next up previous
Next: About this document ...

PHYSICS 206
Problem set 8 2001. Solution.



Problem 1:
Perhaps the most direct method to solve this problem is to start from the expression for the angular moment for a sum of mass points dm

\begin{displaymath}\vec{l}=\sum_\alpha m\vec{r}_\alpha\times\vec{v}_\alpha\end{displaymath}

Consider a mass element dm=mds/a a distance s from the center of mass of the rod. The z-axis is the axis of rotation. At some instance the mass element will be located at

\begin{displaymath}x=s\sin\theta\cos(\omega t),\;\;y=s\sin\theta\sin(\omega t);\;\;z=s\cos\theta\end{displaymath}

The corresponding velocities are

\begin{displaymath}v_x=-s\omega\sin\theta\sin(\omega t),\;\;v_y=s\omega\sin\theta\cos(\omega t),v_z=0\end{displaymath}

a:
The angular momentum is

\begin{displaymath}\int_{-a/2}^{a/s}dl=\frac{m}{a}\int_{-a/2}^{a/s}ds\;\vec{r}\times\vec{v}\end{displaymath}


\begin{displaymath}=\frac{ma^2\omega}{12}\{-\cos\theta\sin\theta[\hat{i}\cos(\omega t)+
\hat{j}\sin(\omega t)]+\hat{k}\sin^2\theta\}\end{displaymath}

b:
The torque is

\begin{displaymath}\vec{N}=\frac{d\vec{l}}{dt}=\frac{ma^2\omega^2}{12}\cos\theta\sin\theta[
\hat{i}\sin(\omega t)-\hat{j}\cos(\omega t)]\end{displaymath}



Problem 2:

\begin{displaymath}{\cal T}=\frac{mv^2}{2}+\frac{I\omega^2}{2}=\frac{v^2}{2}(m+\frac{I}{a^2})\end{displaymath}


\begin{displaymath}{\cal V}=-msg\sin{\theta}\end{displaymath}


\begin{displaymath}(1+\frac{I}{ma^2})\ddot{s}=g\sin\theta\end{displaymath}

a:

\begin{displaymath}I=\frac{2}{5}ma^2\end{displaymath}


\begin{displaymath}\ddot s=\frac{5}{7}g\sin\theta=0.7142857143g\sin\theta\end{displaymath}

b:
The volume of the ball excluding the cavity is

\begin{displaymath}\frac{4\pi}{3}(a^3-\frac{a^3}{27})\end{displaymath}

If the higher density ball had been solid its mass would have been 27m/26. The moment of inertia is thus

\begin{displaymath}\frac{2ma^2}{5}(\frac{27}{26}-\frac{1}{26\times 9})=ma^2\frac{242}{585}\end{displaymath}


\begin{displaymath}\ddot{s}=\frac{g\sin\theta}{(1+\frac{I}{ma^2})}=\frac{585g\sin\theta }{827}
=.7073760579g\sin\theta\end{displaymath}



Problem 3:

\begin{figure}
\epsfysize=180pt
\epsffile{millst.eps}
\end{figure}


We let A be the origin of our body centered coordinate system, 1 the direction out of the plane of the paper, 2 the axis from A to the center of the wheel and 3 the vertical. For the wheel to stay on its path (without falling or flying up) $\omega_1=0$. From Euler's equations

\begin{displaymath}N_1=\omega_2\omega_3(I_3-I_2)\end{displaymath}

We have

\begin{displaymath}\omega_3=\Omega\end{displaymath}

For the wheel to roll without slipping

\begin{displaymath}D\Omega_2=\omega_2R\end{displaymath}

The moment of inertia of a disk about an axis perpendicular to the plane of the disk is

\begin{displaymath}I_2=\frac{mR^2}{2}\end{displaymath}

The moment of inertia of a disk about an axis in the plane of the disk through its center is mR2/4 giving

\begin{displaymath}I_3=\frac{mR^2}{4}+mD^2\end{displaymath}

Hence the torque is

\begin{displaymath}N_1=\frac{\Omega^2 D}{R}(mD^2-\frac{mR^2}{4})=(mg-n)D\end{displaymath}

where n is the normal force. We find

\begin{displaymath}n=m[g-\Omega^2(\frac{D^2}{R}-\frac{R}{4})]\end{displaymath}

Return to title page

 
next up previous
Next: About this document ...
Birger Bergersen
2001-04-08