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A tight-binding model including phonon coupling is used to describe the quasi-one-dimensional
polymer trans-polyacetylene. The eigenenergies and eigenstates are found for both the undimerized
and perfectly dimerized cases. It is shown that the dimerization due to phonon coupling gives rise
to the Peierl’s instability found in trans-polyacetylene. The twofold degeneracy of the ground state
gives rise to peculiar excitations known as solitons. A few basic properties of these topological
excitations are discussed.

I. INTRODUCTION

The study of polymers and solitons has been a large
area of research over the last several decades. In the
last three decades there have been thousands of papers
on polyacetylene alone!1 This project will focus on two
aspects of polyacetylene. First, a model for quasi-one-
dimensional trans-polyacetylene arrangement will be pre-
sented and solved in some detail. The alternating bond
lengths in the chain and inclusion of phonon coupling
will be shown to account for the Peierl’s instability found
in trans-polyacetylene. Second, the excitations found in
trans-polyacetylene will be studied. It will be shown
that due to the twofold degenerate ground state of trans-
polyacetylene, peculiar excitation known as solitons can
arise in the chain. The activation energy, various charge
states, spin, effective mass, and width of these solitons
will be discussed.

The model for trans-polyacetylene presented here was
first developed by Su, Schrieffer, and Heeger in 1979 to
describe soliton excitations.2 Further details on the Su-
Schrieffer-Heeger (SSH) model for polyacetylene and soli-
ton excitations can be found in Refs. 1–3 and references
therein.

II. POLYACETYLENE AND THE MODEL
HAMILTONIAN

Polyacetylene is the simplest linear conjugated poly-
mer. It consists of weakly coupled chains of CH units
forming a quasi-one-dimensional lattice and is denoted
(CH)x. Three of the four valence electrons for a particu-
lar carbon atom in the chain are used in bonding with the
nearest carbon atoms and hydrogen atom. The fourth
creates a double bond between a pair of carbon atoms
as shown in Fig. 1. The optimal bond angle of 120◦
between the bonds can be obtained with two possible
arrangements of the carbon atoms. These configurations
are known as trans-polyacetylene and cis-polyacetylene.
In this project, only the thermodynamically stable form
of trans-polyacetylene shown in Fig. 1 will be discussed
due to its interesting ground state properties and peculiar
excitations.1 The arrangement trans-polyacetylene will
be referred to as simply polyacetylene from hereafter.
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FIG. 1: Polyacetylene in its trans configuration. This config-
uration of polyacetylene is thermodynamically stable and has
interesting ground state properties and topological excitations
that will discussed later in this paper.

The alternating single and double bonds (these are σ
and σ plus π bonds, respectively) will be treated in one
dimension along the symmetry axis of the chain using a
tight-binding approximation including phonon coupling.
To proceed, first define a configuration coordinate un for
the nth CH group as shown in Fig. 2. For a group n
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FIG. 2: Model of polyacetylene using a quasi-one-dimensional
axis along the symmetry axis of the chain. The alternating
single and double bonds are described using the coordination
coordinate un. The two degenerate ground states will be re-
ferred to as the A phase and the B phase.

having a double bond to the left and a single bond to
the right one has un < 0 and un−1, un+1 > 0. For the
other degenerate ground state the signs are reversed. By
assuming that the displacements due to the alternating
single and double bonds are small, one can approximate
the bonding energy of the σ bonds as

Eσ =
1
2

∑
n

K (un+1 − un)2 , (1)



2

where K is the effective spring constant for the σ bonds.
The “extra” electron that is responsible for forming the
π bond will be treated in a tight-binding approximation.
Since the probability of hopping between sites will de-
pend on the distance between sites, one can expand the
hopping integral tn+1,n to first order as

tn+1,n = t0 − α(un+1 − un), (2)

where t0 is the hopping integral for a polyacetylene chain
with equal bond lengths and α is the phonon coupling
constant. Finally, to take into account the motion of
the CH groups, one includes the following kinetic energy
term given simply by

Ek =
1
2

∑
n

Mu̇2
n, (3)

where M is the mass of the CH group. The model SSH
Hamiltonian is then

H = −
∑
ns

tn+1,n

(
c†n+1,scns + c†nscn+1,s

)

+
1
2

∑
n

K (un+1 − un)2 +
1
2

∑
n

Mu̇2
n, (4)

where c†ns and cns are the creation and annihilation op-
erators for an electron with spin s = ±1/2 on the nth CH
site. The chain is assumed to have N sites with periodic
boundary conditions. The length of the chain is given by
L = Na, where a is the separation between CH groups
when the configuration coordinate u is identically zero,
i.e. the chain is undimerized.

Several approximations and assumptions have been
made in writing out this Hamiltonian. In addition to the
approximations mentioned above for writing out the indi-
vidual terms of the Hamiltonian, it should be pointed out
that this model also has the shortcoming that it neglects
Coulomb interactions between the π electrons. These ef-
fects can be partially included by using screened values
for t0 and α, however, for large Coulomb interactions
between π electrons this model is no longer valid.3

III. THE PERFECTLY DIMERIZED CHAIN

One proceeds in the Born-Oppenheimer approximation
by taking the CH group positions as fixed. By assuming
that the chain is perfectly dimerized, i.e. un = (−1)nu,
one can write the model Hamiltonian as

Hd(u) = −
∑
ns

[t0 + (−1)nδ]

× c†n+1,scns + c†nscn+1,s + 2NKu2, (5)

where δ = 2αu. The goal is to calculate the ground state
energy as a function of u and then minimize this energy
to find the most stable ground state for polyacetylene.

It is clear from the form of (5) that our model now con-
sists of a one-dimensional tight-binding chain with alter-
nating hopping constants t> ≡ t0 + δ and t< ≡ t0 − δ as
shown in Fig. 3. It is therefore convenient to treat the N
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FIG. 3: Model of the N site polyacetylene chain as two Nd =
N/2 site systems of even and odd sites, respectively, with
lattice constants 2a. The alternating hopping constants are
given by t> ≡ t0 + δ and t< ≡ t0 − δ.

site system as two Nd = N/2 site systems, corresponding
to even and odd sites, respectively. The Hamiltonian can
then be written as

Hd(u) = −
∑
ns

[
(t0 + δ)

(
c†2n,sc2n+1,s + h.c.

)

+(t0 − δ)
(
c†2n+1,sc2n,s + h.c.

)]
+ 2NKu2, (6)

where h.c. denotes the Hermitian conjugate of the pre-
ceding term.

To proceed further, one transforms to k-space for the
even and odd site annihilation operators, respectively:

c2n,s =
1√
Nd

∑

k

eik(2n)ac
(e)
ks , (7)

c2n+1,s =
1√
Nd

∑

k

eik(2n+1)ac
(o)
ks . (8)

The creation operators c†2n,s and c†2n+1,s are given by
the Hermitian conjugates of the above equations, respec-
tively. The allowed k are determined by imposing cyclic
boundary conditions over Nd sites:

e2ik(n+Nd)a = 1. (9)

It follows that there are Nd allowed k values over the first
Brillouin zone

k ∈
(
− π

2a
,

π

2a

]
. (10)

This is precisely the Brillouin zone for an ordinary lattice
with twice the lattice constant, as expected.

Inverting (7) and (8) one obtains

c
(e)
ks =

1√
Nd

∑
n

e−ik(2n)ac2n,s, (11)

c
(o)
ks =

1√
Nd

∑
n

e−ik(2n+1)ac2n+1,s. (12)
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The Hamiltonian can now be rewritten as

Hd(u) = −
∑

ks

{
[−2t0 cos(ka) + 2iδ sin(ka)] c†(e)ks c

(o)
ks

+ [−2t0 cos(ka)− 2iδ sin(ka)] c†(o)
ks c

(e)
ks

}
+ 2NKu2.

(13)

Diagonalizing, one can show that the Hamiltonian can
be written as

Hd(u) = −
∑

ks

Ek

(
ψ
†(v)
ks ψ

(v)
ks − ψ

†(c)
ks ψ

(c)
ks

)
+ 2NKu2,

(14)
where the eigenenergies Ek are given by

Ek = ± (
ε2
k + ∆2

k

)1/2
, (15)

in terms of εk = −2t0 cos(ka) and ∆k = 2δ sin(ka). It
can be shown that the eigenstates are given by

ψ
(v)
ks =

1√
2

(
c
(e)
ks +

εk + i∆k

Ek
c
(o)
ks

)
, (16)

and

ψ
(c)
ks =

1√
2

(
c
(e)
ks −

εk + i∆k

Ek
c
(o)
ks

)
, (17)

where superscript v denotes the valence band, corre-
sponding to −Ek, and c denotes the conduction band,
corresponding to +Ek.

A. Undimerized Polyacetylene

For the undimerized case, i.e. δ = 0, the energies are
simply εk = ∓2t0 cos(ka). The dispersion is plotted in
Fig. 4. The eigenstates also take the much simpler form

ψ
(v)
ks =

1√
2

(
c
(e)
ks + c

(o)
ks

)
, (18)

and

ψ
(c)
ks =

1√
2

(
c
(e)
ks − c

(o)
ks

)
. (19)

On closer inspection one sees that these solutions are
simply the regular tight-binding chain solutions mapped
to a reduced-zone scheme from −π/(2a) to π/(2a). This
was expected since in the δ → 0 limit one expects that the
even and odd sites would contribute to the solution with
equal weights giving the regular tight-binding solution.

B. Dimerized Polyacetylene

For dimerized polyacetylene a gap opens up in the dis-
persion due to the non-zero ∆k term in (15). For a re-
alistic choice of parameters the ratio of the phonon cou-
pling constant and the hopping integral is δ/t0 ∼ 0.1.3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

E
k 

/ t
0

ka
FIG. 4: The dispersion energy Ek/t0 versus wave vector ka
for undimerized polyacetylene inside the first Brillouin zone
from −π/(2a) to π/(2a) (shown with the solid lines). The
extended range from −π/a to π/a is shown for comparison to
the regular tight-binding solution with no phonon coupling.
For the undimerized case polyacetylene would behave as a
metal, with the levels above and below Ek/t0 = 0 filled and
empty, respectively.
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FIG. 5: The dispersion energy Ek/t0 versus wave vector ka
for dimerized polyacetylene inside the first Brillouin zone from
−π/(2a) to π/(2a). Here, the ratio of the phonon coupling
constant and the hopping integral is δ/t0 = 0.13. For the
dimerized case a gap opens in the dispersion, rendering poly-
acetylene a semiconductor.

A plot of the dispersion is shown in Fig. 5 for the value
δ/t0 = 0.13. It turns out that for these parameters, the
gap is sufficiently small such that polyacetylene behaves
as a semiconductor.1 In the next section it will be shown
that dimerized polyacetylene has a lower ground state
energy and is therefore closer to the true ground state
for polyacetylene.
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IV. THE GROUND STATE ENERGY

The ground state energy can now be calculated.
Recognizing that the operators in (14) are just the num-
ber operators for the valence and conduction bands and
that for the ground state the valence band is filled and
the conduction band is empty, one can write (14) as

E0(u) = −
∑

ks

Ek = −2
∑

k

Ek. (20)

To convert this sum to an integral use ∆k = 2π/L and
integrate over the first Brillouin zone:

E0(u) = −2
L

2π

∫ π/2a

−π/2a

dk Ek + 2NKu2

= −4Nt0
π

E(
√

1− z2) +
Nkt20z

2

2α2
, (21)

where

E(
√

1− z2) =
∫ π/2

0

[
1− (1− z2) sin2 θ

]1/2
dθ (22)

denotes the complete elliptical integral of the second
kind.4 The parameter z ≡ δ/t0 = 2αu/t0 has also been
defined. For small values of z, i.e. small phonon cou-
plings, the elliptical integral can be expanded as

E(
√

1− z2) ' 1 +
1
2

(
ln

(
4
|z|

)
− 1

2

)
z2 + · · · . (23)

This shows that even for arbitrarily small couplings,
the dimerized state is always at lower energy than the
undimerized state. Hence, the dimerized state is closer
to the true ground state of polyacetylene, as expected.
The astute reader may have expected this to occur on
the onset due to Peierl’s instability in one-dimensional
metals. This will be discussed in the next section.

It is useful to look at the ground state energy per site as
a function of the configuration coordinate u. The follow-
ing realistic parameters for polyacetylene will be used:3
a = 1.22 Å, K = 21 eV/Å2, t0 = 2.5 eV, and α = 4.1
eV/Å. Converting (21) to dimensionless form the plot
shown in Fig. 6 is obtained. There are two local min-
ima at u = ±u0 ' ±0.04 Å, corresponding to the two
degenerate A and B phases of the ground state of poly-
acetylene. This dimerization corresponds to a small shift
of about 3% in the bonds lengths of the chain.

V. PEIERL’S INSTABILITY

It is interesting to note that the lowering of the ground
state energy due to dimerization is not unique to the
study of polyacetylene presented here. The effect arose
by simply having slightly different values for the hopping
integrals in the chain, namely t0+δ and t0−δ. Therefore,
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FIG. 6: The ground state energy per site E0/Nt0 as a function
of the configuration coordinate u/a for the set of parameters
given in the text. The minimum energies occur for u = ±u0 '
±0.04 Å, corresponding to the A and B phases of the twofold
degenerate ground state of polyacetylene.

one would expect all one-dimensional metals to sponta-
neously distort to effectively double their lattice spac-
ing, alter the hopping integrals by a small amount, and
therefore lower their ground state energies. This is in-
deed the case and was first proposed by Peierl’s in 1955.5
This spontaneous distortion always forms a gap at the
Fermi level and lowers the energy of the one-dimensional
metal by suppressing the energy states near the Fermi
level. The case of polyacetylene is of special interest be-
cause the physical reasoning by which the chain distorts
to double its effective lattice length is much more clear
than in other systems.5

VI. SOLITON EXCITATIONS

The twofold degeneracy of the ground state gives rise
to peculiar excitation known as solitons. These excita-
tions appear in the following form. Consider a chain of
polyacetylene in the A phase to the far “left” and in the B
phase to the far “right”, as shown in Fig. 7. The soliton

A phase

. . . . . .

B phaseSoliton Regime

FIG. 7: A soliton excitation in polyacetylene. To the far “left”
the chain is in the A phase of its ground state, and to the far
“right” the chain is in the B phase of its ground state. The
soliton is localized in the region in between these two phases.

is localized in the region between the two phases of the
ground state. These excitations are truly unique in the
sense that to move from one phase of the ground state to
the other, all alternating single and double bonds must
be interchanged. The term soliton is defined as a self-
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reinforcing solitary wave caused by non-linear effects in
a medium with the properties that they represent waves
of permanent form and are localizable, that is, they de-
cay or approach a constant at infinity.6 The excitations
in polyacetylene described above fit this definition.7

It turns out the energy to create such a soliton ex-
citation is less than the energy cost to create a usual
electron-hole pair across the band gap, and therefore soli-
ton excitations are of particular interest.3 The details of
soliton excitations are extensive and only a summary of a
few main features will be discussed here, namely the ac-
tivation energy, spatial extent, charge, spin, and effective
mass of the soliton excitations.

A. Energy of a Soliton

To calculate the energy of a soliton one first defines an
order parameter χn which is equal to −u0 for the A phase
of polyacetylene, +u0 for the B phase of polyacetylene,
and some superposition of these phases in the region cen-
tered around the site n = 0 where the soliton is assumed
to be localized. The Hamiltonian for the system is then
rewritten as H = H0 + V , where H0 is the Hamiltonian
for the perfectly dimerized chain from before with the
hopping integral set to zero over the finite range where
the soliton is assumed to be localized and V is the hop-
ping term in the range where the soliton is localized. This
perturbation V will depend on the superposition of the A
and B phases in the soliton regime. A variational method
on χn can then be applied to minimize the total energy
of the system and determine the energy of the soliton.
A trial wave function that possesses the desired limiting
behaviour (i.e. approaches ±u0 for the A and B phases,
respectively) is given by

χn =




−u0, n ≤ −m,
+u0 tanh(na/`), −m < n < m,
+u0, n > m,

(24)

where the index m has been introduced to give the range
of sites over which the soliton is localized and ` is the
half-width of the soliton. The form of (24) is reasonable
as we expect the order parameter to vary from the A
phase to the B phase is some smooth fashion over the
regime of the soliton.

The detailed variational analysis was carried out by
Su, Schrieffer, and Heeger and it was found that for a
energy gap of 1.4 eV in polyacetylene (this is consistent
with the choice of parameters given earlier in this paper),
the soliton energy is Es = 0.42 eV.3 Therefore, the cost
of a soliton excitation is less than the cost of creating an
electron-hole pair across the energy gap and is the lowest
lying type of excitation in polyacetylene. It can also be
shown that for an energy gap of 1.4 eV the spatial extent
of the soliton excitation is over approximately 14 lattice
sites, with an effective length of about 17 Å.3

B. Charge and Spin of a Soliton

For the perfectly dimerized Hamiltonian studied earlier
the density of states ρ(E) can be easily calculated from
(15) using ρ(E) = (L/π)|dk/dEk|. It is clear that the
result would simply show that there are allowed states
in the valence band and allowed states in the conduction
band, and no allowed states in between. In turns out that
the perturbed Hamiltonian H = H0 + V gives rise to a
state centered in the middle of the gap, corresponding
to the existence of soliton excitations. The details of the
analysis of this change in the density of states are beyond
the scope of this paper, but it is noted that three types of
solitons are found: neutral solitons of charge Q0 = 0 and
spin s0 = 1/2 and charged solitons of charge Q± = ±e
with spin s = 0. Further details on the interesting elec-
tronic properties of soliton excitations in polyacetylene
can be found elsewhere.1,3

C. Effective Mass of a Soliton

The effective mass of a soliton excitation can be found
by calculating the energy of a slowly moving domain wall.
This is achieved by writing the soliton regime of the trial
wave function from (24) in the following time-dependent
fashion:

χn(t) = u0 tanh [(na− vst/a)/`] , (25)

where vs is the velocity of the soliton. The effective mass
can then be found using

1
2
Msv

2
s =

1
2
M

∑
n

χ̇2
n, (26)

where Ms is the effective mass of the soliton and M is
the mass of the CH group. For the choice of parameters
used in this project it can be shown that the effective
mass is approximately six times that of an electron mass.
This low mass suggests that soliton excitations are highly
mobile and truly quantum particles.3

VII. SUMMARY

Several interesting features of polyacetylene have been
discussed. The SSH model has been presented and solved
for the polyacetylene ground state in some detail. The
understanding of this model paved the way for studies of
the peculiar topological excitations known as solitons in
polyacetylene. The key results of this project are as fol-
lows. First, the SSH model showed that the dimerization
due to phonon coupling accounts for the Peierl’s insta-
bility in polyacetylene. This was done by looking at the
ground state energy per site and noticing that there were
two stable minima for a non-zero bond shift correspond-
ing to the two degenerate ground states of polyacetylene.
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Second, the excitations of polyacetylene were discussed.
The energies, electronic properties, effective length, and
effective mass for these peculiar solitons were discussed.

There are several other interesting properties of soli-
tons, including the spatial distribution of the soliton’s
spin and charge density, its interactions with impuri-

ties, and its internal vibrations.3 For a more detailed ac-
count of polyacetylene and soliton excitations, including
comparison of these results to experiment, the interested
reader is encouraged to read the review by Heeger et al
and references therein.1
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