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1.1 Introduction

In this report, I discuss the Green’s function method applied to a periodic lattice described by the
tight-binding Hamiltonian. I first discuss the homogeneous solution in a 1D, 2D, and 3D perfect
periodic lattice, and then describe the more complex problem involving an impurity potential, which
gives rise to bound and resonant (scattering) states. I calculate the eigenstates and eigenfunctions
explicitly for a Green’s function of the cubic lattice, and discuss the nature of the bound and
resonant states in this system. Finally, I look at how the formalism can be developed in the context
of Maxwell’s equations, as I am interested in studying defect states in photonic crystals. The
principal reference for the material was Economou’s book on Green’s functions, Ch. 1-6 [1].

To give a brief review, the Green’s function satisfies the equation of motion,
(

ih̄
∂

∂t
− Ĥ(t)

)

Ĝ(t, t0) = δ(t− t0), (1.1)

and, as we know, is given by,

Ĝ(E) =
1

E − Ĥ + iη
=
∑

n

|n〉〈n|
E − En + iη

(1.2)

The poles of the Green’s function correspond to the spectrum of eigenenergies of the Hamiltonian,
En, and the eigenfunctions are related to the residues. Moreover, as we shall see, the density of
states (DOS) is given by the imaginary part of the Green’s function. Therefore, if we know the
Green’s function, we have a handle on the essential physics of the problem.

1.2 Green’s functions for tight-binding Hamiltonians

1.2.1 One-dimensional result

The one-dimensional (1D) tight-binding Hamiltonian is defined as

Ĥ =
N
∑

n=1

ε0|n〉〈n| − t
N
∑

n=1

(|n〉〈n+ 1| + |n+ 1〉〈n|), (1.3)

where ε0 is an on-site energy, and t is the hopping energy to nearest neighbours. This model can
be used to describe a periodic chain of atoms whose atomic orbitals weakly overlap with their
neighbours. In the first question of Problem Set 1, we found that the continuous spectrum of
energies in the band is given by

E(k) = ε0 − 2t cos(ka). (1.4)

The corresponding Green’s function is

G(n2, n1;E) =
a

2π

∫ π/a

−π/a
dk

eik(n2−n1)a

E − ε0 + 2t cos(ka) + iη
, (1.5)

with solution

G(n2, n1;E) =
−i

2t
√

1 − x2
(x− i

√
1 − x2)|n2−n1|, (1.6)

where

x =
E − ε0

2t
(1.7)
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Figure 1.1: 1D tight-binding Green’s function. The spectrum extends from −1 < x < 1.

The energy spectrum is defined by the band −1 < x < 1. The real and imaginary parts of the
diagonal matrix element (n2 = n1) for the 1D Green’s function are plotted in Figure 1.1. Note that
the function is purely imaginary within the band, and outside the band, where |x| > 1, G(n, n;E)
is real. Both real and imaginary parts have square root singularities at the band edges, which is
typical of a 1D system.

1.2.2 Two dimensional result

The 2D tight-binding Green’s function for a square lattice is directly analogous to (1.5), except ~k

is now the vector ~k = kxx̂+ kyŷ. It is given by

G(~l, ~m;E) =
a2

(2π)2

∫

1BZ

d2~k
ei~k(~l−~m)

E − ε0 + iη − 2t[cos(kxa) + cos(kya)]
(1.8)

where ~l = lxx̂ + lyŷ, ~m = mxx̂ + myŷ, and lx, ly,mx,my are integers. The integral is over the 1st
Brillouin zone, defined by −π/a ≤ kx, ky < π/a. To find the solution, we start by keeping only the
even terms in the integral, since the domain is symmetric:

G(~l, ~m;E) =
a2

π2

∫ π/a

0
dkx

∫ π/a

0
dky

cos((lx −mx)kxa) cos((ly −my)kya)

E − ε0 + iη − 2t[cos(kxa) + cos(kya)]
. (1.9)

An arbitrary matrix element G(~l, ~m;E) can be determined through recurrence relations in terms

of the diagonal elements, G(~l,~l;E) [2]. Along the diagonal, the numerator in (1.9) is 1, and using
the sum and difference trigonometric identities, we can convert the sum into a product of cosines
in the denominator:
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G(~l, ~m;E) =
1

π2

∫ π/a

0
dkx

∫ π/a

0
dky

1

E − ε0 + iη − 4t[cos((kx − ky)/2a) cos((kx + ky)/2a)]
, (1.10)

This function can be expressed in terms of the elliptic integral of the first kind, which is defined
as:

�
(λ) =

∫ π

0

dφ

(1 − λ2 cos2 φ)1/2
. (1.11)

So eqn. (1.10) becomes [2]:

G(~l,~l;E) =
2

π(E − ε0)

� (

4t

E − ε0

)

, |E − ε0| > 4t (1.12)

This expression holds for energies outside the band, where Ĝ(E) is real. But for E within the band,
i.e. |E − ε0| < 4t, E → E + iη, so we must use the analytic continuation of

�
, defined as [2]

�
(1/k) = k[

�
(k) + i

� (√
1 − k2

)

. (1.13)

Within the continuum, the real and imaginary parts of the Green’s function are

Re{G(~l,~l;E)} = − 2

π(4t)

� (

E − ε0

4t

)

, −4t < E − ε0 < 0

Re{G(~l,~l;E)} =
2

π(4t)

� (

E − ε0

4t

)

, 0 < E − ε0 < 4t

Im{G(~l,~l;E)} = − 2

π(4t)

� (

√

1 − (E − ε0)2/(4t)2

)

, |E − ε0| < 4t (1.14)

This rather cumbersome series of expressions is more easily appreciated in graphical form, as shown
in Figure 1.2. The real part has a discontinuity when E = ε0, and diverges logarithmically at the
band edges. The imaginary part diverges at E = ε0, and is discontinuous at the band edges.

1.2.3 Simple cubic lattice

The diagonal matrix element of the Green’s function for the simple cubic lattice is the 3D general-
ization of the 2D result given in (1.8):

G(~l, ~m;E) =
a2

(2π)3

∫ π/a

−π/a
dkx

∫ π/a

−π/a
dky

∫ π/a

−π/a
dkz

1

E − ε0 + iη − 2t[cos(kxa) + cos(kya) + cos(kza)]
(1.15)

where again the integrals are over the 1st Brillouin zone, defined by −π/a ≤ kx, ky, kz < π/a.
The result is again in terms of elliptic functions:

G(l, l;E) =
1

2π2t

∫ π/a

0
dk1 v

�
(v), (1.16)

where
v = 4t/(E − ε0 + iη − 2t cos(k1a)). (1.17)

For many purposes, one is mainly interested in the qualitative behaviour of the Green’s functions,
particularly at the band edges, and so it is convenient to approximate this result with an expression
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Figure 1.2: 2D tight-binding Green’s function.

which has the correct analytic behaviour at the band edges, and gives one state per site. An
approximate Green’s function, which is plotted in Figure 1.3, is given by:

G(~l,~l;E) =
2

E − ε0 + iη +
√

(E − E0)2 − (6t)2
, (1.18)

where the sign of
√

(E − E0)2 − (6t)2 is negative for (E − E0)/6t < −1. The main feature not

reproduced in the approximation is the presence of van Hove singularities (kinks) within the band
of the exact result. We shall do a quantitative analysis of this approximation in Section 1.4.

1.3 Single Impurity Scattering

In this section, I describe in detail a calculation to determine the eigenstates of a single impurity
in a tight-banding Hamiltonian. The formalism generalizes to any dimension.

1.3.1 Finding the Green’s function

Suppose we have a Hamiltonian,

Ĥ = Ĥ0 + Ĥ1 (1.19)

where the unperturbed part, Ĥ0, is the tight-binding Hamiltonian

Ĥ0 =
∑

m

|m〉ε0〈m| + V
∑

nm

|n〉〈m|, (1.20)

and the perturbation due to the impurity potential at site |l〉 is

Ĥ1 = |l〉ε〈l|. (1.21)
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Figure 1.3: Approximate Green’s function for the 3D tight-binding Hamiltonian

The Green’s function (1.2) can be expressed in terms of the unperturbed (or free particle)
Green’s function, Ĝ0(E) = 1/(E − Ĥ0 + iη), according to Dyson’s equation:

Ĝ(E) = Ĝ0(E) + Ĝ(E)V̂ Ĝ0(E) (1.22)

or, with the aid of the T-matrix, as we saw in Problem Set 4,

Ĝ(E) = Ĝ0(E) + Ĝ0(E)T̂ (E)Ĝ0(E) (1.23)

The T-matrix has a Dyson-like equation of its own:

T̂ (E) = Ĥ1 + Ĥ1Ĝ0(E)Ĥ1 + Ĥ1Ĝ0(E)Ĥ1Ĝ0(E)Ĥ1 + ... (1.24)

The advantage of using the T-matrix formalism is that, once the T-matrix is known, the Green’s
function can be computed directly. And with knowledge of the Green’s function, we can compute
the excitation spectrum, and more importantly, the density of states.

By substituting for H1, we get

T = |l〉ε〈l| + |l〉ε〈l|Ĝ0|l〉ε〈l| + |l〉ε〈l|Ĝ0|l〉ε〈l|Ĝ0|l〉ε〈l| + ... (1.25)

= |l〉ε{1 + εG0(l, l;E) + [εG0(l, l;E)]2 + ...}〈l| (1.26)

= |l〉 ε

1 − εG0(l, l;E)
〈l| (1.27)

where we have used the notation G0(l, l;E) = 〈l|Ĝ0(E)|l〉.
This gives the Green’s function

Ĝ(E) = Ĝ0(E) + Ĝ0(E)T̂ (E)Ĝ0(E) (1.28)

= Ĝ0(E) + Ĝ0(E)|l〉 ε

1 − εG0(l, l;E)
〈l|Ĝ0(E) (1.29)
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The poles of Ĝ(E) are given by the real value

G0(l, l;Ep) = 1/ε. (1.30)

These poles must be bound states lying outside the energy band, as G0(l, l;E) is complex within
the band.

1.3.2 Eigenstates

The eigenstates can be found from a calculation at each pole En of the residue, which, from the
definition (1.2), is given in the ~r-representation by

Res(G(~r, ~r ′;En)) =
∑

n

〈~r|n〉〈n|~r ′〉 =
p
∑

i=1

φi(~r)φ
∗
i (~r

′), (1.31)

where the last sum is over the p degenerate eigenstates of the bound state.
To determine the degeneracy, we can integrate the residue of the diagonal matrix element

G(~r, ~r;Ep) at the pole:

fp =
∫

d3~rRes(G(~r, ~r;Ep)) (1.32)

For the tight-binding model, where the basis states are localized to lattice sites |n〉, the degeneracy
is

fp =
∑

n

Res(G(n, n;Ep)) (1.33)

To progress further with the calculation of the Residue, we can expand the denominator in (1.29)
for energies very near to the pole. So,

1 − εG0(l, l;E − Ep + Ep) = 1 − εG0(l, l;Ep) − ε(E − Ep)G
′
0(l, l;Ep)

= −ε(E − Ep)G
′
0(l, l;Ep) (1.34)

The matrix element 〈n|Ĝ(E)|m〉 from (1.29) is thus

G(n,m;Ep) = G(n,m;Ep) −
G0(n, l;Ep)G0(l,m;Ep)

(E − Ep)G′
0(l, l;Ep)

(1.35)

which has a residue

Res(G(n,m;Ep)) = −G0(n, l;Ep)G0(l,m;Ep)

G′
0(l, l;Ep)

(1.36)

The degeneracy can now be calculated:

fp = − 1

G′
0(l, l)

∑

n

G0(n, l)G0(l, n) (1.37)

= − 1

G′
0(l, l)

∑

n

[G0(n, n)]2 (1.38)

= −(E −H + iη)−2

G′
0(l, l;Ep)

(1.39)
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But note that, from the definition (1.2),

dG(n, n;E)

dE
= −

(

1

E −H + iη

)2

(1.40)

so
fp = 1. (1.41)

This shows that the degeneracy of the bound state in the tight-binding Hamiltonian is 1.
We can now determine the discrete eigenstate |bn〉 at the pole Ep, using equation (1.31) for the

complete states. An arbitrary matrix element can be written

∑

n

〈n′|bn〉〈bn|m′〉 = Res{G(n′,m′;Ep)}, (1.42)

so, from (1.36),
∑

n

|bn〉 =
G0(Ep)|l〉

√

−G′
0(l, l;Ep)

(1.43)

We can now rewrite the localized eigenstate in terms of the basis of eigenstates |n〉:

|b〉 =
∑

n

bn|n〉, (1.44)

where

bn =
G0(n, l;Ep)|l〉
√

−G′
0(l, l;Ep)

(1.45)

The denominator is assured of being real, since G′
0(l, l;Ep) is negative for E outside the band of

states, according to (1.40).
Thus we have determined the bound state energy, the degeneracy, and the eigenfunctions of the

impurity state.

1.3.3 Density of States (and origin of the bound state)

The density of states of a system with energy levels denoted by En is given by

ρ(E) =
∑

n

δ(E − En) (1.46)

This can be related to the imaginary part of the Green’s function, using the identity

lim
η→0

1

x+ iη
= P (1/x) − iπδ(x). (1.47)

In the case of the unperturbed Green’s function, G0(E), x = E − En, so we can find the DOS
as follows:

− 1

π
Im{G(n, n;E)} =

∑

n

δ(E − En) = ρ(E). (1.48)

In the ~r-representation,
ρ(~r, E) =

∑

k

|〈~r|~k〉|2δ(E − Ek) (1.49)
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Figure 1.4: Two integration contours (I and II) for DOS expression, where x marks the positions
of the poles of the continuous spectrum

Using eqn. (1.29) for the Green’s function, we can write the partial DOS (“partial” in the sense
that it refers to a specific site n), directly:

ρ(n;E) = ρ0(n;E) − Im

π

{

ε〈n|G0(E)|l〉〈l|G0(E)|n〉
1 − εG0(l, l;E)

}

(1.50)

At the impurity site |l〉, the DOS is given by

ρ(l, E) = − 1

π
Im

{

G(l, l;E) +
ε[G0(l, l;E)]2

1 − εG0(l, l;E)

}

= − 1

π

ρ0(l;E)

|1 − εG0(l, l;E)|2 (1.51)

The integral of the DOS ρ(n;E) over all energies should yield 1; to check this, we can use
Cauchy’s theorem on the contour I shown in Fig. 1.4. Because I and II define a simply closed contour,
Cauchy’s theorem says that the contour integral of an analytic function along I and II should be 0.
We observe that limE→∞G0(E) → 1/E (see (1.2)). As a result, from (1.29), limE→∞G(E) → 1/E
as well. Therefore,

∫ ∞

−∞
ρ(n;E)dE ≡ − Im

π

{
∫ ∞

−∞
G(n, n;E)dE

}

= − 1

π
lim

E→∞
Im

{

∫

II

dE

E

}

(1.52)

By making the substitution E = Reiθ, and integrating from θ = π to 0, the last integral in the
brackets {} in (1.52) is −iπ. Therefore,

∫ ∞

−∞
ρ(n;E)dE = 1. (1.53)

We can now make use of the result 1.49 to separate the DOS as follows:

∫ Eu

El

ρ(n;E)dE +
∑

p

|〈n|bn〉|2 = 1, (1.54)
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where El and Eu refer to the lower and upper energies bounding the band. By virtue of our equation
for the localized eigenstates (1.45), this can be written

∫ Eu

El

ρ(n;E)dE +
∑

p

|bn|2 = 1. (1.55)

Summing over n sites, and using N(E) to denote the total DOS, N to be the number of lattice sites,
and P the number of poles, this can be rewritten:

∫ Eu

El

N(E)dE + P = N. (1.56)

Since there is one state in the Hilbert space for each of the N lattice sites, this shows that the
bound states are formed at the expense of the continuum. The impurity site plucks a state from
the continuum, and, as (1.54) shows, receives a weight from each continuum site |n〉 according to
the overlap |bn|2 of the discrete state with the site |n〉.

1.3.4 Scattering eigenstates

Assuming a Hamiltonian Ĥ = Ĥ0 + Ĥ1, the wavefunctions |ψ〉 are determined by the time-
independent Schrodinger equation

(E − Ĥ0)|ψ〉 = Ĥ1|ψ〉. (1.57)

The general solution is
|ψ〉 = |ψ0〉 + Ĝ0(E)Ĥ1|ψ〉. (1.58)

where |ψ0〉 is the solution to (E − Ĥ0)|ψ0〉 = 0. By iterating this self-consistent equation, we get
the wavefunction in terms of the free particle Green’s function and the T-matrix:

|ψ〉 = |ψ0〉 + Ĝ0(E)T̂ (E)|ψ0〉. (1.59)

In the continuum, the scattering eigenstates are Bloch states, given by

|~k〉 =
1√
N

∑

l

ei~k·~l|~l〉, (1.60)

and so eqn. (1.59) is

|ψ〉 = |~k〉 + Ĝ0(E)T̂ (E)|~k〉. (1.61)

In the ~r-representation, the amplitude of probability of finding the particle at ~r is (using (1.27):

〈~r|ψ〉 = 〈~r|~k〉 +
〈~r|Ĝ0(E)|~l〉ε〈~l|~k〉
1 − εG0(~l,~l;E)

. (1.62)

The amplitude of probability at the impurity site, ~l, is

〈~l|ψ〉 =
〈~l|~k〉

1 − εG0(~l,~l;E)
. (1.63)
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In scattering theory, the scattering cross section |f |2 is proportional to |〈~kf |T (E)|~ki〉|2, where

the T-matrix connects an incident state |~ki〉 to a final scattered state |~kf〉. Using our expression for
T (1.27), the scattering cross section is thus proportional to (see Economou pp.61-62):

|f |2 ∝ ε2

|1 − εG0(~l,~l;E)|2
(1.64)

Inside the band, G0(~l,~l;E) is complex, so the denominator cannot equal 0, but for certain
energies, it can become very small, leading to a large enhancement in the wavefunction around the
impurity site, |~l〉. As we will see in the next section, this can occur in association with a bound
state being split off from the continuum.

1.4 Quantitative 3D model

In Section 1.2.3, we proposed the approximate Green’s function for the cubic lattice:

G0(l, l;E) =
2

E − ε0 + iη +
√

(E − E0)2 −B2
, (1.65)

where B = 6t is half the bandwidth. To find the unperturbed density of states, note that within
the band, the square root is imaginary. Multiplying the top and bottom by the complex conjugate
of the denominator and taking the imaginary part gives

ρ0(E) = Θ(B − |E − ε0|)
2
√

B2 − (E − ε0)2

πB2
. (1.66)

From (1.51), the DOS at the impurity site in the band is

ρ(l, E) =
ρ0

∣

∣

∣

∣

1 − 2ε
(

E + i
√
B2 − E2

)−1
∣

∣

∣

∣

2

=
ρ0

1 − 4εE/B2 + 4ε2/B2

=
2

πB







√

1 − E2/B2

1 − 4εE/B2 + 4ε2/B2







, (1.67)

where we have set ε0 = 0 for clarity.
If we let y = Bρ(l, E) and x = (E − ε0)/B, the DOS at the impurity site within the band is

given by

y =
2

π

{ √
1 − x2

1 + 4xα + 4α2

}

, (1.68)

where α = −ε/B is the strength of the impurity potential.
This function is plotted for a range of α in Figure 1.5. As the impurity potential increases,

states are pushed down towards the band edge, where they peak and form a resonant state. At a
critical value of 0.5, they form a pole and a discrete level is split from the continuum into the gap.
Above this value, the pole moves further from the band edge (not shown), and the resonant state
diminishes in strength.
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Figure 1.5: Impurity DOS ρ(~l;E) as a function of energy for a range of attractive impurity potential
strengths. The energy band extends from −1 < (E − ε0)/B < 1. The DOS clusters towards the
lower band edge as −ε/B increases from 0.1 to 0.5. At this threshold, a bound state is split off
from the continuum.
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The resonant peak in the DOS (1.68) can be found by differentiation to be

Er =
4εB2

B2 + 4ε2
. (1.69)

Similarly, we can find the energy of the pole outside the band, where both E and G0(l, l;E) =
2/(E +

√
E2 −B2) are real. Solving G0(l, l;E) = 1/ε yields

Ep =
4ε2 +B2

4ε
(1.70)

The trajectories of Er and Ep as a function of impurity strength are shown in Figure 1.6. There
is no bound solution Ep for ε/B > −0.5, as was also evident from the DOS plotted in Fig. 1.5. For
impurity potentials stronger than this threshold, a bound state is split off from the continuum, and
as the potential increases, both Er and Ep diverge steadily away from El.
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−1.5
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E
r
 

E
p
 

ε/B 

E
l
 

(E
−ε

0)/B
 

Figure 1.6: Resonant (Er) and bound (Ep) state energy trajectories as a function of impurity
strength. The lower band edge is marked El. At the threshold ε/B = −0.5, the bound and
resonant state energies coincide.

1.5 Application to Maxwell’s equations

My interest in the theory of defect states in a periodic Hamiltonian stems from my research into
defect states in photonic crystals, which we are currently designing and fabricating in Ampel. In
this section I will introduce the general and 2D photonic Green’s function for dielectric materials.

The derivation is very similar to the electronic case, except now we are dealing with vector wave
equations derived from Maxwell’s equations rather than the Schrodinger equation. It is always
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useful to start with the Maxwell’s equations, so for completeness, I write them here:

~∇ · ~D(~r, t) = 0 (1.71)

~∇ · ~B(~r, t) = 0 (1.72)

~∇× ~E(~r, t)(~r, t) = −∂
~B(~r, t)

∂t
= −µ0

∂ ~H(~r, t)

∂t
(1.73)

~∇× ~H(~r, t)(~r, t) =
∂ ~D(~r, t)

∂t
= ε0ε(~r)

∂ ~E(~r, t)

∂t
(1.74)

Solving equations 1.73 and 1.74 for either ~E(~r, t) or ~H(~r, t) gives the two wave equations:

1

ε(~r)
~∇× {~∇× ~E(~r, t)} = − 1

c2
∂2

∂t2
~E(~r, t) (1.75)

~∇×
{

1

ε(~r)
~∇× ~H(~r, t)

}

= − 1

c2
∂2

∂t2
~H(~r, t), (1.76)

where the speed of light in vacuum is

c =
1√
ε0µ0

(1.77)

1.5.1 Hermitian operator and eigenfunctions

If we define the Hamiltonian for eqn. (1.75) by

Ĥ =
1

√

ε(~r)
~∇×

(

~∇× 1

ε(~r)

)

(1.78)

and define a complex vector function

~Q(~r, t) =
√

ε(~r) ~E(~r, t), (1.79)

equation 1.75 can be rewritten as

(

1

c2
∂2

∂t2
+H

)

~Q(~r, t) = 0. (1.80)

The Hamiltonian is not chosen as the differential operator from (1.75), because this operator is

not Hermitian. Accordingly, its eigenfunctions ~E(~r, t) are neither complete nor orthogonal. The
eigenfunctions corresponding to the Hermitian operator Ĥ defined in (1.78) are given by (1.79).
They are normalized by

∫

V
d~r ~Qα∗

~kn
(~r) · ~Qβ

~k′n′
(~r) = V δαβδ~k~k′δnn′ (1.81)

where α, β = T or L, for transverse or longitudinal. The only physical solutions to the wave equations
in free space are transverse. In a dielectric such as a photonic crystal, the spatial variation of ε(~r)
mixes the solutions, so we can only describe the solutions as quasi-transverse and quasi-longitudinal.
As in free space, the longitudinal solutions in the dielectric are unphysical, in that they do not
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satisfy the first Maxwell equation 1.71. However, they are important in the following definition of
completeness of the eigenfunctions:

∑

~kn

~QT
~kn

(~r) ⊗ ~QT∗
~kn

(~r ′) +
∑

~kn

~QL
~kn

(~r) ⊗ ~QL∗
~kn

(~r ′) = V � δ(~r − ~r ′) (1.82)

The longitudinal solutions satisfy
Ĥ ~QL

~kn
(~r) = 0 (1.83)

and the transverse solutions

Ĥ ~QT
~kn

(~r) =
ω

(T )2
~kn

c2
~QT

~kn
(~r) (1.84)

1.5.2 Green’s Function

The operator and basis of eigenfunctions just introduced for Maxwell’s equations leads to a retarded
Green’s function defined by

−
(

1

c2
∂2

∂t2
+ Ĥ

)

~G(~r, ~r ′, t− t′) = � δ(~r − ~r ′)δ(t− t′), (1.85)

which is very similar to the equation of motion for fermionic Green’s functions, except that it is
a wave equation instead of Schrodinger’s equation. The (linear) photonic case is simpler than the
electronic case in that the photons are non-interacting. However, the problem is made more complex
by the vectorial nature of the fields.

It is important to remember why we develop the Green’s function formalism. The Green’s
function solves the homogeneous Maxwell’s equations assuming a delta-function source term. Armed
with the Green’s function, it is easy to solve for the real fields ~E(~r, t), which are subject to the
inhomogeneous equation

−
(

1

c2
∂2

∂t2
+ Ĥ

)

~E(~r, t) = f(~r), (1.86)

because
~E(~r, t) =

∫

G(~r, ~r ′, t− t′)f(~r ′)d~r ′. (1.87)

Carrying on with our analysis, the Fourier transform of (1.85), using the usual definition we
used in class, is

(

ω2

c2
− Ĥ

)

G(~r, ~r ′, ω) = � δ(~r − ~r ′). (1.88)

We can find the Green’s function in ω-space by rewriting (1.88), and expanding � in a complete
set of states, according to (1.82):

G(~r, ~r ′, ω) =
�

ω2/c2 − Ĥ
=
c2
∑

~k |Q~k〉〈Q~k|
ω2 − ω2

~k

=
c2

V

∑

~kn





~QT
~kn

(~r) ⊗ ~QT∗
~kn

(~r ′)

(ω − ωT
~kn

+ iδ)(ω + ωT
~kn

+ iδ)
+

∑

~kn
~QL

~kn
(~r) ⊗ ~QL∗

~kn
(~r ′)

(ω + iδ)2)



 (1.89)

Using the residue theorem, it is easy to show that in the time domain, (1.89) becomes

G(~r, ~r ′, t− t′) = −c
2

V

∑

~kn

{

sinωT
~kn
t

ωT
~kn

~QT
~kn

(~r) ⊗ ~QT∗
~kn

(~r ′) + t ~QL
~kn

(~r) ⊗ ~QL∗
~kn

(~r ′)

}

(1.90)
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For 2-D photonic crystals, such as I am interested in for my research, the argument proceeds
exactly as above, except we consider only in-plane ~r and ~k, denoted by ~r‖ and ~k‖. We are usually

interested in TE-like solutions, for which the ~E-field is in-plane, so this plays the role of the trans-
verse solutions in the general case, and there are no longitudinal solutions. The 2D TE-polarized
Green’s function is given by

G(2)(~r‖, ~r‖
′, t, t ′) = −Θ(t− t ′)

c2

V

∑

~k‖n

sinωE
~k‖n
t

ωE
~k‖n

~Qz,~k‖n(~r‖) ⊗ ~Q∗
z,~k‖n

(~r‖
′). (1.91)
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