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1 Introduction

The Schmid model considers the behaviour of a particle on a 1d lattice that interacts with
a thermal bath. Of key interest in such models is the response of the particle to an applied
force. The mobility may be defined loosely [1] as the ratio of the terminal velocity of a
particle to the applied driving force:

µ =
vF

F
= lim

t→∞

〈x(t0 + t)− x(t0)〉
tF

(1)

The system’s response to a time dependent force can also be studied in which case the
mobility in frequency space is

µ(ω) = |ω| 〈xx(ω)〉 (2)

where 〈xx(ω)〉 is the Fourier transform of the two-point correlation function 〈x(t)x(0)〉.

The mobility of a classical particle subject to viscous resistance ηẋ can be obtained
from the steady-state condition for the equation of motion, F = ηvF ⇒ µ = 1/η. Calderra
and Leggett [2] were able to show how such classical behaviour arises from a quantum
mechanical model by considering a particle that interacts with an infinite set of harmonic
oscillators that represent the other degrees of freedom of the system. An otherwise free
particle is confined to “localized” states once the coupling to the environment becomes
sufficiently strong. The Schmid model investigates the modifications to this transition due
to the presence of a periodic lattice.

In Schmid’s first study of the model [3] he was able to demonstrate the existence of a
transition from localized to delocalized behaviour as the strengths of the lattice potential
and dissipation were varied. He also found a duality in the behaviour of the system relating
the mobility in the two limits of strong and weak dissipation.

The Schmid model is instructive in that the analysis involves the use of path integrals
and influence functionals, renormalization group arguments, and duality properties.
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2 The Model

We will work in dimensionless units. The particle of interest has mass M and coordinate
q, and moves in a periodic potential. Since we are interested in the particle’s mobility, we
also couple to a small driving force F (t). The action for the particle (without coupling to
the dissipative bath) is then

S0(q(t); t) =

∫ t

0

dt′
(

M
2
q̇(t)2 + g cos(q(t)) + F (t)q(t)

)
(3)

To introduce dissipation into the system, we couple the particle to a set of harmonic
oscillators, indexed by α, that represent the other degrees of freedom of the lattice. For
oscillator coordinates xα, frequencies ωα, and masses mα, the contribution to the action
that includes the interaction of the particle with the oscillators and the kinetic term for
the oscillators is

S1 = −
∑

α

(
Cαxαq + mα

2
ẋ2

α

)
. (4)

This is the standard way to couple a particle to a heat bath. Once the oscillators
are “integrated out,” the effective action will remember the effects of the oscillators only
through a weighted density of states function

J(ω) = π
2

∑
α

C2
α

mαωα

δ(ω − ωα), ω > 0. (5)

We will assume an ohmic bath, which means that we take J(ω) = ηω. This is a reasonable
form for the spectrum, and greatly simplifies many integrals. In particular, it can be
shown that integrating out the oscillators leaves an effective contribution to the action
(corresponding to S1)

S1,eff =
η

4π

∫ t

0

dt′
∫ t

0

dt′′
(

q(t′)− q(t′′)

t′ − t′′

)2

(6)

This effective contribution to the action is quadratic in the particle coordinates and
should in principle be easy to work with. In Fourier transformed form we have∫ t

0

dt′M
2
q̇(t′)2 + η

4π

∫ t

0

dt′
∫ t

0

dt′′
(

q(t′)− q(t′′)

t′ − t′′

)2

= 1
2

∫
dω
2π

(Mω2 + η|ω|)|q(ω)|2. (7)



3 The Coulomb Gas Expansion

We are interested in the evolution of the particle’s position with time and thus with the
propagator

K(q2, t; q1, 0) = 〈q2| exp
(
iĤt
)
|q1〉

=

∫ q2

q1

Dx exp (iS[x(t); t])

=

∫ q2

q1

Dx exp

(
i1
2

∫
dω
2π

(Mω2 + η|ω|)|q(ω)|2 +

∫ t

0

(g cos q(t) + F (t)q(t))

+
η

4π

∫
dt

∫
dt′
(

q(t)− q(t′)

t− t′

)2
)

. (8)

The most challenging term remaining in the action is the cosine from the periodic
potential. To handle it, we exploit the fact that the cosine is itself a pair of exponentials.
We first expand

exp

(
ig

∫ t

0

cos q

)
=

∞∑
n=0

(ig)n

n!

∫ t

0

dt1 . . .

∫ t

0

dtn

n∏
i=1

cos q(ti) (9)

and then split each cosine into exponentials

n∏
i=1

cos q(ti) =
n∏

i=1

1
2
(exp(iq(ti)) + exp(−iq(ti)))

= 1
2n

∑
{ei=±1}

exp

(
i

n∑
i=1

eiq(ti)

)
. (10)

We may go further and define, for each configuration of {ei}, a “charge density” σ(t) =∑n
i=1 eiδ(t− ti). This allows us to replace

∑n
i=1 eiq(ti) →

∫ t

0
dt′σ(t′)q(t′). Then

exp

(
ig

∫ t

0

cos q

)
=

∞∑
n=0

(
ig

2

)n ∫ t

0

dt1 . . .

∫ t

0

dtn
∑

{ei=±1}

exp

(
i

∫ t

0

dt′σ(t′)q(t′)

)
. (11)

With this replacement, the complete expression for the amplitude (8) is now expressed
as a sum over integrals of amplitudes:

K(q2, t; q1, 0) =
∞∑

n=0

(
ig

2

)n ∫ t

0

dt1 . . .

∫ t

0

dtn
∑

{ei=±1}

G(q2, t; q1, 0; σ) (12)



where

G(q2, t; q1, 0; σ) =

∫ q2

q1

Dq exp i

(
1
2

∫
dω
2π

(Mω2 + η|ω|)|q(ω)|2∫ t

0

dt′(σ(t′) + F (t′))q(t′)

)
(13)

Rather than a cosine potential we have a new driving force σ(t) that consists of a series of
“kicks” at particular moments in the trajectory.

4 A few more details

If we want a finite mobility, we must impose the restriction that the time average of σ(t)
be zero, i.e. that the overall “charge” is neutral. The path integrals then give

K(x2, t; x1, 0) =
1√

det D

∞∑
n=0

(
ig

2

)2n ∫ t

0

dt1 . . .

∫ t

0

dt2n

∑
{ei}

exp

(
1
2

∫ t

0

dt′
∫ t′

0

dt′′

[iF (t′) + σ(t′)]D−1(t′′ − t′)[iF (t′′) + σ(t′′)]) (14)

where D−1(t) is the inverse Fourier transform of D−1(ω) = (mω2 + η|ω|)−1.

The argument of the exponential in (14) looks like the action for a particle of coordi-
nate σ(t) interacting with the potential described by D. Using the expression for K as a
generating function we can get the correlator 〈q(t)q(0)〉 to second order:

〈q(t)q(0)〉 = K−1 δ2K

δF (t)δF (0)

∣∣∣∣
F

= 0

= D(t)−
∫ t

0

dt′
∫ t

0

dt′′D(t− t′) 〈σ(t)σ(t′)〉D(t′)

(15)

where 〈σ(τ)σ(0)〉 represents the correlation function for a pair of charges moving in the
potential described by D(t). Taking Fourier transforms, and using the expression (2) we
have

µ(ω) = 1
η
(1−D(ω)S(ω)) (16)

where S(ω) is the Fourier transform of 〈σ(τ)σ(0)〉.

This alone is not particularly enlightening, except to show that indeed the effect of the
cosine potential is to reduce the mobility below the classical limit of 1/η. The result above
was obtained by keeping the lowest order in g2; this is the “weak corrugation” limit.



5 Duality

It is interesting to examine briefly the opposite limit of approximation, where the cosine
potential is taken to be very strong relative to the dissipation. Specifically, if s ≡ 8(Mg) >>
1 it can then be shown using instanton arguments that the mobility has the form

µ(ω) = η∆(ω)Σ(ω) (17)

where ∆(ω) and Σ(ω) are formally almost identical to D(ω) and S(ω) respectively except
with the replacements η → 1/4π2η and Mg/η →

√
8s/πe−s. The behaviour of 1− µ(ω) in

one regime looks much like µ(ω) in the other regime [4].

Renormalization group arguments can be applied to the model to suggest that there are
two phases with zero frequency mobilities µ = η and µ = 1, and that a cross over occurs at
η = 1/2π in both of the limits studied. As usual, the behaviour in the intermediate regime
cannot easily be studied.
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