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Monte Carlo (MC) simulations are among the most powerful numerical tools to investigate very
large systems. This review covers the fundamental principles of the Metropolis algorithm. Related
topics like the determination of error bars and the autocorrelation time to measure how the algorithm
will converge are also treated. The two dimensional Ising model and its behavior at the phase
transition is then studied with a minimal implementation of the tools described herein.

I. INTRODUCTION

Monte Carlo (MC) simulations are powerful and ver-
satile numerical tools used to study large systems. They
are universal algorithms that can be applied to various
systems, but they are especially useful to study systems
with a large number of coupled degrees of freedom (liq-
uids, disordered materials, . . . ). In fact, their relative
efficiency with respect to other numerical methods in-
creases with the dimension of the problem. MC simu-
lations, like neural networks and genetic algorithms, are
stochastic, that is nondeterministic and rely heavily on
the use of random or pseudo-random numbers.

MC encompasses a very broad variety of algorithms
and variations, from what is what is generically called
statistical sampling, to the more recent diagrammatic
quantum MC. The scope of this review only makes it
possible to consider one of these: the Metropolis algo-
rithm (MetA).

The Ising model in two dimensions will serve both as a
case study and an example in the following review. The
reasons for choosing this model are two-fold. First, it is
an easy enough problem so that an analytical solution
exists, thus allowing for a validation of our implemen-
tation. Second, despite its simplicity, the Ising model
can still provide a good description of many real sys-
tems with a phase transition, especially crystals for which
the exchange interaction is very anisotropic (FeCl2 and
FeCO3). Nevertheless, it should be emphasized that a
theoretical description of phase transitions is very diffi-
cult and can sometimes only be probed with numerical
tools.

II. ISING MODEL

Before going on and introducing MC algorithms, a few
words on the model considered are in order. This model
was first proposed by Lenz (1920) to study the phase
transition of ferromagnets at the Curie Temperature. It
was later fully worked out by his pupil Ising for the one
dimensional case (1925) and by Onsager 20 years later
for the 2 dimensional case.

The Ising hamiltonian is given by

H = −J
∑

<ij>

σiσj − µB
∑

i

σi. (1)

Only nearest-neighbor interactions are considered
where J is the coupling constant and σi = ±1 are the
two spin states allowed on each lattice site. For this study
the magnetic field will be considered to be zero since no
analytic solution exists when a field is present.

For a square lattice of size N = L2 the magnetization
and magnetization density are readily found to be

M =
∑

i

σi; M =
1

L2

∑

i

σi. (2)

At a phase transition, some symmetry is broken and
one need to introduce one or more variables to decribe the
state of the system. Such a variable is an order parame-
ter. For an infinite system, the 2D Ising model predicts
a magnetic phase transition at Tc as shown on Figure 1
and the order parameter is the magnetization density.
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FIG. 1: Phase diagram of the 2D Ising model

We will assume that kBT → T such that T has units of
energy like J . The critical temperature can be calculated
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analytically to be

Tc =
2J

ln 1 +
√

2
≈ 2.269J, (3)

The magnetization density, like other thermodynamic
quantities, behaves singularlyat Tc as

M∼ |T − Tc|β ; β = 1/8. (4)

For a finite-size system, extrapolation to the thermo-
dynamic limit by finite size scaling will be necessary to
capture the critical behaviour. This will be explained
later in this review.

III. CLASSICAL MONTE CARLO

In MC, we are interested in evaluating the ratio of two
N -dimensional sums or integrals.

〈A〉 = Z−1
∑

i1

· · ·
∑

iN

A(i1, . . . , iN )W (i1, . . . , iN );

Z =
∑

i1

· · ·
∑

iN

W (i1, . . . , iN ),

where A and W are arbitrary. To simplify we define a
configuration ν as the collection of all summation indices:
ν ≡ {i1, . . . , iN}. We can then rewrite

〈A〉 =
∑

ν

AνWν

Z
; Z =

∑

ν

Wν . (5)

We also can define the weight of a configuration ν as

pν =
Wν

Z
. (6)

In statistical mechanics, where we call Z the partition
function, this weight is related to the energy of the con-
figuration with pν = Z−1 exp(−Eν) and Wν = exp(−Eν)
is given by the normalized Boltzmann distribution.

A very demonstrative example of how MC works is
the evaluation of the volume of a multidimensional body
whose surface is defined as Fν = 0 and where Fν < 0
holds inside the body. One can then write an expression
for the volume using the step function and aN as the
volume of the configuration space:

Vbody =
∫
dx1 . . .

∫
dxNΘ

(
− Fν

)
,

Vbody ≡ aN
〈
Θ
(
− Fν

)〉
; ν ∈ V0. (7)

So we have rewritten the volume in the form of (5)
with Wν = 1. Most problems in MC can be viewed as
an evaluation of the volume of a body in N-dimensional
space. If Wν is not constant, the problem can be viewed
as evaluating the mass of a N-dimensional body where
the mass density is allowed to vary. This is true even

for the more advanced algorithms like diagramatic quan-
tum Monte Carlo which is nothing more than summing
weighted diagrams over the space of all possible diagrams
considered.

In large problems, N can be relatively big making it
impossible to add all the terms in the sum. Just con-
sider the case where each index can take 2 values like for
the magnetization. If N = 100, this makes 2100 ∼ 1030

terms to sum making it virtually impossible to complete
the sum over one lifetime. At this point getting an exact
answer with this technique is hopeless. However, two im-
portant considerations make MC simulations still useful
by ensuring that a good estimate can be calculated with
high accuracy

1. Most of the time 〈A〉 does not contain a lot of in-
formation about {ν} and will only depend on the
average of some quantity. If we have a representa-
tive set of {ν} we can get a very accurate estimate
for 〈A〉. For the magnetization 〈|M |〉 for example,
a system of N spins can only have N

2 − 1 differ-
ent values. Therefore, a representative set for this
system will be of order N .

2. Despite the fact that what we are summing is a
product of two quantities AνWν , in many cases (in
statistical physics at least) the structure of W will
be finite only in a small region. That is, even if the
number of configurations outside this region is very
large, if their weight is exponentially small the an-
swer will depend almost exclusively on a tiny frac-
tion of the entire parameter space.

In other words, if we select a representative set of con-
figurations to sum, picking them at random, we can get
a good estimate for 〈A〉. Even better, if we can select
configurations such that the ones with bigger weights are
more likely to be chosen, then we can get an equivalent
answer by summing fewer terms.

A. Metropolis algorithm

The Metropolis algorithm basically consists in replac-
ing the sums in (5) by stochastic sums such that for an
infinitely long computation we have

∑′
ν Aν∑′
ν

→
∑
ν AνWν∑
νWν

. (8)

This means that random configurations are generated
and are accepted or not in the sum according to some
probability. Two conditions must be fulfilled for (8) to
hold:

1. The probability to accept a configuration ν must
be proportional to its weight Wν

2. The stochastic generation of configurations must be
ergodic. That is, in a very long simulation, all pos-
sible configurations must be eventually generated.
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Defining Nν to be the number of times ν was summed,
(8) becomes

∑′
ν Aν∑′
ν

=

∑′
ν AνNν∑′
ν Nν

→
∑
ν AνWν∑
νWν

(9)

Metropolis Algorithm

1. Initialize Sum A = 0, Z = 0 and Nν = 0 for each ν
Generate a first configuration ν

2. Include the configuration ν in the sum:
Sum A = Sum A+Aν
Z = Z + 1 Nν = Nν + 1

3. Suggest another configuration ν ′ from ν (update)

4. Accept ν′ on average Wν′
Wν

times

Accept: ν = ν′ Reject: ν = ν
Go back to step 2

Step 4 of this algorithm needs elaboration. It should
first be shown that accepting a configuration on average
Wν′
Wν

times will enforce (9) after an infinitely long compu-
tation.

Nν′ = Nν
Wν′
Wν

= Wν′
Nν
Wν

,

Nν′′ = Nν′
Wν′′
Wν′

= Wν′′
Nν
Wν

,

Nν′′′ = Nν′′
Wν′′′
Wν′′

= Wν′′′
Nν
Wν

,

. . .

and through this long series of ratios we get

Nν
Wν
→ const, (10)

which will enforce (9).
To implement this algorithm one will need to calcu-

late probabilities to accept or reject a configuration as a
function of weight ratios. This is given by the so-called
balance equation. To derive this relation it is more conve-
nient to consider an infinite number of parallel processors
all doing one loop of the Metropolis algorithm instead of
one processor doing an infinite number of loops. When
the processors execute step 3 and 4 they all produce a
configuration ν ′ and decide whether they accept or not
this update. One can then look at the flow of proces-
sors between the configurations states {ν}. Then (10)
imposes that in equilibrium the number of processors in
one state Nν should remain constant. Equivalently, all
flow must cancel. This condition translates into what is
called the balance equation or master equation:

Nν
∑

ν′

∑

u∈(ν→ν′)
puP

acc
u (ν → ν′)

=
∑

ν′

∑

u∈(ν′→ν)

Nν′puP
acc
u (ν′ → ν). (11)

The terms in the l.h.s. of this equation are the decrease
in the number of processors in state ν due to update u

such that u is chosen in the set of updates going from
ν to ν′. It is given by the number of processors in the
state ν times the probability of applying update u times
the probability of accepting the update suggested by u.
The terms in the r.h.s. of this equation are the increase
in the number of processors in state ν due to update u
such that u is chosen in the set of updates going from
ν′ to ν. It is given by the number of processors in the
state ν′ times the probability of applying update u times
the probability of accepting the update suggested by u.
Using (10) we can rewrite

Wν

∑

ν′

∑

u∈(ν→ν′)
puP

acc
u (ν → ν′)

=
∑

ν′

∑

u∈(ν′→ν)

Wν′puP
acc
u (ν′ → ν). (12)

There are many possibilities to ensure the balance
equation (12) is fulfilled. A complicated loop update
could be used, but an easier way consists in balancing
the states in pairs. We can then get rid of the summa-
tions in (1). With u being the inverse of u we can rewrite

P acc
u (ν → ν′)
P acc
u (ν′ → ν)

=
Wν′

Wν

pu
pu

= R (13)

where R is the acceptance ratio. The choice of P acc
u (ν →

ν′) and P acc
u (ν′ → ν) is not unique but a convenient

choice, which will ensure a high acceptance probability,
is

P acc
u (ν → ν′) =

{
R R < 1
1 R ≥ 1

P acc
u (ν′ → ν) =

{
1 R ≤ 1
R R > 1

(14)

Interestingly, it is possible in some cases to play the
random numbers such that R ≡ 1. This is called the
heat bath algorithm. Basically, it simply means adjust-
ing pu

pu
according to (13). This provides a interesting

speedup in some cases but for a discrete two-level system
it often means that the update does nothing and both
are equivalent.

B. Estimation of the error bars and the blocking
method

As discussed previously, probing only a small fraction
of the configuration space can provide accurate results
since Aν is not sensitive to the details of ν. Granted
that the result is not exact, how can the accuracy of a
measure be evaluated? Assuming the measure after time
∆ (in steps or updates) differs from 〈A〉exact by δA∆.

Repeating this measurement n times will give n differ-
ent averages. They are called block averages since usually
one will equivalently run a very long simulation and di-
vide it into n blocks. The block averages are denoted
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as

〈A〉i = 〈A〉exact + δAi. (15)

The standard deviation, or population variance, for
〈A〉i can be expressed as

σ∆ =

∑n
i=1(δAi)

2

n
. (16)

The average over the entire simulation is simply

〈A〉 =

∑n
i=1〈A〉i
n

, (17)

and it has a much smaller standard deviation from the
exact answer:

σ2
n∆ =

∑n
i=1 σ

2
∆

n2
=
σ2

∆

n
. (18)

Clearly, results become more accurate with time,

σt = σ∆

√
1

n
= σ∆

√
∆

t
. (19)

Accuracies better than 10−4 can usually be achieved
in most calculations and with state of the art implemen-
tations can be as good as 10−6.

In practice, an honest error bar is calculated with the
blocking method or an equivalent technique. They all
share the idea of joining blocks together in various ways
to get different measures of the deviation. In the block-
ing method, instead of keeping 〈A〉i’s, we keep block nu-
merators Ri’s, with each block containing ZB accepted

configurations. We then calculate σ
(m)
t which is the stan-

dard deviation calculated with m superblocks each of size
n/m and therefore constituted by joining n/mZB small
blocks together. The average 〈B〉i of a superblock is then
given by

〈B〉i|size=n/m =
m

nZB

ij∑

k=1+(i−1)n/m

Rk (20)

and the corresponding deviation is

σ
(m)
t =

1

m

√√√√
m∑

i=1

(〈B〉i − 〈A〉)2 (21)

For large n it is possible to construct larger and larger

superblocks to study the behavior of σ
(m)
t . This will not

depend on m if the superblocks are not correlated. This
means that small blocks are expected to be correlated

but σ
(m)
t will eventually saturate with big enough blocks.

This value can then be taken to be a realistic error bar.

C. Autocorrelation time

Since configurations are usually generated by modify-
ing more or less dramatically the previous configuration,
successive block averages will not necessarily be statis-
tically independent, thus artificially reducing the error
bars calculated. The autocorrelation function is useful
to evaluate this correlation. To calculate it we keep a
long record of M block averages

Γi = Γ
( t

∆t

)
=

∑M−i
j=1

(
〈A〉j − 〈A〉

)
∗
(
〈A〉j+i − 〈A〉

)

∑M−i
j=1

(
〈A〉j − 〈A〉

)2 ,

(22)
where j = t

∆t . ∆t is usually chosen to be the size of the
system.

We also define an integrated correlation time which
is basically the integral of Γ(t/∆t). If Γ is of the form
Γ−t/τ , the integrated correlation time will be τ . For an
arbitrary function it is defined as

τ =
∆t

2
+

∞∑

i=1

Γi∆t. (23)

In a system with N degrees of freedom we expect the
correlations to persist at least up to N updates if the pro-
cedure changes only one degree at a time. This introduces
a natural time unit called a sweep which corresponds to
∆t updates.

IV. IMPLEMENTATION AND MONTE CARLO
STUDY OF THE ISING MODEL

The results presented in this section have been
produced with my own C++ implementation of the
Metropolis algorithm, block method and autocorrelation
technique. Many optimizations used in serious MC sim-
ulation have been ignored to keep things simple. The
update procedure used is the spin-flip alogorithm which
has a very long integrated autocorrelation time. A proper
thermalization process, that is, an initial period during
which no data are collected to eliminate artifacts due to
initial conditions and algorithm details, could have been
used but was ignored due to computing resources. Also,
the computation time was severely limited by the com-
puter resources available and has been set lower on pur-
pose to show the power of MC simulations. This being
said, the results obtained are nevertheless surprising and
enable us to look at the critical behaviour at the phase
transition.

The pseudo-random number generator used is a simple
shuffled generator based on a linear congruential genera-
tor. The parameters used are presented in Table I.
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TABLE I: Parameters used by the shuffled linear congruential
pseudo-random number generator

Parameter Value
m 231 − 1
a 16807
c 0

seed 1

A. The spin-flip algorithm

This algorithm consists in flipping the spin of a ran-
domly selected site. Clearly it satisfies the ergodicity
requirement. Also pu = pu in (13) reduces R to the ra-
tio of weights. Since only one spin is modified at each
update, correlation times are expected to be very long.

Spin-flip algorithm

1. Select a site at random in the lattice
2. Suggest to flip the spin

B. Average modulus of magnetization, error bar
and correlation time

Figure 2 presents the average modulus of the magneti-
zation density for 3 different system sizes (L = 16, 32 and
64) and many temperatures going from 0.5 to 4 (J/kb).
The simulation time is 216 = 65536 sweeps which is really
small. Figure 3 shows indeed that except for tempera-
tures very close to the ferromagnetic ground state (ab-
solute zero), the deviation does not saturate, indicating
that we should allow more time to compute the magne-
tization.

The autocorrelation function of Figure 4 has been cal-
culated for a system of size L = 16 and T = 0.5, 1.7
and 4.0. The integrated correlation time is respectively
τ = 1884, 2896 and 4727 sweeps. This clearly indicates
that within 65536 sweeps we cannot reach a very accu-
rate result. Nevertheless, the curves from Figure 2 are
still very instructive and seem to indicate that the crit-
ical temperature is between T = 2.2 and 2.3. This can
also be seen from Figure 5 since the convergence becomes
very slow close to the phase transition. This is called a
critical slowdown and makes it very difficult to look at
what happens near Tc. Note that we get much smoother
transitions than expected (difference between Figure 2
and Figure 1). This is due to finite-size effects, not too
simulations errors. We see that as the size of the system
is increased, we get closer to the expected behaviour.

As mentioned previously, to extrapolate to the ther-
modynamic limit we need to do a finite size scaling. In
other words we use results for different sizes and extrapo-
late for an infinite system. First, consider the correlation

length (with ν now the correlation length exponent not
a configuration).

ξ ∼ |T − Tc|−ν . (24)

The relaxation time, or the typical time for a fluctua-
tion to relax, is related to this length:

τ ∼ ξz, (25)

with z being the dynamical critical exponent. We men-
tion this because the divergence of τ is what causes the
convergence to slow down and what is generally called
the name critical slowdown.

More interesting to us is the order parameter of the
Ising model:

M∼ |T − Tc|β ∼ ξ
−β
ν . (26)

Usually ξ →∞ at Tc but in a finite system the largest
length possible is the system size L. Therefore one has
at Tc:

M∼ L−βν , (27)

or

ML
−β
ν = const. (28)

To get the β and Tc we consider this an exact equality
only at the transition,

lnM(L)/M(L′)
lnL/L′

= −β/ν. (29)

Hence, one only has to plot the l.h.s of (29) for different
combinations of L and L′. These curves will intersect
precisely at Tc and −β/ν.

This has been done on Figure 6. To compensate for
the short simulation times for each point calculated, 1000
points have been produced for each curve between T =
2.2 and 2.3. This allows to apply a curve smoothing
by averaging over the 25 nearest neighbors of each point.
Since these points have almost the same temperature this
operation is similar to having a simulation time 25 times
longer for each point while introducing a negligeable error
compared to the deviation. We then get a value of Tc ≈
2.26±0.02 and a critical exponent β ≈ −0.11±0.03 which
are impressive results for the technique used.
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FIG. 2: Magnetization density for L = 16, 32 and 64 calculated with 220 sweeps
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