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I. INTRODUCTION

Density functional theory is a variational method that is presently the most successful approach to compute the
electronic structure of matter. Its applicability ranges from atoms, molecules and solids to nuclei and quantum and
Classical fluids. The density functional theory is derived from the N -particle Schrödinger equation and is entirely
expressed in terms of the density distribution of the ground state ρGS(r) and the single particle wave function φj .
DFT reduces the calculations of the ground state properties of systems of interacting particles exactly to the solution
of single-particle Hartree-type equations. This is why it has been most useful for systems of very many electrons. In
this review we are going to discuss briefly the formulation of DFT.

II. THOMAS-FERMI THEORY FOR ELECTRON DENSITY

The Thomas-Fermi theory says for interacting electrons moving in an external potential v(r), the relation between
v(r) and the density distribution ρ(r) is:

ρ(r) = γ(µ− veff (r))3/2 (1)

veff (r) ≡ v(r) +
∫

ρ(r′)
|r− r′|dr

′ (2)

where γ = 1
3π2

(
2m
~2

)3/2 and µ is the r independent chemical potential and the second term in eq.(2) is the classical
electrostatic potential generated by the density ρ(r). Eq. 1 works best for systems of slowly varying density.(1),(2).

III. THE FIRST HOHENBERG-KOHN THEOREM

Hohenberg and Kohn started from Thomas-Fermi theory and establish the connection between the electron density
and the many-electron Schrödinger equation (which is expressed in terms of ψ(r1, r2, .., rN)).

We start with Hohenberg-Kohn theorems which are at the heart of the density functional theory.
The first Hohenberg-Kohn theorem states that

The ground state density ρGS(r) of a bound system of interacting electrons in some external potential v(r) determines
this potential uniquely (3),(4).

Proof: This proof is valid for a non-degenerate ground state. Let ρGS(r) be a non-degenerate ground state density
of N electrons in the potential v1(r) corresponding to the ground state ψ1 and the energy E1. Then

E1 = 〈ψ1|H1|ψ1〉 =
∫

v1(r)ρGS(r)dr + 〈ψ1|T + Vee|ψ1〉 (3)

where H1 is the total Hamiltonian corresponding to v1, T and Vee are the kinetic and interaction energy operators
for the electrons. Let us now assume that there exists a second potential v2(r), not equal to v1(r) + constant, with
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ground state ψ2, necessarily ψ2 6= eiθψ1 which gives rise to the same ρGS(r). Thus

E2 =
∫

v2(r)ρGS(r)dr + 〈ψ2|T + Vee|ψ2〉 (4)

Since ψ is assumed to be non-degenerate, the Rayleigh-Ritz minimal principle gives

E1 < 〈ψ2|H1|ψ2〉 =
∫

v1(r)ρGS(r)dr + 〈ψ2|T + Vee|ψ2〉

= E2 +
∫

(v1(r)− v2(r))ρGS(r)dr (5)

E2 < 〈ψ1|H2|ψ1〉 =
∫

v2(r)ρGS(r)dr + 〈ψ1|T + Vee|ψ1〉

= E1 +
∫

(v2(r)− v1(r))ρGS(r)dr (6)

Addition of Eq. (5) and (6) leads to the contradiction

E1 + E2 < E1 + E2.

Therefore it is proved that the existence of a second potential which is not equal to v1(r) + constant and gives the
same ρGS(r) must be wrong.

Also, ρGS(r) determines the number of electrons, N

N =
∫

ρGS(r)dr (7)

Since ρGS(r) determines both N and v(r), it gives us the full H and all properties derivable from H through the solution
of time independent or time dependent Schrödinger equation (even in the presence of the additional perturbation like
electromagnetic fields). For example, the many body eigenstates ψ0(r1, r2, ..., rN), ψ1(r1, r2, ..., rN),..., the 2 particle
Green’s function G(r1, t1; r2, t2) and so on. This theory is extended later in the case of degenerate ground state(5)
and is also valid for the special case of non interacting electrons.

IV. THE SECOND HOHENBERG-KOHN THEOREM

The most important property of an electronic ground state is its energy EGS . We can calculate it by variational
principle:

EGS = minψ〈ψ|H|ψ〉 (8)

Hohenberg and Kohn expressed the minimum energy using density. (I am using the derivation from R.O. Jones(8)
(but Levy(6) and Lieb(7) first shown the derivation in this way which is simpler than the original derivation by
Hohenberg and Kohn)). We consider N electrons moving in an external potential vext(r), i.e., the hamiltonian is

H = T + Vee +
N∑

i=1

vext(ri), (9)

where H and Vee are the kinetic and electron-electron interaction operators, respectively. Now Levy defined a
universal functional (since the functional does not refer to any specific system and any specific potential)

F [ρ] = minψ→ρ〈ψ|T + Vee|ψ〉, (10)

or

F [ρ] = 〈ψρ
min|T + Vee|ψρ

min〉 (11)

where the minimum is taken over all ψ that give ρ. The density ρ at any position r1 is defined to be
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ρ(r1) = N

∫
dr2...

∫
drNψ∗(r1, r2, ..., rN)ψ(r1, r2, ..., rN). (12)

The second Hohenberg-Kohn theorem states

E[ρ] ≡
∫

drvext(r)ρ(r) + F [ρ] ≥ EGS , (13)

and
∫

drvext(r)ρGS(r) + F [ρGS ] = EGS . (14)

Proof: Writing v =
∑N

i=1 vext(ri) we get

∫
drvext(r)ρ(r) + F [ρ] = 〈ψρ

min|v + T + Vee|ψρ
min〉 ≥ EGS , (15)

according to the minimum property of the ground state. Using the minimum property once more we get

EGS = 〈ψGS |v + T + Vee|ψGS〉 ≤ 〈ψρGS

min|v + T + Vee|ψρGS

min〉. (16)

Now subtracting the interaction with the external potential we get

〈ψGS |T + Vee|ψGS〉 ≤ 〈ψρGS

min|T + Vee|ψρGS

min〉. (17)

The above equation is true only when

〈ψGS |T + Vee|ψGS〉 = 〈ψρGS

min|T + Vee|ψρGS

min〉. (18)

Then we have

EGS =
∫

drvext(r)ρGS(r) + 〈ψGS |T + Vee|ψGS〉

=
∫

drvext(r)ρGS(r) + 〈ψρGS

min|T + Vee|ψρGS

min〉

=
∫

drvext(r)ρGS(r) + F [ρGS ]. (19)

Hence the second Hohenberg-Kohn theorem is proved. It follows from eq.(18) that if the ground state is non-
degenerate, ψρGS

min = ψGS . If the ground state is degenerate ψρGS

min is equal to one of the ground state wave functions,
and the others can also be obtained. The ground state density then determines the ground state wave function(s), from
which all properties (including the ground state energy) can be calculated. These properties are therefore functionals
of the density which the Hohenberg-Kohn theorem has stated before. But these theorems does not tell us the form
of the functional dependence of energy on the density. Hohenberg and Kohn only states that to get back to the
Thomas-Fermi theory, 〈Vee〉 with respect to the ground state can be written as

〈ψGS |Vee|ψGS〉 =
1
2

∫
drdr′

ρGS(r)ρGS(r′)
|r− r′| (20)

but did not give the density representation of the kinetic energy part of the electrons. At this point Kohn-Sham
gave a set of single particle equations which largely remedied the problem involving the form of kinetic energy and
was the next major step in the development of DFT.



4

V. THE SELF-CONSISTENT KOHN-SHAM EQUATIONS

Kohn-sham self-consistent equations are very similar to the Hartree self-consistent single particle equations for the
approximate description of the electronic structure of atoms (Hartree equations are based on Thomas-Fermi theory
where every electron is regarded as moving in an effective single particle potential). Hartree equations are the following

{
−1

2
∇2 + vH(r)

}
φj(r) = Ejφj(r) (21)

ρ(r) =
N∑

j=1

|φj(r)|2 (22)

vH(r) = −Z

r
+

∫
dr′

ρ(r′)
|r− r′| (23)

where in eq.(21) j denotes both spatial and spin quantum numbers, ρ(r) in eq.(22) is the mean density (for which,
in the ground state, the sum runs over N lowest eigenvalues) and vH(r) in eq.(23) is the effective single particle
potential. In the expression for vH(r) the first term represents the potential due to a nucleus of atomic number Z
and the second term represents the potential due to the average density distribution ρ(r).

In the way to solve these equations one may start from a first approximation (e.g., Thomas-Fermi theory), construct
vH(r), solve eq.(21) and recalculate ρ(r) from eq.(22), which should be the same as the initial ρ(r). If it is not one
iterates appropriately until it is.

The Hartree differential equation(21) takes the form of the Schrödinger equation for non-interacting electrons
moving in the external potential veff . So for such a system the HK variational principle becomes

Ev(r)[ρ] ≡
∫

drv(r)ρ(r) + T [ρ(r)] ≥ EGS , (24)

where T [ρ(r)] is the kinetic energy of the ground state of non-interacting electrons with density distribution ρ(r).
We want eq(22) to be stationary with respect to the variations of ρ(r) which leave the total number of electrons
unchanged, and the Euler-lagrange equation for this purpose is

δEv[ρ(r)] ≡
∫

δρ(r)
{

v(r) +
δT [ρ(r)]
δρ(r)

|ρ=ρGS
− ε

}
dr = 0, (25)

where ρGS is the exact ground state density for v(r) and ε is a Lagrange multiplier to assure particle conservation.
In this case the ground state energy and density can be obtained by solving the single particle equations

(
−1

2
∇2 + v(r)− Ej

)
φj(r) = 0 (26)

ρGS(r) =
N∑

j=1

|φj(r)|2 (27)

EGS =
∑

j

Ej . (28)

To match this description with the case of interacting electrons Kohn-Sham write the functional F [ρ(r)] in the
following form

F [ρ(r)] ≡ T [ρ(r)] +
1
2

∫
drdr′

ρ(r)ρ(r′)
|r− r′| + Exc[ρ(r)], (29)

where Exc[ρ(r)] is the so called exchange-correlation energy functional defined by eq.(29). The HK variational
principle for interacting electrons is therefore
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Ev(r)[ρ] ≡
∫

drv(r)ρ(r) + T [ρ(r)] +
1
2

∫
drdr′

ρ(r)ρ(r′)
|r− r′| + Exc[ρ(r)] ≥ EGS , (30)

The corresponding Euler-lagrange equation is therefore

δEv[ρ(r)] ≡
∫

δρ(r)
{

v(r) +
δT [ρ(r)]
δρ(r)

|ρ=ρGS
+

∫
dr′

ρ(r′)
|r− r′| +

δExc[ρ(r)]
δρ(r)

|ρ=ρGS
− ε

}
dr = 0, (31)

Now let us write

vxc(r) ≡ δExc[ρ(r)]
δρ(r)

|ρ=ρGS
(32)

and

veff (r) ≡ v(r) +
∫

dr′
ρGS(r′)
|r− r′| + vxc(r). (33)

Substituting these expressions in eq.(31) we find that has the same form as eq.(25) for non-interacting particles
moving in an effective external potential veff (r). Therefore we conclude that the minimizing density ρGS(r) can be
found by solving the single particle equation

(
−1

2
∇2 + veff (r)− Ej

)
φj(r) = 0 (34)

with

ρGS(r) =
N∑

j=1

|φj(r)|2 (35)

EGS =
∑

j

Ej + Exc[ρGS(r)]−
∫

drvxc(r)ρGS(r)− 1
2

∫
drdr′

ρGS(r)ρGS(r′)
|r− r′| . (36)

These are the so called Kohn-Sham self consistent equations. We see that if we neglect Exc and vxc altogether, the
KS equations (34)-(36) reduces to the self consistent Hartree equations.

Again to solve these KS equations self consistently we start with a guess of the charge density ρGS . By using some
approximate form for the functional dependence of Exc on density, we must compute Vxc as a function of r. The set
of KS equations are then solved to obtain an initial set of KS orbital. This set of orbital is then used to compute an
improved density from Eq.(35) and the process is repeated until the density and exchange correlation energy converge
to within some tolerance. The electronic energy is then computed from Eq.(36).

The exact effective single particle potential veff (r) of KS theory can be regarded as the unique, fictitious external
potential which leads to the same physical density ρGS(r) for non-interacting particle as that of the interacting
electrons in the physical external potential. Also neither the exact KS orbital φj , nor energies εj have any known
physical meaning except for the connection between φj and true physical density ρGS(r) (Eq.(35)) and the fact that
the magnitude of the highest occupied εj relative to the vacuum is equal to the ionization energy (9).

The KS orbital on each iteration can be computed numerically or they can be expressed in terms of a set of basis
functions. Therefore by solving the KS equation we will find the coefficients in the basis set expansion. The choice of
these basis sets comes with experience.

VI. LOCAL DENSITY APPROXIMATION

Several different schemes have been developed for obtaining approximate forms for the functional for the exchange
correlation energy. The main source of error in DFT usually arises from the approximate nature of Exc. The most
widely used and most simple approximation for Exc is the local density approximation (LDA) in which

ELD
xc =

∫
ρGS(r)εxc[ρGS(r)]dr (37)
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where εxc[ρGS(r)] is the exchange-correlation energy per electron in a homogeneous electron gas of constant density.
In a hypothetical homogeneous electron gas, an infinite number of electrons travel throughout a space of infinite
volume in which there is a uniform and continuous distribution of positive charge to retain electroneutrality (10).

Also for spin polarized systems local spin density approximation gives more satisfactory result for DFT calculation.
In such a case Exc is given by

ELSD
xc =

∫
ρGS(r)εxc[ρGS,↑(r), ρGS,↓(r)]dr (38)

where εxc[ρGS,↑(r), ρGS,↓(r)] is the exchange-correlation energy per particle in a homogeneous, spin -polarized electron
gas with spin-up and spin-down densities ρGS,↑(r) and ρGS,↓(r), respectively.

These expression for exchange-correlation energies are clearly approximations because neither positive charge nor
electronic charge are uniformly distributed in actual molecules. To account for the inhomogeneity of the electron
density a nonlocal correlation involving the gradient of ρGS(r) is often added to the exchange energy (this is the so
called generalized gradient approximation(GGA)). There are many other amendments to Exc relative to the system
that we want to solve in practice.

VII. APPLICATION

Now we see an application of DFT in calculating the energy spectrum of a Cu slab. We see that DFT gives
satisfactory result of the electronic structure of the solid.

In calculating the energy spectrum we have used a program named TB-LMTO-ASA (tight binding-linear muffin
tin orbital-atomic sphere approximation) program written by

O.Jepsen,G.Krier,A.Burkhardt, andO.K.Andersen.

Max− Plank − InstitutfürFestkörperforchung, Heisenbergstr.1,

D− 70569Stuttgart, FederalRepublicofGermany.

The tight binding linear muffin-tin orbital (TB-LMTO) method is a specific implementation of density functional
theory within the local density approximation (LDA). In this method there is no shape approximation to the crystal
potential, unlike methods based on the atomic-spheres approximation (ASA) where the potential is assumed to be
spherically symmetric around each atom. For mathematical convenience the crystal is divided up into regions inside
muffin-tin spheres, where Schrödinger equation is solved numerically, and an interstitial region. In all LMTO methods
the wavefunctions in the interstitial region are Hankel functions. Each basis function consists of a numerical solution
inside a muffin-tin sphere matched with value and slope to a Hankel function tail at the sphere boundary. The so-
called multiple-kappa basis is composed of two or three sets of s, p, d, etc. LMTOs per atom. The extra variational
degrees of freedom provided by this larger basis allow for an accurate treatment of the potential in the interstitial
region.

Here I am showing the energy spectrum of Cu(111) using DFT , fig. VII.

VIII. CONCLUSION

In our discussion we saw that the electronic density is a basic variable in the calculation of electronic properties
of matter. LDA and its spin analog LSDA has been remarkably successful in describing the ground state properties
of a great range of physical systems. However LDA and LSDA can fail in systems, e.g., heavy fermion systems. In
such systems electron-electron interaction is not negligible therefore DFT also fails cause they lack any resemblance
to non-interacting electron gases.
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FIG. 1 Kohn-Sham energy band spectrum of a 13 layer Cu(111) slab. The Schokley surface state and the sp-band edges are
indicated in the figure.
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