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I.  INTRODUCTION

The phenomenon of tunneling through a potential barrier is a well-known
quantum mechanical phenomenon. In investigating the correspondence between
phenomena that obey the laws of quantum mechanics and classical phenomena, it is of
interest to know whether a quantity that is macroscopic in nature can undergo a tunneling
process, and what will be the effects of dissipation on its tunneling. Dissipation arises
from the system when it interacts with the environment surrounding it and loses energy to
it through this interaction. Intuitively we would expect that dissipation would tend to
suppress the tendency of a system to tunnel through a potential barrier. 

More precisely, we wish to formulate and investigate a model of a ‘macroscopic
tunneling’ process as follows. The system is described by a variable q and a Hamiltonian
such that its potential has a metastable minimum, ie. a well at the origin followed by a
potential barrier separating it from a continuum of states. The quasi-classical equation of
motion in the region near the minimum is given by 
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Here η , the phenomenological friction coefficient, represents the quasi-classical limit of
the effects of system-environment interaction. The question we wish to pose is: how will
the tunneling behavior of the system compare to the case where η  would be zero (ie. it is
completely isolated from the environment)?

In order to answer questions of this sort we need an appropriate model of the
system-environment interaction. To this end we consider the system and environment
conjointly to form a closed system (or “universe”) in which any one degree of freedom of
the environment is only weakly perturbed by the system. Then in this case it is suitable to
represent the environment by a bath of harmonic oscillators with a linear coupling to the
system. 

There are a number of requirements that we would like to impose on the system
so that to make it suitable for this kind of study. Three of them are:

1. The system must have a metastable potential well which is separated from a more
stable continuum of states by a free-energy barrier. 

2. When the system tunnels through the barrier, it should be macroscopically
distinguishable from the state it was in while it was confined to the potential well. 

3. The quantum tunneling rate due to small oscillations in the metastable well should
sufficiently exceed the thermal escape rate, so that we have the criterion

TkB> >0ω



One type of system that is suitable for this kind of study is that of a DC SQUID, which
typically serves as a sensitive magnetometer. The macroscopic variable of interest will be
the flux Φ  trapped in the ring, whose potential energy is described by the expression
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Here L is the self-inductance of the ring,  cI  is the critical current of the Josephson

junction, 
e
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0 =Φ  is the flux quantum and xΦ  the externally imposed flux through the

ring.  We can ensure a metastable minimum if we make use of the condition 1
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By suitable manipulation of xΦ  it is possible to trap the SQUID in this metastable state.
In addition to the potential energy term there is also in the Hamiltonian a kinetic energy

of the form 2
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1 ΦC  where C is the capacitance of the Josephson junction. The shape of

the potential in the region where tunneling occurs is made so that it is of the form of a
quadratic-plus-cubic ( 32 Φ−Φ βα ). 

II. THE MODEL

In the following we use the general variable q instead of the flux Φ . The Lagrangian of
the system in the absence of interaction is 
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Where )(qV  has a well at 0=q and barrier with height 0V  that has a width 0q  (for
example the quadratic-plus-cubic potential discussed above).

The frequency of small oscillations around the metastable minimum, 0ω , is  
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We then add to this a term involving the harmonic oscillator bath 
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αx  and αω  are the coordinates and frequencies of the harmonic oscillators respectively   



and the interaction term between system and environment:
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(This latter term comes about due to the cancellation of the frequency renormalization
effect, which will not be discussed in detail here)

III. THE ANALYSIS

We are given the following Lagrangian for the system-environment interaction from
which we must determine the reduced density matrix of the system:
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Then the reduced density matrix is (following the notation of [1]) 
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The path integral )(TQα  can be evaluated in a straightforward manner and can be

simplified further if we assume that )()( ττ qTq =+
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We some further manipulation we then determine that we can write the reduced density
matrix as 
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(It is assumed that the spectral density η ωω ≡)(J , ie. of the form of ohmic dissipation)

Note that this is a positive quantity, and the second term of the effective interaction in its
entirety represents the effects of dissipation on the system.  

The tunneling rate Γ  is seen to be proportional to 
)/exp( effS−∝Γ

And hence it is easily seen that the positive second term implies that the effect of the
dissipation is to suppress tunneling, as would be expected.  
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