to exercise some care when making use of constraints on the
generalized velocities arising e.g. from conservation laws. We are not allowed
to substitute such nonholonomic constraints directly into the Lagrangian, al-
though we can substitute holonomic constraints. Indeed with the Lagrangian
approach the actual value of the function does not seem to matter much, but
getting the correct functional dependence does matter. For example we are
free to multiply the Lagrangian by a constant or add a constant and we can
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add an arbitrary total time derivative. But, we are not allowed to substi-
tute into the Lagrangian the value of conserved momenta before taking the
derivatives to get the equations of motion. Only after the di�erential equa-
tions have been established are we allowed to do this substitution. So, to
extend the powerful computational methods of classical mechanics to other
areas of science it is useful to have some more 
exibility in the treatment of
variables. This is the main advantage of the Hamiltonian approach, while it
may not o�er that much of an advantage when it comes to solving practical
problems in mechanics.

THE HAMILTONIAN
In lecture 12 we de�ned the energy as

E =
X
i

pi _qi � L

If we change the value of the variables by in�nitesimal amounts the energy
changes by

dE =
X
i

( _qidpi + pid _qi � @L
@ _qi

d _qi � @L
@qi

dqi)� @L
@t
dt

Recalling that

pi =
@L
@ _qi

and making use of the Lagrangian equations of motion we �nd

dE =
X
i

( _qidpi � _pidqi)� @L
@t
dt (29)

Now imagine that we express _qi in terms of pi and qi and eliminate _qi from
the expression for energy. The resulting function

H(pi; qi; t) � E( _qi; qi; pi; t)

is called the Hamiltonian of the system. If the variables change by an
in�nitesimal amount the Hamiltonian changes by

dH =
X
i

(
@H

@pi
dpi +

@H

@qi
dqi)� @L

@t
(30)
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Comparing (1) and (2) we obtain the Hamiltonian equations of motion

_qi =
@H

@pi

_pi = �@H
@qi

dH

dt
=
@H

@t

The last equation follows from dividing (1) by dt and noting that _p �
dp=dt; _q � dq=dt.

EXAMPLE: Harmonic oscillator

L =
1

2
(m _q2 � kq2)

where m is the mass and k the spring constant.

p =
@L
@ _q

= m _q

hence

H =
p2

2m
+
kq2

2

The Hamiltonian equation of motion are then

_p = �@H
@q

= �kx

_q =
@H

@q
=

p

m

_H = 0

We see that these equation are, as could be expected, completely equivalent
to the Lagrangian equation of motion for the system. The last equation is just
a restatement of the law of conservation of energy. In e�ect, what we have
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done is replacing the second order di�erential equation, which constitutes the
Lagrangian equation of motion, by two �rst order equations. In the general
case of N degrees of freedom we replace N second order di�erential equations
by 2N �rst order ones.

EXAMPLE: Simple pendulum

L =
ma2 _�2

2
+mga cos �

p = ma2 _�

H =
p2

2ma2
�mga cos �

The Hamiltonian equations of motion are then

_� =
p

ma2

_p = �mga sin �
Again we get results that are completely equivalent to the results of the
Lagrangian approach.

The most important result e�ected by going from a Lagrangian to a Hamil-
tonian description is the change of variable _qi ) pi. This transformation,
commonly called Legendre transformation, plays an important rôle in
other areas of knowledge. At the turn of the last century Josiah Willard
Gibbs revolutionized thermodynamics by pushing an analogy with mechan-
ics. He divided the thermodynamic variables into pairs such as

entropy S/temperature T

volume V /pressure P

surface area A/surface tension �

length of spring x/ tension in spring T
number of molecules N/chemical potential �

electric �eld ~E/ electric polarization ~P
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etc.../etc

The common feature is that the products ST; V p; A�; xT ; N�; ~E ~P � � � all
have dimension energy in analogy with pi _q. The left member of the pairs can
all be classi�ed as generalized displacements while the right member as
a generalized force. The analogy is here a bit 
awed since it is _pi not pi
which is the force and qi not _qi that is the displacement. The thermodynamic
interpretation is that e.g PdV is the work done by the gas associated with
an in�nitesimal volume displacement. The second law of thermodynamics
says that for a reversible in�nitesimal change

dE = TdS � PdV + �dN � � �
Since the energy is a property of the state of the system (and not its
history) we can put the energy as a function of the generalized displacements

E = E(S; V; A; x;N;P::)
while the generalized forces can be de�ned as partial derivatives

T =
@E

@S
; P = �@E

@V
; � =

@E

@N
; � � �

The same analogy with mechanics occurs in microeconomics where themarginal
utility or demand D is the derivative

D =
@U

@Q

where Q is the quantity available or supply. In mechanics equilibrium re-
quires forces to be balanced, in thermodynamic equilibrium generalized forces
T; P; � � � � must be balanced while in economic equilibrium price balances
marginal utility making price � supply = money. Apparently Gibbs objected
to the latter analogy that "utility" is not a state variable analogous to en-
ergy but analogous to "heat" or "work" which depend on history, or to a
Lagrangian which depend on how the variables are classi�ed (kinetic versus
potential energy). This would put classical economics at par with the dis-
credited caloric theory of heat, in which heat was considered as a substance
that could 
ow. (This issue is discussed at length in a somewhat contro-
versial book by Philip Mirowski "More heat than light; Economics as social
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physics, physics as nature's economics", which students interested in history
of ideas may wish to look at).

In thermodynamics it is sometimes awkward that in the expression for the
energy the entropy is an independent variable, we don't generally have "en-
tropostats" that allow us to control the entropy of a system. Thermostats
are common though, we often put systems in contact with heat baths with
�xed temperature. We make a change in independent variable from S to T
by introducing the Helmholtz free energy F = E � TS. For an in�nitesimal
change in state

dF = dE � TdS � SdT = �SdT � PdV + �dN � � �
and we see that we must consider the free energy as a function of the tem-
perature rather than the entropy. Instead

S =
@F

@T

Similarly, as we shall see next time: in mechanics it is often useful to have
the freedom o�ered by the Hamiltonian approach in choosing variables.

In the Hamiltonian approach the dynamical variables, the coordinates and
momenta, are treated in a symmetric fashion. E.g. if we introduce new
variables

Pi = qi; Qi = �pi; ~H(Pi; Qi) = H(pi; qi)

then

� _pi =
@H

@qi
=
@ ~H

@Pi
= _Q

_qi =
@H

@pi
=
@ ~H

@Qi

= �Pi

i.e. the Hamiltonian ~H describes a dynamical system in which the rôles
of coordinates and momenta are reversed. Thus there is no longer a need
to worry about treating kinetic and potential energy di�erently. Similarly
in Gibbsian thermodynamics we don't need to worry about the di�erence
between heat and work, they are treated symmetrically.

SUMMARY
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� We carried out a transformation of variables fromL(qi; pi; t) toH(pi; qi; t).
That is the emphasis is shifted from generalized velocities to generalized
momenta.

� The transformation had strong analogies in other �elds of science no-
tably thermodynamics.

� In the Hamiltonian formalism we treat coordinates and momenta in
a symmetric fashion and there is no need to maintain a conceptual
distinction between kinetic and potential energy.

7.2 Poisson Brackets. Liouville's theorem.

LAST TIME
Started our discussion of Hamiltonian systems. In particular

� we carried out a Legendre transformation fromL(qi; pi; t) toH(pi; qi; t).
The emphasis thus shifted from generalized velocities to generalized
momenta.

� The transformation had strong analogies in other �elds of science, no-
tably thermodynamics.

� In the Hamiltonian formalism we treat coordinates and momenta in a
symmetric fashion, and there is no need to maintain a sharp conceptual
distinction between kinetic and potential energy.

� In Hamiltonian mechanics the second order Lagrangian equation

d

dt

@L
@ _qi

� @L
@qi

= 0

are replaced but the pair of �rst order equations

_qi =
@H

@pi

_pi = �@H
@qi
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TODAY
we wish to pursue the Hamiltonian formalism a bit further emphasizing con-
nections to other �elds of physics, particularly statistical and quantum me-
chanics.

LIOUVILLE'S THEOREM
Consider a system governed by Hamiltonian mechanics. For the time being
let us limit ourselves to one degree of freedom. As we shall see the general-
ization to several degrees of freedom is relatively straightforward. Suppose
that at time t = 0 the initial condition is p = p0, q = q0. At time t thereafter
the system will be in a new state

p = pt(p0; q0); q = qt(p0; q0)

The mathematical object above is generally called a mapping. In practice,
one cannot prepare a system exactly in the initial state, so we would like to
know what happens if the system is prepared inside an area

A = dp dq

surrounding the point p0q0 in phase space. After some time t this area will
be deformed into a new area

A0 = jJ jdp0 dq0
where jJ j is the determinant of the Jacobian matrix

J =

 @p
@p0

@p
@q0

@q
@p0

@q
@q0

!

We wish to �nd a di�erential equation for the time evolution of the Jacobian.
and therefore let t) dt be in�nitesimal. In this case we let

p = p0 + _pdt = p0 � @H

@q
dt

q = q0 + _qdt = q0 +
@H

@p
dt
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and we �nd for the Jacobian

J =

0
@ 1� dt @

2H
@p@q

�dt@2H
@q2

dt@
2H
@p2

1 + dt @
2H

@q@p

1
A

If we multiply out the Jacobian determinant

jJ j = 1 + dt

 
@2H

@q@p
� @2H

@p@q

!
+ (dt)2

0
@@2H
@q2

@2H

@p2
�
 
@2H

@q@p

!2
1
A

In the limit that dt is in�nitesimal the last term can be neglected. From the
theory of partial derivatives we know that the term linear in dt is identically
zero and we �nd the remarkable result that the area A satis�es the di�erential
equation

dA

dt
= 0

or A = constant. Consider next several degrees of freedom. The diagonal
part of the Jacobian can be written

J =

0
BBBBB@

1� dt @2H
@p1@q1

� � � � � � � � �
� � � 1 + dt @2H

@q1@p1
cdots � � �

� � � � � � 1� dt @2H
@p2@q2

� � �
� � � � � � � � � 1 + dt @2H

@q2@p2

1
CCCCCA

Again, it is easy to see that when multiplying out the determinant, terms
linear in dt will cancel, and we get the same result as before.

We form a mental picture of this situation by imagining the time evolution of
the system trajectory as the motion of an incompressible 
uid e.g. a cup
of co�ee is to a good approximation incompressible under normal conditions.
The initial "area" dp0dq0 is then analogous a drop of milk. If the cup is
stirred the milk will spread. Nevertheless, the volume of milk stays constant.

We have brie
y encountered dissipative systems in connection with drag,
friction and the damped forced pendulum. In such systems the volume of
phase space will shrink to a point, if the system approaches a unique equi-
librium. Alternatively, if a dissipative system doesn't come to complete rest,
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it will approach an attractor. We saw in the case of the forced pendulum
that this attractor does not necessary have integer dimension- it could be
a "strange attractor" of fractal dimension. We later show how Liouville's
theorem can be interpreted in a "semiclassical" approximation to quantum
mechanics.

POISSON BRACKETS
Let f(qi; pi; t) and g(qi; pi; t) be two functions of the generalized coordinates
and momenta. The Poisson bracket [f; g] is de�ned as

[f; g] �X
i

(
@f

@pi

@g

@qi
� @f

@qi

@g

@pi
)

One use of this quantity is to compute the time evolution of arbitrary func-
tions of the generalized coordinates and momenta. We have, using the equa-
tions of motion

df

dt
=
@f

@t
+
X
i

( _qi
@f

@qi
+ _pi

@f

@pi
) =

@f

@t
+
X
i

(
@H

@pi

@f

@qi
� @H

@pi

@f

@pi
)

or

df

dt
=
@f

@t
+ [H; f ]

If we specialize to the case of functions that do not depend explicitly on time
we �nd

df

dt
= [H; f ]

We have previously shown that if H does not depend on a particular coordi-
nate the corresponding momentum is conserved. If the Poisson bracket with
the Hamiltonian of a certain quantity vanishes this quantity is conserved.
This result suggests another use of the Poisson bracket: to establish new
conservation laws.

Some properties of Poisson brackets that follow more or less immediately
from the de�nition:
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� it is antisymmetric
[f; g] = �[g; f ]

� the Poisson bracket with a constant c is always zero

[f; c] = 0

� it is linear
[f1 + f2; g] = [f1; g] + [f2; g]

� it satis�es the chain rule

[f1f2; g] = f1[f2; g] + f2[f1; g]

� Some special Poisson brackets: Suppose qi is a generalized coordinate
and pi a generalized momentum and f a function of coordinates and
momenta

[f; qi] =
@f

@pi

[f; pi] = � @f
@qi

[qi; qk] = [pi; pk] = 0; [pi; qk] = Æik

where Æi;k is the Kronecker delta.

An important conceptual aspect of Poisson brackets is that they have a quan-
tum analog

[f; g]) 1

i�h
[fg � gf ]

where on the right hand side f; g are the quantum operators corresponding
to the classical functions on the left. If two operators commute it is in
principle possible to prepare a system in an eigenstate of both. If they do
not commute they satisfy uncertainty relations.
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8 Suggestions for optional end of term projects.

Problem 8.1: Sensitivity to initial conditions.
(See section 1. of "The Nature of Deterministic Chaos" of the pendulum lab
http://monet.physik.unibas.ch/~elmer/pendulum/chaos.htm
and the Maple worksheet
http://physics.ubc.ca/~birger/n206l16c.mws (or .html)
for the stroboscopic plots in lecture 3.9). Consider a horizontally driven
damped pendulum and pick two solutions with almost identical initial con-
ditions. Discuss how the di�erence in angle grows or shrinks in time using
parameter values so that
a: the solution approaches a limit cycle
b: the solutions move on a strange attractor
c: When the two solutions diverge wildly, will the stroboscopic plot of the
strange attractor look di�erent, depending on the initial condition?

Problem 8.2: The foldover e�ect (See section 1: of "Nonlinear Reso-
nance" of the pendulum lab
http://monet.physik.unibas.ch/~elmer/pendulum/nonres.htm and the Maple
worksheet
http://physics.ubc.ca/~birger/n206l16c.mws (or .html)
of lecture 3.9). Consider the horizontally driven pendulum and monitor the
root mean square amplitude of the oscillations when the frequency is
slowly increased past the main resonance starting with a value below the
resonance frequency.
slowly decreased past the main resonance starting with a value above the
resonance frequency. Demonstrate the existence of hysteresis when the am-
plitude of forcing is large enough.

Problem 8.3:(Continuation of Problem 1 of problem set 6 2000.) It is
convenient to use the dimensionless quantities de�ned in the model solution:
http://physics.ubc.ca/~birger/n206ts6/index.html
According to this parameterization the dimensionless length

� =
r

a
; a =

 
l2

mMg

!1=3
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in terms of dimensionless time

� =
t

T
; T =

ma2

l

are solutions to the equations

d�

d�
=

1

�2

� =
�

2
(
d�

d�
)2 + u(�)

where

u(�) =
1

2�2
+ �

� =
M +m

T 2

� =
E

U0

with
U0 =Mga

and E; l the energy and angular momentum respectively.
a: Write a routine that computes the change � in the angle � when � changes
from �1 to �2 and back, where �1; �2 are solutions to �� u(�) = 0.
b: Pick a convenient value of � (e.g. � = 3) and �nd by trial and error values
of � for which

� =
N1

N2
�

and N1 and N2 are small integers.
c: Plot the orbits for some of the parameter values found under b:.

Problem 8.4: Schwarzschild geodesics.
In the general theory of relativity the space time geometry surrounding a
massive star is described by the Schwarzschild metric

ds2 = (1� 2GM

c2r
)c2d� 2 � dr2

1� 2GM
c2r

� r2(d�2 + sin2 �d�2)
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HereM is the mass of the star, G is the gravitational constant, c the speed of
light, �; r; �; � coordinates of a space-time point using spherical polar coordi-
nates for the spatial part. The time � is the time as seen by an observer far
away from the star. An object such as the light planet Mercury will follow a
geodesic path governed by the variational principle

Æ
Z
ds = 0

and s is the "proper time" of an observer moving with the object. In general
relativity it is conventional to let "time" and "mass" have dimension length
and work with

m =
GM

c2
; t = c�

The variational principle then becomes

0 = Æ
Z
ds

vuut(1� 2m

r
) _t2 � _r2

1� 2m
r

� r2( _�2 + sin2 � _�2)

where "dot" indicates di�erentiation with respect to s
It can be shown that we may replace the variational principle by

0 = Æ
Z
ds((1� 2m

r
) _t2 � _r2

1� 2m
r

� r2( _�2 + sin2 � _�2))

Unless you are close to a black -hole (and have other things to worry about)

2m

r
<< 1

a: By manipulating the conservation laws in much the same manner as we
did for the Kepler problem, obtain an equation for the orbit in terms of an
e�ective potential.
b: Show that to lowest order in 2m=r we recover the Kepler result.
c: Show that to next order in 2m=r we recover an e�ective potential of sim-
ilar to the one found in problem 2 of problem set 6 2000. One di�erence is
that the correction term is proportional to 1=r3 not 1=r2

d: Integrate the equation of motion numerically ( Lecture ?? has an associ-
ated Maple worksheet
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http://physics.ubc.ca/~birger/p206l20.html
which does a similar integration for the symmetric top) to estimate the pre-
cession for a special case. (E.g., you may dig out astronomical data for
Mercury. Since the precession in this case is very small you may run into
problems with numerical accuracy. You may instead wish to replace Mercury
by a virtual planet for which the correction is larger. If you visit the web site
of Kristin Schleich and Don Witt
http://noether.physics.ubc.ca/Sims/
you will �nd a Java simulation of Schwarzschild orbits and some more hints
for this problem.

Problem 8.5: From 
utter to tumble.
This problem is based on a paper by Andrew Belmonte, Hagai Eisenberg and
Elisha Moses in Physical Review Letters Vol. 81 page 345-48. The paper
describes the behavior of thin 
at strip such as a falling paper strip which is
constrained to move in two dimensions and is falling under the in
uence of
gravity and drag forces. The paper is a very elegant example of the usefulness
of dimensional analysis of the type we encountered when discussing drag in
lecture 4. However, this time it is the Froude number not the Reynolds
number which is important. You may simulate the model described by the
equations for _Vx; _Vy; _! on p. 347, by plotting �(t) and trajectories of the
center of mass in the x � y�plane (or by visualizing the results by some
other means e.g. animation, but beware, being ambitious here may be quite
time consuming!). The numerical di�erential equation solver of Maple should
be adequate. Articles in the Physical Review Letters can be down-loaded
from computers in the UBC domain from the e-journals at the UBC Library
web-site.
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