
µSR and its Application to Type-II Superconductivity

Tim Branch, Dong Chen, Graham Johnstone, and Konstantin Weisenberger
(Dated: November 22, 2019)

µSR is a spectroscopic technique which uses muon spin as a probe to measure the local magnetic
properties of a sample [1]. Over the course of a muon’s lifetime (2.2 µs) it will implant into a
sample and its spin will precess about the direction of an applied and/or internal magnetic field.
The positrons emitted in the decay are counted on a detector with the incident momentum direction
characterizing the muon spin at the moment of production. Due to their small magnetic moment
compared to that of an electron, muons are exceptionally useful in the study of magnetic samples
because they will not influence ordered states. In combination with the locality of the measurement
this allows one to detect multi-phase, short-ranged or anti-ferromagnetic order. By comparing char-
acteristic properties of the spectrum to theoretical predictions even quantitative information about
the magnetic properties can be extracted [2]. For these same reasons, the technique is well-suited
for the study of superconductors [3]. In particular, the structure of the magnetic field distribution
in the vortex state of a type II superconductor can be characterized, allowing properties such as the
superconducting coherence length to be measured [3].

I. INTRODUCTION

µSR stands for “Muon Spin Relax-
ation/Resonance/Research”, it is a collection of
methods that use the muon spin to look at structural
and dynamical processes in the bulk of a material on an
atomic scale. It is functionally similar to resonance-based
techniques like NMR and ESR. The essence of this bulk
measurement is to utilize the muons magnetic moment
along with its microsecond decay into a positron as a
delicate tool to probe the local magnetic environment.
Also, due to muon’s small magnetic moment, they are an
excellent probe for the study of exotic superconductors
as they can penetrate into many types of materials
without disturbing their properties as much as electron
probes.

II. POLARIZED MUON PRODUCTION

There exist numerous high energy processes through
which muons can be obtained. However, for the pur-
poses of µSR, we are primarily interested in muons with
low enough energy (4.119MeV) that they will become
trapped in the sample over their short lifetime [1]. One
available method to produce muons on this energy scale
is through the following two-body pion decay process:

p + p −−→ π+ + p + n

With high-energy protons(>500MeV) hitting a pro-
duction target, pions are produced. Pions with zero
momentum in the lab frame undergo further decay into
muons and neutrinos on the surface of the production
target.

π+ −−→ µ+ + νµ

The weak interaction involved in this decay leads to
a parity violation which forces the muon spin to always
point in the direction opposite to its momentum. This

property is the basis for µSR. The implication is that
a muon beam is simultaneously guaranteed to be 100%
spin-polarized - a significant improvement compared to
other magnetic resonance probes. The necessity of this
property will become clear in the following section.

At this point, it is worthwhile to mention that there
exists an analogous decay process wherein π− produces
negatively charged muons, the probe for µ−SR. However,
this technique is rarely applied to systems in condensed
matter [4]. Unless explicitly stated, ‘muon’ or ‘µ’ here-
inafter will be used in reference to ‘µ+’ for the sake of
brevity. The principle difference between µ− and µ+

physics is where the muon implants in the sample.

A. Muon Implantation

The aforementioned µ− carries a large mass in com-
parison to an electron. This leads it to preferentially cas-
cade into the atomic 1s orbital so that it can minimize
distance from the host nuclei. As this happens, there is
a significant loss of spin polarization through radiation.
This contributes unwanted signal noise. Depending on
the Bohr radius of the µ− orbit (recall that this is func-
tion of the atomic number Z), it is also possible to un-
dergo the undesired fate of nuclear capture:

µ– + p −−→ n + νµ

In direct contrast to the simplified understanding that
µ− has the physics of a ‘heavy electron’, µ+ can be
treated as a ‘light proton’. As such, µ+ generally im-
plants at interstitial sites where the electron cloud is
more dense. More specifically in regards to the high-TC
cuprates, there exist µ+ stopping sites at a distance

∼ 1Å from oxygen ions [5]. One method of perform-
ing this calculation is to treat the µ+-cation interactions
with a screened coulombic potential and the µ+-O2− in-
teraction as a Morse-like potential
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FIG. 1. The angular distribution of emitted positrons with
respect to the initial muon-spin direction [1].
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Where a,b,c are semi-empirical constants that are de-
rived under the assumption that the net charge of the
unit cell is zero. This is implies that we should only con-
sider potential energy contributions from ions within the
unit cell. Another general method for identifying muon
sites is to employ a Monte-Carlo method that simulates
the muon’s thermalization process.

III. SPIN PRECESSION AND PARITY
VIOLATION

Muons carrying a magnetic moment will precess in a
magnetic field (either internal or external with respect to
the sample) with frequency:

ω =
eg

2mµ
B = γµB,

where γµ is the gyromagnetic ratio of the muon. Muons
naturally decay into positrons after a lifetime of 2.2 µs,
The angular distribution of emitted positrons is shown
in Figure 1

µ+ −−→ e+ + νe + νµ

since this decay involves weak interactions, the parity
symmetry is again violated, and that is why only the left
in Figure 2 is observed in our universe.

IV. DETECTION

A. Detection mechanism

A schematic diagram for µSR is shown in Figure 3. Be-
fore a polarized muon (recall that muon spin is antipar-
allel with momentum) encounters the sample, it passes
counter M. This activates an electronic ”clock” with high
time resolution (∼1 ns) that stops once a positron is de-
tected. The positrons are emitted preferentially along the

FIG. 2. Muon spin and the momentum of most energetic
positrons [1].

FIG. 3. Schematic experimental set up [6].

direction of muon spin at a given instant and are detected
by one of the B-Backward, F-Forward, L-Left, R-Right
detectors. The clock serves two purposes: (1) Account for
random deviations from the average muon lifetime, and
(2) subtract the signal contribution from any positrons
produced by muons which decay before they reach the
sample (i.e. ‘in-flight’). Figure 4 shows that muons can
be delivered to the sample and generate a time spectrum
N(t) for each positron detector in one of two ways: as a
continuous wave (CW) or a pulsed wave (PW). For CW,
each muon will have its own clock. This provides good
resolution in time at the cost of taking measurements
slowly when compared to PW. In PW, many muons are
released at a single instant in time such that there will be
more detection events. However, each of these detections
will carry poor time resolution. The spectrum collected
by opposite detectors (B,F or L,R) are out of phase by
180 degrees and can therefore illustrate the precessing
frequency of muons. Note that it is the momentum (tra-
jectory) of the positron that is mapped to the muon spin.
As long as the trajectory of positron is unaffected, its own
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FIG. 4. Continuous wave vs pulsed wave.

spin precession in the magnetic field will not change N(t).

The following asymmetry function is presented to bet-
ter illustrate the mapping of muon precession frequency
to detection count N at F and B detectors:

A =
NB −NF
NB +NF

(2)

It should be clear that as time evolves, the number of
counts decreases exponentially, which result in a larger
error bar for detections at larger t.

B. Detection Classification

While there are a multitude of µSR spectroscopy tech-
niques, they can mainly be classified into 4 categories
using 2 different parameters. The first is the previously
mentioned muon beam configuration: CW vs. PW. The
second is the direction of external magnetic field applied
relative to the muon polarization: transverse field (TF)
vs. longitudinal field (LF).

We will primarily focus on the design of Transverse
Field Muon Spin Rotation (TF-µSR) and Longitudinal
Field Muon Spin Relaxation (LF-µSR) using CW muon
beams. These are commonly used in the study of type-
II superconductors, and CW muon beams are used at
TRIUMF.

1. Longitudinal Field Muon Spin Relaxation (LF-µSR)

To reiterate an important point from earlier, the im-
planted muons will precess in the applied field and pro-
duce a positron with momentum along the direction of
the muon spin at a given moment. Counting these decay
events over time generates a characteristic asymmetry
pattern. This configuration can also be used to gather
information about the weak internal magnetism in what
is called zero-field muon spin relaxation (ZF-µSR). The
capability of measuring local ordered magnetic moments
without the need for an external field is an impressive
feature of µSR which separates it from other magnetic
resonance techniques.

FIG. 5. Longitudinal Field (LF) µSR Setup [4].

2. Transverse Field Muon Spin Rotation (TF-µSR)

Similar to LF-µSR, the muons in a transverse field will
precess with a frequency proportional to the strength of
the applied field. This configuration is especially use-
ful for studying type-II superconductors because it can
measure the field distribution of the vortex lattice. For
metallic systems, it can also be used to detect the ‘Knight
shift’, which manifests as a fractional difference between
the effective field produced at the muon site and the ex-
ternally applied field.

V. APPLICATIONS

A. Magnetism

One well-established application of muon spectroscopy
is the measurement of magnetic order in material. Muons
are suited for studying magnetism since their magnetic
moment γµ is large enough to measure small magnetic
fields, but small enough not to influence the field of the
sample. In experiments, muons are implanted uniformly
across the unit cells of the sample where they couple to
the local magnetic fields. The strength of the received
signal from areas with the same magnetic order is then
proportional to the volume occupied by the respective
phase. I.e. the signal is not simply averaged over the
whole sample, but there is a signal for each different
type of magnetic domain. By analyzing the resulting
asymmetry function it is possible to detect short-range
or multi-phase magnetic order.
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FIG. 6. Transverse Field (TF) µSR Setup [4].

FIG. 7. The muon spin precesses in the applied magnetic field
B. The inital spin at the time t = 0 and the field enclose the
angle θ [1].

One disadvantage of this method, compared to tech-
niques such as neutron diffraction, is that no spatial
information is obtained. Also, data obtained from the
muon relaxation function can not always be interpreted
straightforward in a quantitative way. Since there are
preferred muon sites in crystals, one must calculate the
magnetic field at all possible muon sites and then choose
the one consistent with observed data. In some cases,
there are multiple preferred muon sites, as demonstrated
in [7].

To understand the functional form of the spin asym-
metry function we consider a muon with its spin ~sµ po-

larized in the z-direction in the local magnetic field ~B of
the probe, as shown in Figure 7. The muon spin performs
Larmor precession on a cone with the angle θ between ~sµ
and ~B. Since the asymmetry function (2) can also be
interpreted as the projection of the spin on its initial po-
larization, we can construct it from the dynamics of the
Larmor precession as

G(t) =
B2
z

B2
+
B2
x +B2

y

B2
cos (γµ| ~B|t) (3)

with the magnetic field ~B = (Bx, By, Bz) and the nor-
malized asymmetry G(t) = A(t)/A0. For all times with

cos (γµ| ~B|t) = 1 we recover G(t) = 1 and the spin po-
larization is back in its initial direction. Inserting the
components of the magnetic field in spherical coordinates
yields

G(t) = cos2 θ + sin2 θ cos (γµ| ~B|t) . (4)

For a single crystal and a given muon site, the angle
θ determines the whole observed spectrum of G(t). In
this case the asymmetry describes an oscillation around
a baseline value.

One way of simplifying measurements is by using pow-
dered samples. In such a probe, the angles between the
muon spins and the magnetic field are distributed uni-
formly, meaning one can simply average over θ. The
result is

G(t) =
1

3
+

2

3
cos (γµ|B|t) . (5)

In a sample, the local magnetic fields can fluctuate
around their average since the electron spins couple to
the randomly distributed nuclear spins. All of these fluc-
tuations are uncorrelated, so using the central limit the-
orem one can argue that they follow a Gaussian distri-
bution. We assume it is centered around zero with width
∆/γµ in all spatial directions. Averaging over all three
components of the magnetic field results in

G(t) =
1

3
+

2

3
exp

(−∆2t2

2

)
(1−∆2t2) . (6)

This result is known as the Kubo-Toyabe formula and
was first derived 1967 [2]. As seen in Figure 8, it first
decreases to an minimum and then relaxes to the“1/3-
tail”. Since this theory assumes static fields, having this
tail in experimental data is an indicator for the absence
of dynamics. This functional behaviour is often observed
in materials, for example in the paramagnetic phase of
the superconductor UCoGe at zero field by Visser et al.
2008 [8].

Measurements can be improved by applying a longi-
tudinal field BL in the direction of the initial muon po-
larization. For random internal fields, the longitudinal
field shifts the mean of the Gaussian in z-direction from
〈Bz〉 = 0 to 〈Bz〉 = BL. The asymmetry function takes
the following form [9]:

G(t) = 1− 2∆2

B2
Lγ

2
µ

(
1− cos (γµ|BL|t)e(

−∆2t2

2 )
)

(7)

+
∆4

B3
Lγ

3
µ

∫ t

0

sin (γµ|BL|τ) e(−
−∆2τ2

2 )dτ . (8)
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FIG. 8. The Kubo-Toyabe relaxation function for multiple
values of ∆. For higher values of ∆, the relaxation to 1/3
takes longer.

FIG. 9. The asymmetry function for MnSi in a longitudinal
field. The fits match Eq. 8, suggesting the absence of dynam-
ics.

With growing longitudinal field, the spin gets pinned
stronger into the z-direction, causing the relaxation to
be weaker. An example of this function was measured
by Hayano et. al 1979 in MnSi at room temperature, as
demonstrated in Figure 9.

The Kubo-Toyabe theory was derived for systems with
static muons and electrons. This is the case for many, but
not all materials of interest. One mechanism that can
cause muon dynamics is so-called muon hopping, where
they travel through different sites before they decay. If
this is the case, the signal becomes an overlap of the sig-
nals from many possible muon sites. The result is an
effective damping of G(t). A similar effect could also be

caused by impurities in the sample, making the interpre-
tation of measurements difficult. Since each effect couples
differently to the longitudinal field, measuring the oscil-
lation frequency at high fields can distinguish the causes
of de-phasing. This method helps to further characterize
the material.

B. Probing of Magnetism in Superconductors

Superconductors are materials which have an identi-
cally zero resistivity below a critical temperature Tc, in
sufficiently low magnetic fields[10]. Perhaps more impor-
tantly, they also expel magnetic fields from their bulk.
The state in which these effects are seen is known as the
Meissner state, and the magnetic field expulsion is known
as the Meissner effect [10, Ch. 34]. Above the critical
magnetic field Hc(T ) a conventional, or type I, supercon-
ductor will revert to the normal (non-superconducting)
state, and the field will once again penetrate the sample
[10].

Unconventional, or type II, superconductors exhibit an
intermediate state known as the “mixed state”. Below a
lower critical field Hc1(T ) the sample completely expels
all fields [10], and above the upper critical field Hc2(T ) it
returns to the normal state, like a type I superconductor.
When Hc1(T ) < Happlied < Hc2(T ) thin filaments of flux
are able to penetrate the sample as proposed by A. A.
Abrikosov in 1957 [11]. This effect is shown in Figure 10.

It is important to note that in the Meissner state, as
predicted by the London equations, magnetic fields are
able to penetrate into the sample according to the form

B(x) = B0e
−x/λL , where λL =

√
mc2

4πnse2
is the Lon-

don penetration depth, and ns represents the density of
Cooper pairs within the superconductor [12][10]. As the
distribution of muons implanted into the sample is know,
the London penetration depth in this state can be mea-
sured using µSR [3].

Measurements of the penetration depth in the Meissner
state allow the superfluid density ns to be determined,
which in turn provides valuable insight into properties
such as the superconducting energy gap ∆. Ginzburg
and Landau proceeded to build on the work of London
and London by formulating a complex superconducting
order parameter ψ(r), the magnitude of which describes
the degree of superconducting order at the position ~r
[13][10].

The lattice of vortices within the mixed state results in
an inhomogenous distribution of magnetic fields within
the sample as shown in Figure 11 [3]. The variation of
these fields is closely related to the change in the su-
perconducting order parameter as a function of distance
from the vortex core [10][3]. Using a variational model

for the order parameter: ψ(r) = r/
√
r2 + ξ2v (where ξv is

a variational parameter), the following analytic expres-
sion for the field distribution was produced, for the limit
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FIG. 10. Vortices in the mixed state of NbSe2 measured by
scanning tunneling microscopy [14].

FIG. 11. Theoretically predicted magnetic field distribution
for a hexagonal lattice of vortices. Inset: Contour plot of the
magnetic field variation in space [3].

of isolated vortices (i.e. low fields) [3][15]:

~B(~r) = B0

∑
~K

K1(ξv

√
K2 + λ−2

ab )e−i
~K·~r

K1(ξv/λab)λabK
ẑ. (9)

In this equation, K1(x) is a modified Bessel function,
λab is the London penetration depth in the a-b plane,

and ~K are the reciprocal-lattice vectors of the unit cell.
It is assumed that the applied field is in the c-direction
oriented along the ẑ-axis.

In the case of an extreme type-II superconductor,
where λ � ξab, it can be shown that ξab = ξv/

√
(2),

where ξab is the Ginzburg-Landau superconducting co-
herence length[3].

Muon spin measurements in YBCO demonstrate the
changes in the magnetic fields as caused by these ef-
fects. Results are shown in Figure 12. Note that there
is a small contribution from the maximum field strength,
corresponding to the vortex cores; a moderate contribu-
tion from the minimum field points, corresponding to the
points between three adjacent vertices; and a large contri-
bution corresponding to the saddle points. To fit to phys-
ical parameters, a mathematical analysis similar to that
performed in the works by Sonier and Clem are necessary

FIG. 12. Frequency plot of the muon spin precession signal of
Yttrium Barium Copper Oxide (YBCO) measured in µ0H =
0.5 T, in both the normal states (top panel, T = 120 K) and
in the mixed state bottom panel, T = 2.4 K. [3]

to match such a distribution to the Fourier-transformed
equation shown above, but will not be discussed here [15]
[3].

VI. CONCLUSION

Due to the short effective range of its interactions
with matter and the implantation mechanism of muons,
µSR is a powerful technique. In less than a century
since the discovery of the muon, several beam facili-
ties have been built across the world [1]. this technique
provides an alternative method for measuring the Lon-
don penetration depth and superconducting coherence
length thereby deepening our understanding on the high-
Tc superconductivity. In the field of Magnetism, Kubo-
Toyabe-Theory was developed based on the spectrum of
asymmetric function of powder magnetic materials.
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