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Angle-resolved photoemission spectroscopy (ARPES) provides us with the most direct access to
the energy and momentum of the occupied electronic states. In this review we want to answer
the following basic question: What are we actually measuring in angle resolved photoemission?
To answer this question we first introduce the idea of single-particle spectral function. Analyzing
the expression of the intensity measured by ARPES we can show that the intensity corresponds
to the electron removal part of the spectral function modulated by transition matrix elements. To
test our conclusion we present two classic experiments that probe a Fermi liquid and an electron-
phonon system.

PACS numbers:

I. INTRODUCTION

The great popularity of photoemission in the study of
solids can be mainly attributed to the capacity of this
technique to yield direct access to the energy and mo-
mentum of the occupied electronic states. In this review
we shall examine the standard interpretation of angle re-
solved photoemission (ARPES) data from a theoretical
point of view. The first section is devoted to the idea of
single-particle spectral function. Then basics of ARPES
measurement and an analysis of the measured intensity
are introduced. The next section describes an estimation
of the self-energy for a Fermi liquid system and a clas-
sic ARPES measurement on layered Fermi liquid system
1− T −TiTe2. We conclude with an analysis of the self-
energy of an electron-phonon system and how we can
isolate the electron-phonon contribution from other in-
teractions. It followed by a careful experiment done on
a nearly free electron like surface state of Be(0001) that
showed an excellent agreement with the calculated line
shapes and measured spectra.

II. SPECTRAL REPRESENTATION

One of the most powerful tool available to a many-body
physicist is the single-particle spectral function. The ba-
sic idea is similar to the spectral decomposition of a time
dependent f(t) into the sum of it’s components at various
frequencies.

f(t) =
∫ ∞

−∞
F (ω)eiωtdω (1)

where F (ω) gives the spectrum of f(t).
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Let us try to evaluate a similar form of decomposition
for the propagator G(k, ω). Let |ψN

n 〉 and EN
n be the

exact eigenstate and energies of the Hamiltonian H of
the interacting N particle system. The single particle
propagator or Green function can be defined as

G(k2,k1, t2 − t1) = G+(k2,k1, t2 − t1)t2>t1

+G−(k2,k1, t2 − t1)t2≤t1 . (2)

where G−(k2,k1, t2 − t1) is the probability amplitude
that if at time t1 we remove a particle in φk, from the
interacting system in it’s ground state, then at time t2
the system will be in it’s ground state with an added hole
in φk.

G(k2,k1, t2− t1) can be expressed in terms of creation
and annihilation operators.

G(k2,k1, t2 − t1) = −iΘ(t2 − t1)〈ψ0|ĉk2(t2)ĉ
†
k1

(t1)|ψ0〉
+iΘ(t1 − t2)〈ψ0|ĉ†k1

(t1)ĉk2(t2)|ψ0〉.(3)

Let t1 = 0 and t2 = t. Then

G−(k, t) = iΘ(−t)

×
∑

n

〈ψN
0 |ĉ†keiHt|ψN−1

n 〉〈ψN−1
n |ĉke−iHt|ψN

0 〉

= iΘ(−t)
∑

n

|〈ψN−1
n |ck|ψN−1

0 〉|2e−i(EN
0 −EN−1

n )t

= iΘ(−t)
∑

n

|(ck)n0|2e−i(EN
0 −EN−1

n )t (4)

Taking Fourier transform of Eq. (4) we find

G−(k, ω) =
∑

n

|(ck)n0|2 1
ω − (EN

0 − EN−1
n )− iδ

(5)

For large N , these results can be expressed in terms of
chemical potential, EN

0 −EN−1
n = EN

0 −EN−1
0 +EN−1

0 −



2

EN−1
n = µN−1 − ωN−1

n0 = µ− ωn0. This gives

G−(k, t) = iΘ(−t)
∑

n

|(ck)n0|2e−i(µ−ωn0)t (6)

and

G−(k, ω) =
∑

n

|(ck)n0|2 1
ω − (µ− ωn0)− iδ

(7)

In a system with large volume, the energy levels are so
closely spaced that we can go from a sum to an integral
by introducing the single-particle spectral function

A−(k, ω) =
∑

ω<ωn0<ω+dω

|(ck)n0|2 (8)

or, equivalently,

A−(k, ω) =
∑

n

|(ck)n0|2δ(ω − ωn0). (9)

This function is defined only for ω ≥ 0. It gives the prob-
ability that the state |ψN

0 〉 with an added hole in state k
is an exact eigenstate of the (N−1)-particle system with
energy between ω and ω + dω. Substituting Eq. (8) in
Eq. (6) and (7), we get

G−(k, t) = iΘ(−t)
∫ ∞

0

dωA−(k, ω)e−i(µ−ωn0)t (10)

G−(k, ω) =
∫ ∞

0

dω
′ A−(k, ω

′
)

ω − (µ− ω′)− iδ
(11)

The retarded Green function is defined as

G(k, ω) = G+(k, ω) + [G−(k, ω)]∗.

Hence, in terms of single-particle spectral function

G(k, ω) =
∫ ∞

0

dω
′ A+(k, ω

′
)

ω − ω′ − µ + iδ
+

A−(k, ω
′
)

ω + ω′ − µ− iδ
(12)

Comparing Eq. (1) with (12) we can see why A(k, ω)
is also known as spectral density function.

We can make use of the following identity

1
x + iδ

= P
(

1
x

)
− iπδ(x)

to get

A(k, ω) = A+(k, ω) + A−(k, ω) = − 1
π

ImG(k, ω). (13)

The effect of electron-electron correlation to the Green
function can be expressed in terms of the electron proper
self energy

Σ(k, ω) = ReΣ(k, ω) + iImΣ(k, ω).

FIG. 1 Energetics of the photoemission process. From (1)

Its real and imaginary parts contain all the information
on the energy renormalization and lifetime, respectively,
of an electron with band energy εk and momentum k
propagating in a many-body system. The Green function
can be expressed in terms of self-energy as

G(k, ω) =
1

ω − εk − Σ(k, ω)
. (14)

Since A(k, ω) = − 1
π ImG(k, ω),

A(k, ω) = − 1
π

ImΣ(k, ω)
[ω − εk − ReΣ(k, ω)]2 + [ImΣ(k, ω)]2

.

(15)
It is important to notice the profound changes takes

place when we go from the sum (7) to the integral (11).
The sum (7) has an infinite number of real poles, whereas
the integral (11) has a small number of complex poles.
We should also note the physical meaning of the corre-
sponding expressions for G− in the time domain, i.e.,
(6) and (10). In (6), if there is no interaction, then
(ck)n0 = δkn, i.e., (ck)n0 is finite only for a single en-
ergy level. But with interaction, in typical cases (ck)n0

is spread out over a band of energy levels from say n
′
to

n
′′
, having width ∆E = ωn′′ ,0 − ωn′ ,0.

III. A GENERAL DESCRIPTION OF ARPES

A. Kinematics of photoemission

When light is incident on a sample, an electron can
absorb a photon and escape from the material with a
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FIG. 2 (a) geometry of an ARPES experiment, (b)momentum-resolved one electron removal and addition spectra for a non-
interacting electron system with a single energy band dispersing across EF ,(c) same spectra for an interacting Fermi-liquid
system, (d) photoemission spectrum for gaseous system. From (2).

maximum kinetic energy of hν − φ where ν is the fre-
quency of the incident photon and φ is the work function
of the metal.

The energetics of the photoemission process is sketched
in Fig. 1.

In an angle-resolved photoemission experiment, a
beam of monochromatic radiation is incident on a sample
and, as a result, electrons are emitted by the photoelec-
tric effect and escape into the vacuum in all directions.
By collecting photoelectrons with an electron energy an-
alyzer we measure the kinetic energy,Ekin of the photo-
electrons for a given emission angle. This way photoelec-
trons momentum p is also completely determined

|p| = p =
√

2mEkin (16)

and p‖ and p⊥ are determined from the polar (θ) and
azimuthal (φ) emission angles.

Photon momentum can be neglected at low photon en-
ergies typically used in ARPES experiments. Therefore,
within the non-interacting electron picture, due to energy
and momentum conservation laws, we get the following
relations

Ekin = hν − φ− |EB | (17)

p‖ = ~k‖ =
√

2mEkin. sin θ (18)

B. Photoemission intensity

To describe the photoemission process, we can start
with how to calculate the transition probability wn0 for
the optical excitation between the N -electron ground
state |ψN

0 〉 and one of the possible final state |ψN
n 〉.This

can be approximated by Fermi’s golden rule

wn0 =
2π

~
|〈ψN

n |Hint|ψN
0 〉|2δ(EN

n − EN
0 − hν) (19)

where EN
0 = EN−1

0 −Ek
B and EN

n = EN−1
n +Ekin are the

initial and final-state energies of the N -particle system
(Ek

B is the binding energy of the photoelectron with ki-
netic energy Ekin and momentum k). The interaction of

the the electromagnetic wave,i.e. photon, can be treated
as a perturbation given by

Hint =
e

2mc
(A.p + p.A) =

e

mc
A.p (20)

where p is the electronic momentum operator and A is
the electromagnetic vector potential.

The standard model of approximating the photoemis-
sion process is known as three-step model. Within this
approach, the photoemission process is divided into three
independent and sequential steps
(i) optical excitation of the electron to the bulk,
(ii)travel of the excited electron to the surface and
(iii) escape of the photoelectron into vacuum.
The total photoemission intensity is then given by the
product of the probabilities of these three independent
processes.

In evaluating (i), and therefore, the photoemission in-
tensity in terms of the transition probability wn0, it
would be convenient to factorize the wavefunctions in
Eq. (19) into photoelectron and (N − 1)-electron terms.
But doing this is not simple because the system will relax.
The problems is simplified within the sudden approxima-
tion which applies to high kinetic energy electrons. In
this limit, the photoemission process is assumed to be
sudden, with no post-collisional interaction between the
photoelectron and the system left behind. Then the final
state ψN

n can be written as

ψN
n = Aφk

nψN−1
n (21)

where A is an antisymmetric operator that properly an-
tisymmetrizes the N -electron wavefunction so that Pauli
principle is satisfied,φk

n is the wavefunction of the photo-
electron with momentum k, and ψN−1

n is the final state
wavefunction of the (N − 1)-electron system left behind
which can be chosen as an excited state with energy
EN−1

n . The total transition probability is then given by
the sum over all possible excited states n.

Let us also write the initial state as the product of a
one-electron orbital φk

0 and an (N − 1)-particle term

ψN
0 = Aφk

0ψN−1
0 . (22)
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However, ψN−1
0 can be expressed as

ψN−1
0 = ckψN

0 .

At this point we can write the matrix element of Eq. (19)
as

〈ψN
n |Hint|ψN

0 〉 = 〈φk
n|Hint|φk

0 〉〈ψN−1
m |ψN−1

0 〉 (23)

where 〈φk
n|Hint|φk

0 〉 ≡ Mk
n,0 is the one-electron dipole ma-

trix element, and the second term is the (N −1)-electron
overlap integral. The total photoemission intensity mea-
sured as a function of Ekin at a momentum k is

I(k, Ekin) =
∑
n,0

wn,0 (24)

∝
∑
n,0

|Mk
n,0|2

(∑
m

|cm,i|2δ(Ekin + EN−1
m − En

0 − hν)

)

where |cm,i|2 = |〈ψN−1
m |ψN−1

0 〉|2 is the probability that
the removal of an electron from state 0 will leave the
(N − 1)-particle system in the excited state m.

Comparing the term inside the parenthesis of Eq. (24)
with Eq. (9), we see that we are actually measuring
the electron removal part of the spectral function in an
ARPES spectrum

I(k, Ekin) =
∑
n,0

|Mk
n,0|2A−(k, ω) (25)

So far we have only discussed about direct photoemis-
sion (photon in, electron out). If we repeat the whole
calculation starting from G+(k, t) we can show that in-
verse photoemission (electron in, photon out) measures
A+(k, ω). Therefore, full A(k, ω) can be available from
a combination of direct and inverse photoemission. Also
G(k, t, t

′
) is a linear response function to an external per-

turbation. Therefore, the real and imaginary parts of its
Fourier transform G(k, ω) have to satisfy causality and
hence related by Kramers-Kronig relations. This implies
that if we have the full A+(k, ω) available from direct and
inverse photoemission, we can calculate ReG(k, ω) and
then obtain the full self energy directly from Eq. (14).
This really tells us that ARPES should, in principle, be
able to contain the information about the interactions in
a many-body system.

Now, in out photoemission intensity analysis, we have
only considered the T = 0 case. In T 6= 0 case, we can
similarly invoke the sudden approximation and write the
intensity measured in an ARPES experiment as

I(k, Ekin) =
∑
n,0

|Mk
n,0|2A−(k, ω)f(ω), (26)

where f(ω) is the Fermi function.

IV. FERMI-LIQUID LINE SHAPES MEASURED BY
ARPES

We have already shown that apart from the modula-
tion by the matrix elements, ARPES measures essentially

FIG. 3 ARPES spectra of 1−T−TiTe2 taken along the Γ−M
direction. From (4).

the spectral function. However, in real life systems there
are many other factors that can alter ARPES line shape.
For example, the lifetime of the photoelectron adds to
the total ARPES linewidth. Now, it has been shown
that (4) the final state energy width is mixed in with
a weight factor of vh⊥/ve⊥, where vh⊥ and ve⊥ are the
band velocities, perpendicular to the surface, of the pho-
tohole and photoelectron, respectively. Therefore, the
effect of the final electron state broadening can be sup-
pressed if vh⊥ ¿ ve⊥ (3). This is why detailed photohole
line-shape studies can only be done on surface states or
layered systems like high Tc superconductors.Other no-
table mechanisms that can distort the spectral weight
information are scattering and diffraction of the outgo-
ing electrons. Only if all these effects are negligible, or
if their energy dependence is small on the scale of the
intrinsic linewidths, can the ARPES signal be taken to
be representative of the electron removal spectrum.

In the case where the low-lying excitations can be well
described by quasiparticles,i.e., in a Fermi liquid, the self-
energy near the Fermi energy is well known (5):

Σ(k, ω) = αω + iβω2, (27)

where we have assumed a three dimensional isotropic
electron system. It is very important to note that this
is an approximation that holds only for energies small
compared to the occupied bandwidth εF . Using this self-
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FIG. 4 Upper part: ARPES spectra fitted with Fermi liquid
line profile calculated using (28). Lower part: same data fitted
with line shapes of the marginal fermi liquid for various model
parameters.From (4).

energy the Fermi liquid spectral function is given by

A(k, ω) ∝ β
′
ω2

(ω − ε
′
k)2 + β′2ω4

, (28)

where ε
′
= ZF εk, β

′
= ZF β, and ZF is the quasiparticle

weight factor or wave-function renormalization constant
on the Fermi surface, given by (1−α)−1. In this approx-
imation, the spectral function depends on momentum k
only through ε

′
k.

The classic experiment to show to what extent ARPES
spectra can reflect the nature of a Fermi liquid system has
been done by Claessen et. al. (4). The measurements
were done on 1 − T − TiTe2 which, according to band
structure calculations, is semimetal.

Figure 3 shows the measured ARPES spectra fitted
with modelled line shapes by using expression (28) for
the Fermi liquid self-energy. To fit the theoretical line
profiles to the data they used the parameters β

′
and

ε
′
k, where β

′
was kept fixed for all spectra and ε

′
k was

varied for each spectrum to obtain the correct peak po-
sition. Because (27) is an approximation for ε

′
k ¿ εF

the best agreement is to be expected for the spectrum
at θ = 14.75o corresponding to the Fermi level crossing,
and indeed they found an excellent correspondence. As θ
was increased, very good fit was obtained up to 16o. As
θ increases after that 28 fails to describe the data due to
the eventual breakdown of the self-energy approximation
27 since ε

′
k cannot be considered small in comparison to

εF .
Figure 4 shows that the excellent quality of the fits

are really unique to the use of Fermi liquid line shapes.
Attempts to fit with other line profiles,e.g., that of the

FIG. 5 Plot of the electron-phonon part of the self-energy
used in (7).

marginal Fermi liquid (6), failed to reproduce the experi-
mental spectra. The Fermi liquid fits yield for β

′
a value

of 40± 5 eV−1 which is in good agreement with the cal-
culated value.

V. ELECTRON-PHONON COUPLING IN ARPES

To lowest order in the various interactions, the different
contributions are simply summed up (5):

Σ = Σph + Σel−el + Σimp. (29)

For a nearly free electron like surface state of Be(0001)
(7) we may try to isolate the interesting electron-phonon
term Σph in the following way. First, the impurity term is
purely imaginary and nearly constant in the small energy
range of interest. Second,the real part of the electron-
electron term can be linearized close to the Fermi level
on the scale of the electron bandwidth (4), leading to a
constant change in the Fermi velocity vF . In order to
implement the imaginary parts, a parameter

∆(k) = ImΣel−el + ImΣimp

can be introduced which is used in the analysis as a fitting
parameter of the spectral function (7). Eq. (29) leads
then to

Σ(k, ω) = Σph(k, ω) + i∆(k). (30)

The standard way to express this is the following

Σph(ω) =
∫ ∞

−EF

dε

∫ ωm

0

dω̃α2 F (ω̃)
1− f(ε, t) + N(ω̃, T )

ω − ε− ω̃ + iδ±

+
f(ε, t) + N(ω̃, T )
ω − ε + ω̃ + iδ±

, (31)

where f(ε, t) and N( ˜ω, T ) are the Fermi-Dirac and Bose-
Einstein factors, respectively and δ is an infinitesimal
number.
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FIG. 6 ARPES of the surface state near EF in the direction
Γ̄K (dots), compared to the spectral functions, calculated for
the corresponding emission angles (lines). From (7).

Figure 6 shows the estimated line shapes superimposed
on the measured ones. The calculation reproduces almost

perfectly the double structure and the intensity ratio be-
tween the two main peaks.

VI. CONCLUSION

From the discussion it is evident that ARPES does re-
flect the signatures of many-body interactions present in
the system but the information we are interested in can
be mixed with other factors in a complicated way. There-
fore one must be very careful in choosing a system to do
ARPES on and know how the other factors are contribut-
ing to the spectra before extracting any information out.
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