next up previous
Next: About this document ...

Large PHYSICS 206
Problem set 7 2001. Solution.


Problem 1:
a:
The velocity of the point of contact is zero. Therefore, the force of friction does no work and energy is conserved. Let h be the vertical drop, v the velocity of the center of mass, and $\omega$ the angular velocity, and

\begin{displaymath}I=\frac{ma^2}{2}\end{displaymath}

the moment of inertia. Energy conservation gives

\begin{displaymath}mgh=\frac{ma^2\omega^2}{4}+\frac{mv^2}{2}=\frac{3mv^2}{4}\end{displaymath}

where we have used $v=a\omega$. If s is the distance travelled we obtain

\begin{displaymath}v=\frac{ds}{dt}=\sqrt{\frac{4gh}{3}}=\sqrt{\frac{4gs\sin\theta}{3}}\end{displaymath}

which can be integrated to give

\begin{displaymath}\sqrt{\frac{3 s\sin\theta}{g}}=t\;\end{displaymath}

or

\begin{displaymath}s=\frac{gt^2\sin\theta}{3}\end{displaymath}


\begin{displaymath}v=\frac{2gt\sin\theta}{3};\;\;\omega=\frac{2gt\sin\theta}{3a}\end{displaymath}

b:
We have for the torque with f the force of friction

\begin{displaymath}fa=I\dot{\omega};\;\;f=\frac{mg\sin\theta}{3}\end{displaymath}

c:
The normal force is $mg\cos\theta$, so the the maximum angle is given by

\begin{displaymath}\tan\theta_{max}=3\mu\end{displaymath}



Problem 2:
a:
The moment of inertia tensor about the origin is

\begin{displaymath}I=m\left(\begin{array}{ccc}
2a^2&0&0\\
0&2a^2&0\\
0&0&2a^2\\
\end{array}\right)\end{displaymath}

b: The center of mass is at

\begin{displaymath}\vec{r}_{cm}=\frac{a}{3}(\hat{i}+\hat{j}+\hat{k})\end{displaymath}

c:
We have from the parallel axis thorem

\begin{displaymath}I=I_{cm}+3ma^2\left(\begin{array}{rrr}
\frac{2}{9}&-\frac{1}...
...
-\frac{1}{9}&-\frac{1}{9}&\frac{2}{9}\\
\end{array}\right)\end{displaymath}

giving

\begin{displaymath}I_{cm}=ma^2\left(\begin{array}{lcr}
\frac{4}{3}&\frac{1}{3}&...
...\\
\frac{1}{3}&\frac{1}{3}&\frac{4}{3}\\
\end{array}\right)\end{displaymath}

For reasons of symmetry one of the pricipal axis must extend in the direction from the origin to the center of mass

\begin{displaymath}\hat{e}_3=\frac{1}{\sqrt{3}}[1,1,1]\end{displaymath}

The corresponding moment of inertia is

I3=2ma2

Any axis perpendicular to this axis is also a principal axis (the object is a symmetric top)

I2=I1=ma2

A possible choice of directions is

\begin{displaymath}\hat{e}_1=\frac{1}{\sqrt{2}}[1,-1,0],\;\;\hat{e}_2=\frac{1}{\sqrt{6}}[1,1,-2]\end{displaymath}



Problem 3:
a:
The kinetic energy is

\begin{displaymath}\frac{mv^2_{cm}}{2}+\frac{I\omega^2}{2}\end{displaymath}


\begin{displaymath}v_{cm}=(b-a)\dot\theta\end{displaymath}

The angular velocity is determined by the condition that the point of contact has zero velocity

\begin{displaymath}a\omega=v_{cm}\end{displaymath}

The moment of inertia of a sphere is I=2ma2/5 so that

\begin{displaymath}{\cal L}=\frac{m}{2}(b-a)^2(1+\frac{2}{5})\dot\theta+mg(b-a)\cos\theta\end{displaymath}


\begin{displaymath}\frac{7}{5}(b-a)\ddot\theta+g\sin\theta=0\end{displaymath}

b:

\begin{displaymath}T=2\pi\sqrt{\frac{7(b-a)}{5g}}\end{displaymath}



Return to title page.

 
next up previous
Next: About this document ...
Birger Bergersen
2001-04-02