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Abstract

We present a detailed derivation of the representation of one-
dimensional Fermionic operators in terms of Bosonic operators, the
so-called Bosonization identity. This identity is independent of any
specific Hamiltonian and so can be applied to many different one-
dimensional models. As an example of the power of Bosonization
we show how one may represent a Tomonaga-Luttinger liquid Hamil-
tonian of interacting, spinless Fermions as a free Boson field Hamil-
tonian. It is then shown how this result facilitates the calculation of
various correlation functions in the XXY spin chain model.

1 Introduction

In many-particle, quantum systems, one often finds that the single particle
operators used to construct a particular model are not the most convenient
or the most fundamental objects to describe the system. The introduction of
a new set of operators is often required to make certain complex calculations
tractable. Such redefinitions are not uncommon and usually depend on the
particular model under investigation.

However, when one considers only one-dimensional, Fermionic systems,
there exists a universal description of the Fermion fields in terms of Boson
fields that is independent of the Hamiltonian describing the system. The
term Bosonization is used to describe such a procedure and the derivation
of this fundamental relationship is the subject of the first part of this paper,
§ 2.
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The end result is a deceptively simple equation which is easy to verify
and straightforward to implement in any model. However, in order to obtain
a true understanding of the nature of this relationship, we will construct
the Boson representation starting from the Fermion fields themselves. Such
an exercise is straightforward and transparent and gives a much clearer un-
derstanding of the mechanism at work. This first part will be written in a
pedagogical style with most of the calculations performed explicitly.

In many models of interacting electrons, Bosonization greatly simplifies
the calculation of certain quantities, often making otherwise difficult Fermi-
onic derivations almost trivial in the Bosonic language. While Bosonization
is used in numerous systems, we focus primarily on the Tomonaga-Luttinger
liquid [1, 2] and how one may use those results to calculate certain correlation
functions in the XXY spin chain model. This second part will be much less
detailed than § 2 with references given to more detailed accounts.

Many useful theorems and identities are presented in Appendix A either
with proof or with a reference to their proof in the literature. Other technical
results which are used throughout the paper are derived in B.

Finally, we make a quick note on the mathematical conventions used
throughout. We will use square brackets [, ] to denote a commutator of
operators and curly brackets {, } to denote an anti-commutator. Also, we
use the symbol := to denote a definition of the quantity on the left-hand
side and reserve the symbol ≡ for a mathematical equivalence. Also, in cases
where there will be no confusion, we will often omit the limits of summation.
In such cases, the limits will be implied by the letter used by referring to a
previous summation using that letter (e.g. the variable q is always summed
up over all values (2π/L)nq with nq ∈ Z+).

2 Bosonization formalism

While there are many reviews on Bosonization ([3, 4], for example) and even
an entire book [5], our derivation will follow the careful and lucid treatment
described in [6].

To prevent the reader from becoming overwhelmed by the formalism, we
will first qualitatively describe the simple Bosonization procedure:

1. Starting with the two axioms listed below we define Fermion fields
ψη(x), ψ

†
η(x) in terms of the usual Fermion creation and annihilation
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operators c†kη, ckη. These operators are then used to construct the

standard multi-particle Fock space Hf of quantum states.

2. The Fermion creation and annihilation operators are then used to con-
struct new operators b†qη, bqη which are shown to be Bosonic. It is then
proven that the Fock space Hb constructed from the b operators is the
same as Hf .

3. Bosonic fields ϕη(x) are then defined in terms of the b operators. It
is shown that the state ψη|N〉0 (where |N〉0 is the N particle ground
state) is an eigenvector of bqη and hence is a Bosonic coherent state.
This fact is then used to derive a universal relationship between the
Fermion fields ψη and the Boson fields ϕη.

Now that we have a good idea of the general direction we are headed, we
can look at the specific details of Bosonization.

We begin with a one-dimensional Fermionic system. For reasons that
will become apparent shortly, there are two requirements which must be met
before we can Bosonize:

Requirement 1 The model must be constructed in terms of Fermionic op-
erators c†kη, ckη such that

{ckη, c
†
k′η′} = δkk′δηη′ , {ckη, ck′η′} = {c†kη, c

†
k′η′} = 0. (1)

The k, as usual, will label momentum while η ∈ {1, 2, . . . ,M} labels the
different types of fermions in the system (e.g. η could label spin, right/left
moving electrons, etc.).

Requirement 2 The momentum eigenvalues must be discrete and unbounded.

In general, this will be accomplished by considering a continuous line of
length L and applying boundary conditions such that

k =
2π

L
(nk − δb) , nk ∈ Z (2)

where δb ∈ [0, 2) encodes the boundary conditions that are applied to fields
on the line (cf. Eq. (5)).

For the discussion that follows we take Requirements 1 and 2 as axioms.
In practice however, one usually has to do a little bit of work in order to obtain
these prerequisites in a particular model. Examples of such manipulations
are given in the second part of this paper, § 3.
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2.1 Fermion fields and Fermionic Fock space Hf

The Fermionic operators c†kη and ckη can be Fourier transformed to define
the Fermion fields

ψη(x) :=

√
2π

L

∞∑
k=−∞

e−ikxckη, ψ†η(x) :=

√
2π

L

∞∑
k=−∞

eikxc†kη (3)

with the inverse transform given as

ckη =
1√
2πL

∫ L/2

−L/2

dxeikxψη(x), c†kη =
1√
2πL

∫ L/2

−L/2

dxe−ikxψ†η(x). (4)

With this definition we can now see what boundary conditions are implied
by the momentum definition 2:

ψη(x+ L/2) =

√
2π

L

∑
nk∈Z

e−i 2π
L

(nk− 1
2
δb)(x+L/2)ckη

= ei π
2
δb

√
2π

L

∑
nk∈Z

e−i 2π
L

(nk− 1
2
δb)x+iπ(nk− 1

2
δb)+i π

2
δbckη

= eiπδb

√
2π

L

∑
nk∈Z

e−i 2π
L

(nk− 1
2
δb)(x−L/2)ckη

= eiπδbψη(x− L/2) (5)

where in the second equality we added and subtracted by iπ
2
δb in the ex-

ponential. Equation (5) shows us that δb = 0 indicates periodic boundary
conditions and δb = 1 indicates anti-periodic boundary conditions.

From the definition of the ψη fields (3) we proceed to compute their
commutators. From (1) we have trivially

{ψη(x), ψη′(x
′)} = {ψ†η(x), ψ

†
η′(x

′)} = 0 (6)

and, for any x ∈ (−∞,∞) we can use the definitions (3) and (2) to calculate

{ψη(x), ψ
†
η′(x

′)} =
2π

L

∞∑
k,k′=−∞

e−i(kx−k′x′){ckη, c
†
k′η′}

= δηη′
2π

L

∑
n∈Z

e−i 2π
L

(x−x′)(n− 1
2
δb)

4



and mapping n 7→ n̄ = −n and using (93) this becomes

{ψη(x), ψ
†
η′(x

′)} = δηη′
2π

L
2π
∑
n̄∈Z

δ

(
2π

L
(x− x′ − Ln̄)

)
ei(x−x′) π

L
δb .

If we use the delta function property (94) this becomes

{ψη(x), ψ
†
η′(x

′)} = δηη′2π
∑
n̄∈Z

δ(x− x′ − Ln̄)eiπn̄δb . (7)

For x, x′ ∈ (−L/2, L/2) this reproduces the usual Fermion field commutator
(recall the 2π normalization convention) however (7) is generalized for any
x, x′ and manifests the appropriate boundary condition behavior.

Armed with a set of Fermion fields we now construct a Fock space on
which they can act. To do this, we interpret c†kη and ckη as a creation and
annihilation operators for the η-Fermions. Then define the “vacuum” state
|0, 0, . . . , 0〉0 to be the state in which all of the k < 0 (nk < 0) states are
filled for all η ∈ {1, 2, · · · ,M}. That is

ckη|0〉0 := 0, k > 0 (8)

c†kη|0〉0 := 0, k ≤ 0 (9)

where we use boldface to indicate an M dimensional array.
In order to avoid divergent expressions, we will often need to normal order

the creation and annihilation operators such that all ckη with k > 0 and all

c†kη with k < 0 appear to the right. Denoting such normal ordering by : :
it is clear that

: A1A2 · · ·An : = A1A2 · · ·An − 0〈0|A1A2 · · ·An|0〉0. (10)

That is, the second term on the right cancels the δkk′ terms that appear when
you rearrange the operators. For example, if k, k′ > 0 then, by definition,
: ckηc

†
k′η′ : = −c†k′η′ckη. If we apply the Fermionic commutation relations to

the right hand side of (10) we get

ckηc
†
k′η′ − 0〈0|ckηc

†
k′eta′|0〉0 = δkk′δηη′ − c†k′η′ckη − δkk′δηη′

= −c†k′η′ckη

which agrees with the left hand side.
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The number operator for η-Fermions can now be defined as

N̂η =
∞∑

k=−∞

: c†kηckη : (11)

whose eigenvalues are the number of η-Fermions as measured from the Fermi
level k = −(1/2)δb (e.g. Nη = 2 if all k < 0 η states are filled and there
are two η-Fermions with k > 0). Let N = (N1, N2, . . . , NM) ∈ ZM describe
the occupation number for all M types of Fermions. We then define the N
particle Hilbert space HN as the space spanned by all eigenvectors of N̂η with
the same value of N, generically denoted as |N〉 ∈ HN.

We will introduce the notation

k
Nη

F :=
2π

L
(Nη −

1

2
δb) (12)

which is the maximum momentum if Nη η-Fermions fill up the lowest k values

above k = −(1/2)δb. A state with all M Fermions filled up to k
Nη

F has no
particle-hole excitations and is denoted as |N〉0 = |N1, N2, . . . , NM〉. Hence,
we can view |N〉0 as the lowest energy state in the N-particle Hilbert space.
To avoid ambiguity, we define |N〉0 explicitly as

|N〉0 := (c1)
N1(c2)

N2 · · · (cM)NM |0〉0 (13)

where

(cη)
Nη :=


c†Nηηc

†
(Nη−1)η · · · c

†
1η , Nη > 0

1 , Nη = 0
c(Nη+1)ηc(Nη+2)η · · · c0η , Nη < 0

(14)

where by cNηη we mean ckη with k = (2π/L)Ni − (1/2)δb in accordance with
the definition (2). The entire Fock space is H =

⊕
NHN.

2.2 Bosonic Fock space Hb and Boson fields

Since |N〉0 is the lowest energy state in HN it is clear that all other excited
states in HN will have particle-hole pairs. To obtain such excitations from
the ground state, we must act with a ckη operator with k < k

Nη

F and a c†k′η
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operator with k′ > k
Nη

F . Hence, in general, we define the operators

b†qη :=
i

√
nq

∞∑
k=−∞

c†(k+q)ηckη (15)

bqη := − i
√
nq

∞∑
k=−∞

c†(k−q)ηckη (16)

where

q :=
2π

L
nq, nq ∈ Z+. (17)

To understand the action of these operators it is instructive to look at
b†qη|N〉0 for small values of q. Starting at k = −∞ in the sum of (15), it is

clear that all of the terms will give zero unless k+ q > k
Nη

F and k < k
Nη

F . For
instance, if q = 2π/L (i.e. nq = 1) then there is only one non-zero term and
we get

b†(2π/L)η|N〉0 = ic†
(k

Nη
F +(2π/L))η

c
k

Nη
F η
|N〉0.

That is, the highest momentum η-Fermion is excited to the next highest
momentum level. In general, b†qη|N〉0 is a linear combination of particle-hole

states, each with one of the occupied k < k
Nη

F levels raised by momentum q.
In this sense, we may view b†qη and bqη as creation and annihilation operators
which impart or take away momentum q respectively.

With multiple uses of the commutator identities (95) and (96) we may
use the definitions (15) to compute the following:

[bqη, bq′η′ ] = − 1
√
nqnq′

∑
k,k′

(
[c†(k−q)ηckη, c

†
(k′−q′)η′ ]ck′η′ + c†(k′−q′)η′ [c

†
(k−q)ηckη, ck′η′ ]

)
= − 1

√
nqnq′

∑
k,k′

(
c†(k−q)η{ckη, c

†
(k′−q′)η′}ck′η′ − c†(k′−q′)η′{c

†
(k−q)η, ck′η′}ckη

)
= − 1

√
nqnq′

∑
k,k′

(
c†(k−q′−q)ηck′ηδηη′ − c†(k′−q′−q)ηckηδηη′

)
= 0. (18)

A similar calculation also yields

[b†qη, b
†
q′η′ ] = 0 (19)
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and

[bqη, b
†
q′η′ ] =

1√
nqn′q

δηη′

∑
k

(
c†(k+q′−q)ηckη − c†(k+q′)ηc(k+q)η

)
. (20)

We must be careful with this last equality as it involves the subtraction
of two different infinite sums (whereas before, in (18), we basically had an
infinite sum of zeros). For q 6= q′ the c† and c operators have different
momentum values making the summation finite so that we can shift the
summation in the second term k 7→ k − q which gives

[bqη, b
†
q′η′ ] = 0, q′ 6= q.

For q = q′ the c† and c operators have the same momentum rendering the
summation infinite so that we cannot be sure that the cancellation will work.1

To clarify the situation, we employ the normal ordering expression (10) to
get

[bqη, b
†
q′η′ ] =

1

nq

δηη′δqq′

∑
k

(
: c†kηckη : − : c†(k+q)ηc(k+q)η :

+ 0〈0|c†kηckη|0〉0 − 0〈0|c†(k+q)ηc(k+q)η|0〉0
)
.

We can now shift the index of the second term k 7→ k − q with impunity
since the normal ordering will rearrange the terms appropriately depending
on whether k + q ≷ k

Nη

F and we can be assured that the result will be the
same as the first term. The last two terms simply count particles in the
vacuum state so we get

[bqη, b
†
q′η′ ] =

1

nq

δηη′δqq′

(
0∑

k=−∞

−
−nq∑

k=−∞

)

where the two sums simply add up2 to nq so that we finally get

[bqη, b
†
q′η′ ] = δqq′δηη′ . (21)

1For q = q′ one may be tempted to perform the same shift in the second term of (20)
and cancel the two terms to get zero. However, since the action of ck,η on |N〉0 (for
instance) depends on whether k is greater than or less than k

Nη

F , such a shift will not
necessarily produce the same term as the first.

2Notice how this result depends crucially on Requirement 2.
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Hence we have shown that b†qη and bqη are Bosonic operators.
From the definitions (15) it is clear that

bqη|N〉0 = 0 (22)

since, for a given k in the infinite sum, ckη acting on |N〉0 only gives a non-

zero contribution when k < k
Nη

F in which case it annihilates the k momentum
level. However, the c†(k−q),η operator attempts to create a particle at the

k − q level which is already filled since q > 0. In this sense, we view |N〉0
as a Bosonic vacuum state. Normal ordering of Boson operators can then be
defined as shifting all b operators to the right of b† operators. Clearly the
relation (10) still holds for Bosonic normal ordering.

Given a Bosonic vacuum state |N〉0, we can construct a Bosonic Fock
space of states Hb

N in the usual way by repeated application of the creation
operator b†qη. The direct sum of all such N-particle spaces is denoted as Hb.
The remarkable fact is that this is the same space of states as Hf which is
the subject of the following

Theorem 1 The Bosonic Fock space Hb is identical to the Fermionic Fock
space Hf in that any vector |N〉 ∈ Hf

N is in Hb and vice versa.

Sketch of Proof : (full proof given in [6]) The proof that Hf = Hb follows
from showing that Hf

N = Hb
N for all N. Since the b operators (15) and (16

are defined as functions of the creation and annihilation operators of Hf
N it

is clear that Hb
N ⊂ Hf

N. Hence, it is sufficient to show that the “number” of

states in Hb
N is the same as the “number” of states in Hf

N.
To show that the two spaces are the same “size” one can compute the

grand-canonical partition function for some Hamiltonian theory using both
Hb

N and Hf
N. Since the partition function is defined as the sum of positive,

definite quantities, and since Hb
N ⊂ Hf

N the two calculations will only yield

the same result if Hb
N = Hf

N. Otherwise, the larger space would yield a
larger result. This partition function calculation has been done in Appendix
B of [6] and indeed yields the same result for both Hb

N and Hf
N.

�

Given this result, we will simply denote the Fock space as H =
⊕

NHN

since there is no difference between the one created by Boson operators and
the one created by Fermionic operators. The usefulness of this theorem comes
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from the fact that any vector |N〉 ∈ HN will be of the form f({b†})|N〉0 for
some function f of the b† operators.

If we restrict our attention only to the Bosonic creation and annihilation
operators, the HN spaces are disconnect spaces since no combination of b
operators will take a state from HN to HN′ for N 6= N′. To facilitate such
mappings we define ladder operators (herein called Klein factors in conjunc-
tion with the literature) Fη, F

†
η which lower and raise Nη by one respectively.

These Klein factors are unambiguously defined by the following properties

[Fη, bqη′ ] = [Fη, b
†
qη′ ] = [F †

η , bqη′ ] = [F †
η , b

†
qη′ ] = 0 (23)

(i.e. all F operators commute with all b operators) and, if |N〉 := f({b†})|N〉0,
then

F †
η |N〉 := f({b†})c†(Nη+1)η|N1, . . . , Nη, . . . , NM〉

= f({b†})Tη|N1, . . . , Nη + 1, . . . , NM〉 (24)

Fη|N〉 := f({b†})cNηη|N1, . . . , Nη, . . . , NM〉
= f({b†})Tη|N1, . . . , Nη − 1, . . . , NM〉 (25)

where
Tη := (−1)

Pη−1
η̄=1 N̂η

gives a plus or minus sign depending on how many Fermionic operators c
and c† must commute past before reaching the Nη term in the definition of
|N〉0 (cf. Eq. (13)).

From this definition, it should be clear that

F †
ηFη = FηF

†
η = 1. (26)

This relation is quite intuitive: the result of lowering and then raising (or
raising then lowering) a given Nη leaves you with the same state.

The final ingredient required to prove the Bosonization identity is the
definition of Boson fields ϕ†η(x) and ϕη(x):

ϕη(x) := −
∑
q>0

1
√
nq

e−iqxbqηe
−a

2
q (27)

ϕ†η(x) := −
∑
q>0

1
√
nq

eiqxb†qηe
−a

2
q (28)
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so that the Hermitian combination is

φη(x) := ϕη(x) + ϕ†η(x)

= −
∑
q>0

1
√
nq

(
e−iqxbqη + eiqxb†qη

)
e−

a
2
q. (29)

The a is a regularization factor in order to prevent ultra-violet divergences
as q →∞. In some sense it can be thought of as the lattice spacing but for
our purposes it is simply a mathematical regulator. Since q = (2π/L)nq we
see that φ is periodic in x ∈ (−L/2, L/2).

In the following section we will show that there is a fundamental relation-
ship between the fields ψη(x) and the fields φη(x). Whenever this relationship
is used (such as in the examples in the second half of this paper) one will
need to know a number of properties of the ϕη(x) fields, such as their various
commutators. Some of these properties are derived in Appendix B. While
these properties are not needed for the proof of the Bosonization identity in
the next section, they will be required when we look at applications in § 3.

2.3 The Bosonization identity

After all of this work in defining a multitude of operators and vector spaces
the proof of the Bosonization identity is fairly straightforward.

We begin by using the definitions (3) and (15) and the commutation
property (96) to compute

[bqη′ , ψη(x)] = − i
√
nq

√
2π

L

∑
k,k′

e−ik′x[c†(k−q)η′ckη′ , ck′η]

=
i

√
nq

√
2π

L

∑
k,k′

e−ik′x{c†(k−q)η′ , ck′η}ckη′

= δηη′
i

√
nq

eiqx

√
2π

L

∑
k,k′

e−ikxckη

= δηη′αq(x)ψη(x) (30)

where

αq(x) :=
i

√
nq

eiqx. (31)
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Acting with both sides of (30) on the vacuum state |N〉0 and using the
fact that bqη annihilates the vacuum (22) we get

bqη′ψη(x)|N〉0 = δηη′αq(x)ψη(x)|N〉0. (32)

We see that ψη(x)|N〉0 is an eigenvector of the Boson annihilation operator
bqη with an eigenvalue δηη′αq(x). Hence, ψη(x)|N〉0 can be represented as a
Boson coherent state in the ground state Fηλη(x)|N〉0

ψη(x)|N〉0 = exp

(∑
q>0

αq(x)b
†
qη

)
Fηλη(x)|N〉0 (33)

where λη(x) is a phase factor to be determined. The reason why we must use
Fηλη(x)|N〉0 and not just simply |N〉0 is due to the fact that ψη(x) lowers the
Nη number by one which, as discussed previously, cannot be accomplished by
any combination of b operators. The fact that we are not using |N〉0 requires
the inclusion of the λη phase factor. Comparing the expression (33) with the
definition (28) (in the limit a→ 0) yields

ψη(x)|N〉0 = e−iϕ†(x)Fηλη(x)|N〉0. (34)

The calculation of λη(x) is a simple exercise in applying the properties
of the various operators. We accomplish this by calculating the quantity

0〈N|F †
ηψη(x)|N〉0 in two ways. First, we use the fact that F †

η commutes
with all b operators so that

0〈N|F †
ηψη(x)|N〉0 = 0〈N| exp

(∑
q>0

αq(x)b
†
qη

)
F †

ηFηλη(x)|N〉0.

However, using (26) and the fact that bqη|N〉0 = 0 ⇒ 0〈N|b†qη = 0 we obtain

λη(x) = 0〈N|F †
ηψη(x)|N〉0. (35)

If we sub the Fourier expansion of ψη(x) (3) into the right hand side
of (35) we get

λη(x) =

√
2π

L
0〈N|F †

η

∑
k

e−ikxckη|N〉0.
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We now note that 0〈N|F †
η doesn’t contain any particle-hole pairs. Hence,

the only non-zero term in the summation comes from c
k

Nη
F η
|N〉0 = Fη|N〉0,

i.e. the annihilation of the highest η momentum level. The result is

λη(x) =

√
2π

L
e−ik

Nη
F x

0〈N|F †
ηFη|N〉0

and using (26) once again yields the desired result

λη(x) =

√
2π

L
e−ik

Nη
F x. (36)

The Bosonization identity is nearly at hand! We simply must general-
ize (34) for general states ψη(x)|N〉 where |N〉 = f({b†})|N〉0 is a general
vector in HN. To accomplish this, we will need the following two identities:

ψη(x)f({b†qη′}) = f({b†qη′ − δηη′α
∗
q(x)})ψη(x) (37)

e−iϕη(x)f({b†qη′})e
iϕη(x) = f({b†qη − δηη′α

∗
q(x)}). (38)

The first follows from (30) and applying (99) with A = b†qη′ − δηη′α
∗
q(x),

B = ψη(x), and D = δηη′α
∗
q(x). The second is a direct application of (30)

and (98) with B = ϕη(x) and A = b†qη′ .

And now for the home stretch. Let |N〉 = f({b†qη})|N〉0 so that we can
compute ψη(x)|N〉. Using (37) to compute the ψ past f we get

ψη(x)|N〉 = f({b†qη′ − δηη′α
∗
q(x)})ψη(x)|N〉0

and subbing in the Boson coherent state (34) gives

ψη(x)|N〉 = f({b†qη′ − δηη′α
∗
q(x)})e−iϕ†

η(x)Fηλη(x)|N〉0.

We can then commute the e−iϕ†
η(x) and Fη operator all the way to the left

(by (19) and (23)) and using (38) yields

ψη(x)|N〉 = Fηλη(x)e
−iϕ†

η(x)e−iϕη(x)f({b†qη′})e
iϕη(x)|N〉0.

Looking at the far-right exponential we note that, since b annihilates the
vacuum, only the zeroth order term contributes. Hence, we can re-institute
the definition of |N〉 to get

ψη(x)|N〉 = Fηλη(x)e
−iϕ†

η(x)e−iϕη(x)|N〉.
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Since this is true for all states |N〉 we arrive (finally!) at the Bosonization
identity

ψη(x) = Fηλη(x)e
−iϕ†

η(x)e−iϕη(x). (39)

Having produced our desired result, let us pause to discuss some of the
properties and implications of (39).

• Although the final Bosonization identity appears simple, it is not at
all obvious a priori. For example, if we look at the Boson coherent
state (34), the left hand side is a simple, linear combination of states,
each with a single particle-hole pair. At first site, the right hand side,
when written explicitly as a function of the c and c† operators, seems
like it would be a complicated combination of all sorts of states with
any number of particle-hole pairs. The fact that only the single hole
states contribute to this mess is indeed miraculous.

• The Bosonization identity, as derived above, is a very general result,
true for all values of x and L. Furthermore, since we did not require the
use of a specific Hamiltonian, eq. (39) is a model independent operator
identity, true for any one dimensional system subject to Requirements 1
and 2. Once the identity has been implemented, however, one can take
the L→∞ as we will see in § 3.

• The Bosonization identity (39) is normal ordered and therefore inde-
pendent of the value of the regularization parameter a. However, one
can cast the identity in an even simpler form by making use of the
a-dependent product (102) so that

ψη(x) =
1√
a
Fηe

−iΦη(x) (40)

where

Φη(x) := φη(x) +
2π

L

(
N̂η −

1

2
δb

)
x (41)

which simply reduces to φη(x) in the L→∞ limit (recall the definition
of φ from (29)).

14



3 Applications

Now that we have fully derived the Bosonization identity (39) we will now
proceed to describe it’s application to a few specific models so that the reader
may understand it’s usefulness. Contrary to the previous exposition, the
following will not contain detailed calculations but will simply sketch the
various derivations giving reference to other sources when more information
is required.

3.1 Free electrons with linear dispersion

Our exposition follows that given in § 7 of [6]. We consider a collection of
Nη Fermions for each type η ∈ {1, 2, . . . ,M} freely propagating in a one
dimensional system of length L with normalized linear dispersion relation

ε(k) = k. (42)

The boundary conditions are determined by the value of δb ∈ [0, 2) as dis-
cussed in § 2.1. Clearly such a system satisfies Requirements 1 and 2.

As we will see later on, such dispersions are considered when one wishes to
approximate the behavior of the particles about the Fermi energy. Although
such a system is quite simple to solve and does not, necessarily, require the
power of Bosonization, we state the results of Bosonization here so that we
may refer to them later on.

The Hamiltonian for this system is

H0 =
M∑

η=1

H0
η

where H0
η is the free η-particle Hamiltonian

H0
η =

∞∑
k=−∞

k : c†kηckη : (43)

where the c operators are the Fermionic creation and annihilation operators
as above. In terms of the Fermion fields (3) one can show that

H0
η =

∫ L/2

−L/2

dx

2π
: ψ†η(x)i∂xψη(x) : . (44)
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Our goal now is to express H0
η in terms of the Boson field φη(x). To

this end we will derive two properties of H0
η which will fully determine the

Bosonic form of H0
η .

From (43) we see that the η-Hamiltonian is proportional to the number
operator and hence particle number is conserved. This means that the N
particle ground state |N〉0 is an eigenvector of H0

η . After a short calculation
one can show that this ground state energy is

E0
η(N) := 0〈N|H0

η |N〉0 =
π

L
Nη(Nη + 1− δb). (45)

This is the first required property.
The second comes from using the definition (15) to compute the commu-

tator
[H0

η , bqη′ ] = qδηη′b
†
qη. (46)

Equation (45) together with (46) show that the state b†qη|N〉0 has energy
E = E0

η(N) + q indicating that b†qη|N〉0 represents a state with momentum q
greater than the ground state as discussed in the previous section.

It is then quite clear that equations (45) and (46) dictate the Bosonic
form of H0

η to be

H0
η =

∑
q>0

qb†qηbqη +
π

L
N̂η(N̂η + 1− δb) (47)

=

∫ L/2

−L/2

dx

2π

1

2
: (∂xφη(x))

2 : +
π

L
N̂η(N̂η + 1− δb). (48)

It is a straightforward task to substitute the definition of φη(x) (29) into (48)
and confirm this result. We will utilize this result in what follows.

3.2 Tomonaga-Luttinger liquids

Tomonaga-Luttinger liquid theory is a model for interacting electrons in a
one-dimensional system. To Bosonize such a model, our first task will be to
manipulate the model so as to conform to Requirements 1 and 2. We will
do so by first consider only the free electron model before introducing an
interaction.

We characterize the electrons by their momentum p and consider the free
particle dispersion relation

ε(p) =
p2 − p2

F

2m
(49)
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where pF is the Fermi momentum and m the mass of an electron. Clearly
such a dispersion is not suitable for Bosonization since a state such as |0〉0
would have infinite, positive energy since all states with p < 0 would be filled.

To remedy this situation we divide the electrons into two types: left
moving, labelled by L, and right moving, labelled by R. If we define cp and
c†p as the electron annihilation and creation operators then we can subdivide
the Fermion field as follows

Ψ(x) :=

√
2π

L

∞∑
p=−∞

eipxcp

=

√
2π

L

∞∑
k=−kF

(e−i(k+kF )ckL + ei(k+kF )xckR (50)

(51)

where we have defined the creation and annihilation operators for left and
right moving electrons as follows

ckL := c−(k+kF ), ckR := ck+kF
. (52)

We will use ν to label either L or R and εk,ν the dispersion relation in terms
of k.

Since k ∈ (−kF ,∞) and so bounded from below, our system does not meet
Requirement 2. We can remedy this situation by introducing an infinite set
of negative energy states k < −kF with linear dispersion. In this way we
have k ∈ (−∞,∞) with dispersion

εk,ν =

{
ε(k + kF ) , k > −kF

ε(0) + vF (k + kF ) , k < −kF
(53)

where vF is some constant. The inclusion of such negative energy states
will not effect the physics of low-energy excitations about kF so long as the
perturbations (due either to electron interactions or external fields) remain
small compared to kF . In this way, the perturbations will never be strong
enough to excite a negative energy state and so they remain “invisible” as
far as our formalism is concerned.

We can then use the left and right annihilation operators to define left
and right electron fields, a la equation (3)

ψL/R(x) :=

√
2π

L

∞∑
k=−∞

e∓ikxck(L/R). (54)
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Comparing this definition with (50) we see that the original Fermion field
can be written as

Ψ(x) ≈ e−ikF xψL(x) + eikF xψR(x) (55)

where the approximate sign is used since we are now including the negative
energy momentum states on the right hand side. For definiteness, we assume
anti-periodic boundary conditions in the Fermion operators. As shown above,
this means we take δb = 1.

The definition of the Boson fields and other quantities in § 2.2 and Ap-
pendix B follow exactly as stated except for right moving quantities where
we must include an additional minus sign due to the minus sign in the expo-
nential in the definition (54) of ψR(x). We may still use the derived results so
long as we make the following substitutions for all right moving quantities:

x 7→ −x
∂x 7→ −∂x.

Quoting equations (29), (40), (103), and (104) we get

φL/R(x) = −
∑
q>0

1
√
nq

(
e∓iqxbq(L/R) + e±iqxb†q(L/R)

)
e−

a
2
q (56)

ψL/R(x) =
1√
a
FL/Re

−iφL/R(x)∓i 2π
L

(N̂L/R+ 1
2
) (57)

ρL/R(x) =
1

2π
: ψ†L/R(x)ψL/R(x) : = ± 1

2π
∂xφL/R(x) +

1

L
N̂L/R (58)

where, as before, q = (2π/L)nq with nq ∈ Z+.
The Hamiltonian for this free theory is that of (44) in terms of the Fermion

fields

H0
η =

∫ L/2

−L/2

dx

2π
:
(
ψ†L(x)i∂xψL(x)− ψ†R(x)i∂xψR(x)

)
: (59)

and (48) in terms of the Boson fields

H0 =
∑

ν=L,R

[∫ L/2

−L/2

dx

2π

1

2
: (∂xφν(x))

2 : +
π

L
N̂2

ν

]
. (60)

Comparison with (58) indicates that we can write the latter Hamiltonian as

H0 = π

∫ L/2

−L/2

dx :
(
ρ2

L(x) + ρ2
R(x)

)
: . (61)
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We now consider a local electron-electron interaction of the form

HI := 2π

∫ L/2

−L/2

dx :

(
g2ρL(x)ρR(x) +

1

2
g4(ρ

2
L(x) + ρ2

R(x))

)
: (62)

and, after a bit of algebra, one can show that the total Hamiltonian can be
written as

H = H0 +HI

= v
π

2

∫ L/2

−L/2

dx :

(
1

g
(ρL(x) + ρR(x))2 + g(ρL(x)− ρR(x))2

)
: (63)

where

v :=
√

(1 + g4)2 − g2
2 (64)

g :=

√
1 + g4 − g2

1 + g4 + g2

. (65)

After all of this work of casting the Hamiltonian into a Bosonic form
we are now able to see the great benefit of Bosonization. Looking at the
form of the Hamiltonian (63) and comparing it with the two definitions of
the density (58) we see that the Hamiltonian contains terms with products
of four Fermion ψ fields but is quadratic in the Boson fields φ. This is a
beautiful result since it is known that such quadratic Hamiltonians are easily
diagonalized by a Bogolyubov transformation of the Bosonic creation and
annihilation operators b† and b.

This has been done in detail in [6] and so we simply quote the results.
The transformation is of the form

Bq± =
1√
8

{(
1
√
g

+
√
g

)
(bqL ∓ bqR)±

(
1
√
g
−√g

)
(b†qL ∓ b†qR)

}
(66)

with associated number operators

N̂± =
1

2
(N̂L ∓ N̂R). (67)

The Boson fields associated to the new Boson creation and annihilation op-
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erators (66) are3

Φ±(x) =
1√
8

{(
1
√
g

+
√
g

)
(φL(x)∓ φR(−x))

±
(

1
√
g
−√g

)
(φL(−x)∓ φR(x))

}
. (68)

With our Hamiltonian diagonal our calculation is complete. Hence, we
may safely take the L→∞ limit and enjoy the wonderfully simple result

H =
v

2

∑
ν=±

∫ ∞

−∞

dx

2π
: (∂xΦν(x))

2 : . (69)

By using the technique of Bosonization, we have been able to represent the
interacting Hamiltonian (63) by a free Bosonic field Hamiltonian (69). All of
the information about the Fermionic system is stored in the scaling factor v
which encodes the relative strengths of the interactions and serves to re-scale
the boson fields. To calculate any Fermionic quantity (such as a correlation
function) we have simply to use the Bosonization identity to cast the quantity
in terms of Bosonic fields and use the known results from free Boson theory,
replacing the fields φ with the re-scaled fields φ/

√
v. The following section

gives an explicit example of such a calculation.

3.3 XXY spin chain

The outline of this section is as follows: we will present the XXY spin chain
model in the usual spin operator basis and show how one may transform it
into a Luttinger liquid form (63) and thus easily facilitating the calculation
of various spin-spin correlation functions. This exposition partially follows
both [7] and [8].

Our system is that of a one-dimensional lattice with a single electron at
each lattice site with only spin degrees of freedom. The Hamiltonian for the

3Some care should be taken to note that both Φ operators are manifestly left moving
in that, in the Heisenberg picture, these fields depend only on the combination x+ t which
is different from φR, for instance, which would depend on x − t. More details may be
found in [6]. We mention this only in passing as such concerns are not important for our
purposes.
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XXY spin chain is

H = −1

2
J

N∑
i=1

(
S+

i S
−
i+1 + S−i S

+
i+1

)
+ Jz

N∑
i=1

Sz
i S

z
i+1 (70)

where Sa
i , a = x, y, z are the spin operators for the lattice site i and S±i :=

Sx
i ± iSy

i are the raising and lowering operators for site i which raise and
lower the spin in the z direction by 1. We note that the sign of J is arbitrary
since a unitary spin rotation of π changes the sign of the first coefficient. For
convenience we take J > 0. On the other hand, the sign of Jz is important
as it governs whether adjacent spins tend to align or anti-align depending on
which state lowers the energy (Jz > 0 tends to anti-alignment while Jz < 0
tends to alignment).

We can now perform a transformation to new variables (the so-called
Jordan-Wigner transformation) fi, f

†
i defined as

S+
i = f †i K(i) = K(i)f †i (71)

S−i = K(i)fi = fiK(i) (72)

Sz
i = f †i fi −

1

2
(73)

where

K(i) := exp

[
iπ

i−1∑
j=1

f †j fj

]
(74)

= exp

[
iπ

i−1∑
j=1

(
Sz

j +
1

2

)]
. (75)

From this last equality (the first part of which is just a spin rotation by π
about the z axis) and the fact that a spin rotation by 2π gives −1 we see
that K2 = 1 and hence, from (71) and (72) we get

f †i = S+
i K(i) (76)

fi = S−i K(i). (77)

From these relations and the usual SU(2) spin algebra one can compute [7]

{fi, f
†
j } = δij, {fi, fj} = {f †i , f

†
j } = 0 (78)
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indicating that the f fields are Fermionic.
The transformed Hamiltonian then has the form

H = −J
2

∑
i

(
f †i fi+1 + f †i+1fi

)
+ Jz

∑
i

(
f †i fi −

1

2

)(
f †i+1fi+1 −

1

2

)
(79)

For Jz = 0 the system is invariant under translations and we can Fourier
transform our fields to get

fk =
1√
N

N∑
n=1

e−inkfn (80)

f †k =
1√
N

N∑
n=1

einkf †n (81)

so that the Jz = 0 Hamiltonian has the form of a free electron theory [7]

H0 =
∑

k

ε(k)f †kfk (82)

with
εk = −J cos k (83)

(note that distances are measured in units of the lattice spacing a).
To determine the Jz = 0 ground state (i.e. the state which gives zero

total magnetization) we can sum both sides of (73) over all N lattice sites to
get

Sz
tot = M − N

2
(84)

where M is the total number of electrons since f †i fi is the number operator.
Hence we see that the ground state is at half filling M = N/2 so that, from
the dispersion relation (83), we determine that the ground state Fermi energy
is EF = 0 with Fermi momentum kF = ±π/2.

In order to Bosonize this Fermion theory we will need to transform this
model into one on a continuous space. To this end we will consider low energy
excitations about EF and linearize the dispersion relation about kF

ε(k) ≈ ±(k − kF ). (85)

In the regime close to kF we can define the continuous analogue ψ(x) of fi

to be
Ψ(x) ≈ ei π

2
xψR(x) + e−i π

2
xψL(x). (86)
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That is, only the two kF = ±π/2 Fourier modes are important for low energy
excitations. Comparing this with (55) we see that ψR and ψL are of the same
form as the right and left moving electron fields of § 3.2.

Hence we may use our previous result (61) and write

H0 = J

∫
dx :

(
ρ2

L(x) + ρ2
R(x)

)
: (87)

where we now use ρν(x) = : ψ†ν(x)ψν(x) : since our fields are no longer defined
with the 2π normalization.

In order to express the Jz term of (79) we substitute Ψ(x) defined in (86)
for fn and using the normal order expression (10) we can write

f †nfn −
1

2
= : f †nfn :

= : ψ†RψR : + : ψ†LψL : +(−1)n
(
: ψ†RψL : + : ψ†LψR :

)
(88)

and using the definition for the density ρν we can write the Jz term in the
Hamiltonian (79) as

Hz = Jz

∫
dx
[
(ρL + ρR)2 − (ψ†LψR + ψ†RψL)2

]
= Jz

∫
dx
[
(ρ2

L + ρ2
R) + 4ρLρR − 2

(
(ψ†LψR)2 + (ψ†RψL)2

)]
. (89)

For the moment let us neglect the last ψ terms in the previous expression
and come back to them later. In this case, if we divide through by J we
see that the Hz Hamiltonian has the same form as the Tomonaga-Luttinger
liquid interaction Hamiltonian (62) with g2 ∝ Jz/J and g4 ∝ Jz/J . Since the
free Hamiltonian H0 is of the same form as (61) we can write the Hamiltonian
in the form (63) with [8]

v = 1 + 2
Jz

J
. (90)

Hence we can use the same Bogolyubov transformation as in § 3.2 and write
H as a free, scaled Boson scalar Hamiltonian (69).

The result is that we can use the known correlation functions for free
Boson theory to calculate correlation functions for the XXY spin chain model
under consideration. All we have to do is rescale the fields

Φ 7→ 1

R
Φ
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where

R :=
√
v =

√
1 + 2

Jz

J
.

This has been done in [8] for the spin-z correlation function and the spin-±
correlation function with the results

< Sz(x, t)Sz(0, 0) > = − 1

16π3R2

[
1

(x− t)2
+

1

(x+ t)2

]
+const.(x2 − t2)−

1
4πR2 (91)

and

< S+(x, t)S−(0, 0) > ∝ (−(x+ t)(x− t))−πR2

+(−1)xconst.(−(x− t)(x+ t))−
1
4π

( 1
R
−2πR)2

×
(

1

(x− t)2
+

1

(x+ t)2

)
. (92)

It turns out that these results are good only for Jz � J which is when
we can safely neglect the last terms in (89). It turns out that one can solve
the problem exactly by employing the Bethe ansatz [7, 8]. The final result is
simply a different expression for the scaling parameter R given now by

R =

√
2− 2

π
cos−1

Jz

J

so that the correlation functions (91) and (92) still hold.

4 Summary

In this paper we have rigourously proven a general representation of Fermion
fields in terms of Boson fields in one-dimensional systems. This relationship
depends only on the fact that the momentum be discrete and unbounded
which is often easy to accomplish in any given model. Hence, such Bosoniza-
tion procedures provide an additional tool in calculating a number of quan-
tities in one-dimensional Fermionic systems, often making the derivation
tractable if not trivial.

As an example of the power of Bosonization we were able to exactly cal-
culate the spin-z and spin-± (or transverse) correlation functions in the XXY
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spin chain model. This was done by first transforming the Hamiltonian to
a Tomonaga-Luttinger liquid form which was already diagonalized using the
Bosonization procedure. In effect, we were able to map the interacting Hamil-
tonian to a free Boson theory for which much is known. All of the physics
of the Fermionic interaction was encoded in the rescaling of the Boson field.
Hence, the seemingly intractable problem of calculating the exact correlation
function in terms of Fermion fields is made tractable by the implementation
of Bosonization.

Acknowledgements

The authour is very grateful to Ming-Shyang Chang and Rodrigo Pereira for
the usage of their super-human intellects and periodic caffeine installments.
Thanks also to Ian Affleck for suggesting this fruitful research topic and
for being absent and, hence, incapable of assigning extra work during the
preparation of this paper. Finally, a big thanks to Dave Holland for giving
me my Prime Directive.

A Useful theorems and identities

Here we collect a variety of theorems and identities used throughout the pa-
per. Many of these results are well-known and so no attempt has been made
to achieve any sort of rigour.

Delta Function Properties
In order to extend the validity of fields beyond x ∈ (−L/2, L/2) it is neces-
sary to use the generalized Fourier representation of the delta function [9]∑

n∈Z

einx = 2π
∑
n̄∈Z

δ(x− 2πn̄). (93)

This gives you one δ function in each region x ∈ (2πn̄, 4πn̄).
Another useful property of the delta function is

δ(kx) =
1

|k|
δ(x) (94)
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where k is a constant real number. To see this, let f(x) be any function and
compute ∫ ∞

−∞
dxf(x)δ(kx) = ±

∫ ∞

−∞

dy

k
f(y/k)δ(y)

=
1

|k|
f(0)

where the upper sign corresponds to k > 0 and the lower sign to k < 0. Here
we see that the form given on the right side of (94) gives the same result.

Operator Identites
For operators A,B and C the following (anti-)commutator identities can
easily be proven by expanding out both sides of the equality

[A,BC] = [A,B]C +B[A,C] (95)

[A,BC] = {A,B}C −B{A,C}. (96)

The proofs of the following theorems are given in Appendix C of [6]. Here,
A, B, C, and D are elements of an operator algebra on an arbitrary vector
space.

Theorem 2 If [A, [A,B]] = [B, [A,B]] = 0 then

eAeB = eA+B+ 1
2
[A,B] (97)

and
e−Bf(A)eB = f(A+ [A,B]) (98)

where f is any function of the operators.

Theorem 3 If [A,B] = DB and [A,D] = [B,D] = 0 then

f(A)B = Bf(A+D). (99)

B Some properties of the Boson Fields

Here we derive some properties of the Boson operators ϕη(x) and ϕ†η(x) that
were used in the text.

26



First we will calculate the commutators between the ϕ fields. Using the
definitions (27) and (28) and the Boson commutation relationship between
the Boson creation and annihilation operators (21) and (18) it is immediately
clear that

[ϕη(x), ϕη′(x
′)] = [ϕ†η(x), ϕ

†
η′(x

′)] = 0. (100)

The commutator between ϕη and ϕ†η is a little bit trickier. Utilizing the
definitions again we get

[ϕη(x), ϕ
†
η′(x

′)] =
∑
q,q′

1√
nqn′q

e−i(qx−q′x′)−a
2
(q+q′)[bqη, b

†
q′η′ ]

= δη,η′

∞∑
nq=1

1

nq

e−
2π
L

nq(i(x−x′)+a)

where we have used the definition q = (2π/L)nq. Defining

α := −i2π
L

(x− x′ − ia)

we can write the commutator as

[ϕη(x), ϕ
†
η′(x

′)] = δηη′

∞∑
n=1

1

n
eα(x,x′)n

= δηη′

∫
dα

∞∑
n=1

eαn

= δηη′

∫
dα

1

1− eα

= −δηη′ ln
(
1− e−i 2π

L
(x−x′−ia)

)
.

In the limit L → ∞ we can expand the exponential to lowest order in 1/L
to get

[ϕη(x), ϕ
†
η′(x

′)] ≈ −δηη′ ln

(
i
2π

L
(x− x′ − ia)

)
. (101)

This commutator is very useful when wishing to calculate such quantities
as

eiφ†η(x)eiφη(x) = ei(ϕ†
η(x)+ϕη(x))e

1
2
[iϕ†

η(x),iϕη(x)]

=

√
L

2πa
eiφη(x) (102)
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where, in the first equality, we made use of (97) and in the second we used
the Hermitian combination (29) of the boson fields.

A quantity that we will find very useful is the density operator

ρη(x) :=
1

2π
: ψ†η(x)ψη(x) : (103)

where the 2π comes from the 2π normalization of the Fermion fields. To
express this in terms of boson fields we substitute the definition of the fermion
fields

ρη(x) =
1

L

∑
k,k′

e−i(k′−k)x : c†kηck′η :

=
1

L

∞∑
q=−∞

e−iqx

∞∑
k=−∞

: c†(k−q)ηckη :

where in the last equality we simply shifted the summation k 7→ k′ − q.
We can break the q summation into three terms with q < 0, q = 0, and

q > 0 to get

ρη(x) =
1

L

{∑
q>0

e+iqx

∞∑
k=−∞

: c†(k+q)ηckη : +
∑
q>0

e−iqx

∞∑
k=−∞

: c†(k−q)ηckη :

+
∞∑

k=−∞

: c†kηckη :

}
where we simply mapped the q < 0 summation using q 7→ −q. Using the
definition of the Boson raising and lowering operators (15) and (16) and the
number operator we can write this as

ρη(x) =
1

L

∑
q>0

(
−i√nqb

†
qη + i

√
nqbqη

)
+

1

L
N̂η.

Comparing this expression with the definition of the φη(x) (29) and it’s
derivative we arrive at our desired expression

ρη(x) =
1

2π
∂xφη(x) +

1

L
N̂η. (104)

In the limit L→∞ only the first term survives. The fact that ρη is quadratic
in Fermion fields ψ but linear in the Boson field φ is the key to the usefulness
of Bosonization.
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