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A brief article on the Raman effect. We explore the theory behind predicting when Raman
transitions occur, as well as how intense the signal from these transitions will be. We then compare
this theory to various experimental results.

1. INTRODUCTION

The Raman effect is a light-scattering phenomenon
used to gain understanding of the vibrational and ro-
tational modes of a material. When light strikes a
material, at a frequency νincident, it can be scattered
at its original frequency (Rayleigh scattering) or at a
shifted frequency, due internal transitions within the
molecule, νmolecular. This shifted scattering is called Ra-
man scattering, and is classified as either Stokes scat-
tering, νscattered = νincident + νmolecular, or anti-Stokes
scattering, νscattered = νincident − νmolecular. The shift
in frequency is called the Raman shift: ∆ν = |νincident−
νscattered|. Section 2.1 describes the theory behind pre-
dicting when Raman transitions occur, section 2.2 de-
scribes the theory behind predicting the intensity of a
Raman signal, and finally section 3 compares this the-
ory to experimental Raman measurements under various
conditions.

2. RAMAN THEORY

2.1. Raman Transitions

To model the effect of polarized light hitting a sample
consider the application of an oscillating electric field of

the form ~E = ~E0 cosωt, with a wavelength much larger
than the molecular dimensions. For Raman scattering
the field is not in resonance, ω 6= (Er − Ek)/~ = ωrk for
any normal modes |Ψr >, |Ψk > of the sample, how-
ever it will induce an oscillating dipole moment that
will re-radiate. Therefore transitions between normal
modes in the system are found by solving the transi-
tion dipole moment: Mr,k(t) = 〈Ψr|µ |Ψk〉. The nor-
mal modes are found by perturbatively solving the time-
dependent multi-particle Schrodinger equation with the
with the electronic-dipole interaction perturbation, Ĥ ′ =
−µ·E0 cosωt, resulting from the applied electric field and
induced dipole moment. The first order correction to the
wave function is,

Ψ1
n =

1

2~
∑
r

ψ0
r

{
µr,n · E0

ωr,n − ω
e−i(ωn+ω)t +

µr,n · E0

ωr,n + ω
e−i(ωn−ω)t

}
.

(1)
Where the sum is over all of the time independent
zeroth-order solutions, µrn = 〈ψ0

r |µ |ψ0
n〉, and ωrn =

(Er − En)/~. Using this first order correction we
can approximate the dipole moment as: Mkn ≈
〈Ψ0

k + Ψ1
k|µ |Ψ0
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kn. Where the zeroth order term,
M0
kn = µk,ne

iωk,nt, is ignored because it is just a regu-
lar transition dipole moment, and therefore doesn’t con-
tribute to Raman scattering. Using the first order correc-
tion to the wave function in Eqn.1, and orthonormality
of the zeroth-order wave functions Ψ0

k = ψ0
ke
−iωkt, the

dipole moment transition that we are interested in is,
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The first term in Eq.2 with angular frequency ωkn−ω is
associated with the Raman effect, and the second term
with angular frequency ωkn + ω is interpreted as a two-
photon transition and therefore ignored when consid-
ering the Raman effect. The induced transition from
states 〈Ψn| to 〈Ψk| from the Raman effect can be a
transition from high to low frequency, ωkn = (Ek −
En)/~ > 0 (Stokes scattering), or from low to high fre-
quency, ωkn = (Ek − En)/~ < 0 (anti-Stokes scatter-
ing). It is assumed that the incident photon, with fre-
quency ω as sufficient energy to induce the dipole mo-
mentum transition: ω − ωkn > 0. For an applied elec-
tric field that is not too strong the induced dipole mo-
ment is proportional to the applied field: µi = αijEj ,
where the proportionality constant αij is characteris-
tic of each molecule and is called the polarizability.
Looking at the kn-matrix element of this expression us-
ing the first order wave functions Ψ0

k = ψ0
ke
−iωkt and

subbing in our oscillating electric field ~E = ~E0 cosωt
then the expression becomes Mi,kn = 〈Ψ0

k|µi |Ψ0
n〉 =

1/2 〈ψ0
k| α̂i,j |ψ0

n〉E0j(e
i(ωkn−ω)t + ei(ωkn+ω)t). As before

the term with frequency ωkn+ω is ignored and we’re left
with:

Mi,kn = 1/2 〈ψ0
k| α̂i,j |ψ0

n〉E0je
i(ωkn−ωt) (3)

Comparing Eqn. 3 with the kn-component of the Raman
part of Eqn. 2,
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we find that the kn-polarizability matrix elements are:
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FIG. 1: The symmetry operators of H2O [3]

FIG. 2: The normal modes of H2O [4]

FIG. 3: The group table of H2O [5]
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For nonzero dipole moment transitions, αij,kn =
〈ψ0
k|αij |ψ0

n〉 =
∫
ψ∗kαijψndτ must be non-zero. In or-

der for this transition to be non-zero, ie Raman active,
the direct products of the irreducible representation of
ψ∗k, αij and ψn produces a representation which is or
contains the symmetric irreducible representation, then
Raman transitions will occur [1]. Group theory must be
considered in order to understand this theorem.

In group theory the symmetry of an molecule is de-
scribed by symmetry operations that leave the molecule
unchanged. Some possible symmetry operations are:
identity E, rotation Cn (rotation of the molecule around
an axis through the molecule by an angle of 2π/n), reflec-
tion σ (reflection of the molecule across a plane through
the molecule). For an example, H2O has four symmetry
operations, the identity E, and, as illustrated in Fig.1, a
C2 rotation about the axis by π through the hydrogen
atom, and two reflections about appropriate planes: σv
and σ′v. All of the symmetry operations on a molecule
must form a closed group: a symmetry group. A group
table can be written up which describes the result of ap-
plying two symmetry operations on the molecule. For
example, applying the symmetry operation C2 twice to
H2O is the same as applying the identity E, since two
rotations by π is a rotation by 2π, which is the same as
doing nothing to the molecule. The other entries of the
group table of H2O can be found in a similar way, by con-
sidering how the molecule changes after an application of
two symmetry operations and determining which single
symmetry operation achieves the same result. The group
table for H2O is listed in Fig.3. This group table isn’t
unique to H2O, it describes any molecules with these four
symmetry operations, it is called the C2v group.

The symmetry operations can be thought of as matri-

ces. There are many different assignments of matrices to
symmetry operators that will satisfy the group table mul-
tiplication: each assignment is called a representation.
Irreducible representations are the smallest possible ma-
trices that satisfy the group table: they can’t be broken
into smaller matrices that will also satisfy the group ta-
ble multiplication. For example, a representation of the
C2v group is:

E =

[
1 0
0 1

]
Cv =

[
−1 0
0 −1

]
σ′v =

[
1 0
0 −1

]
σv =

[
−1 0
0 1

]
(7)

since the matrices satisfy the group table multiplication.
However, it isn’t irreducible because it can be broken
into two irreducible representations: E = 1, C2 = −1,
σv = 1, and σ′v = −1 and E = 1, C2 = −1, σv = −1, and
σ′v = 1 which also satisfy the group table multiplication.
All representations of a symmetry group are built from
irreducible representations.

A normal mode of a molecule can be thought of as an
irreducible representation. The three normal modes of
H2O are illustrated in Fig 2. The symmetric irreducible
representation is where nothing is done to the molecule,
every symmetry group contains this irreducible represen-
tation: it is the one where all symmetry operators are
assigned to the constant 1 (E = 1, C2 = 1, σv = 1, and
σ′v = 1).

Now consider the theorem again, if the direct products
of the irreducible representation of ψ∗k, αij , and ψn pro-
duces a representation which is or contains the symmetric
irreducible representation, then Raman transitions will
occur. Where the irreducible representations of ψ∗k and
ψn will correspond to what normal mode of the molecule
they are, and the irreducible representations of αij are
assigned based on how the products of coordinates trans-
form under the symmetry operators (x2, y2, z2, xy, xz,
and yz) since, from Eqn. 5, we can see it contains the
elements αxx, αxy... which transform like products of co-
ordinates. For a more detailed description of the group
theory of molecular structures please see Ref.[5].

2.2. Intensity for Vibrational Raman Scattering

In general the polarizability of a molecule will be given
by a 3 by 3 polarizability matrix with components αij .
Since the atoms in the molecule will vibrate about their
equilibrium positions one can do a Taylor expansion, as-
suming the vibrations are sufficiently small, of the com-
ponents of the polarizability matrix:

αij(Qk) = αij(0) +
∑
k

∂αij(0)

∂Qk
Qk +O(Q2) (8)

In the harmonic approximation we truncate the series
to linear order in the displacements. Here Qk are the nor-
mal coordinates for the k− th normal mode (equilibrium
positions are at Qk = 0). If we assume that incoming
radiation is monochromatic and polarized along the z-
direction we get the following equation for the induced



3

dipole moment:

µi =

(
αiz(0) +

∑
k

∂αiz(0)

∂Qk
Qk

)
E0zcos(ωIt) (9)

From electromagnetic theory we know that the follow-
ing proportionality relation holds for the power emitted
by an electric dipole with dipole moment ~µ and ν is the
frequency of scattered photons:

P ∝ ν4 |~µ|2 = ν4(|µx|2 + |µy|2 + |µz|2) (10)

From this point we will treat µi as a quantum opera-
tor. The normal coordinates will act as position opera-
tors in the Hamiltonian. In particular since everything
is written in terms of normal coordinates we know that
the unperturbed Hamiltonian will be a sum over inde-
pendent harmonic oscillators vibrating at their respec-
tive normal frequencies. As an aside one should note
that the number of normal modes for a given molecule
with M atoms, which we will denote as N, equals 3M−6
for non-linear molecules and 3M − 5 for linear molecules
[2]. For example a water molecule has three atoms so
it has 3 normal modes. The unperturbed states will
be products of a harmonic oscillator associated with
each normal mode. We will represent these states us-
ing the ket notation |n1, n2, ..., nN 〉, where the ket rep-
resents a state in which the k − th normal mode is ex-
cited to to the nk level. The state has a total energy of∑N
i=1[~ωi(ni + 1/2)] which is a sum of the collective nor-

mal mode energies. Hence from a quantum point of view
transitions from one state to another occur due to the
time-dependent perturbation caused by the oscillating
electric field inducing a dipole moment in the molecule.
So to understand intensity of such transitions we should
calculate| 〈n′1, n′2, ..., n′N |µi(Q̂k) |n1, n2, ..., nN 〉 |2. Since
we are interested in Raman transitions this would corre-
spond to having the initial state unequal to the state af-
ter the interaction so the zeroth order term vanishes due
to orthogonality (The zeroth order term actually would
represent Rayleigh scattering). So we are left with:

〈n′1, n′2, ..., n′N |µi(Q̂k) |n1, n2, ..., nN 〉

= E0zcos(ωIt)
∑
k

∂αiz(0)

∂Qk
〈n′1, ..., n′N | Q̂k |n1, ..., nN 〉

(11)

We know from the the ladder operator for-
malism for SHO that the matrix element
〈n′1, n′2, ..., n′N | Q̂k |n1, n2, ..., nN 〉 is non-zero iff n′k =
nk± 1 and n′i 6=k = ni 6=k. We can only have transitions of

the form |n1, n2, .., nk, .., nN 〉 → |n1, n2, .., nk ± 1, .., nN 〉,
assuming that ∂αiz(0)

∂Qk
6= 0, if it is zero then a transition

through that mode will not occur such modes are called
Raman inactive. So we are left with the following type
of transition element which is going to correspond to a
transition through the k − th mode:

| 〈n′1, ..., n′N |µi(Q̂k) |n1, ..., nN 〉 |2 ∝
E2

0z

ωk

(
∂αiz(0)

∂Qk

)2

(12)
Where we time averaged over one cycle to get rid of

the cos2(ωIt) function, the 1/ωk comes from evaluating
the matrix element using ladder operators for the k− th
normal mode:

Pk ∝ (ωI ± ωk)4
E2

0z

ωk

∑
x,y,z

(
∂αiz(0)

∂Qk

)2

(13)

This gives the scattered power for one molecule for under-
going a transition through the k− th normal mode. Here
the plus corresponds to Anti-Stokes scattering and the
minus corresponds to Stokes scattering. However typical
samples in a lab will have many molecules that can scat-
ter the incoming photons. If we assume the sample to be
in thermal equilibrium at a temperature T then we know
from basic statistical mechanics that the relative proba-
bility, compared to the ground state, of finding a molecule
in some excited state will be suppressed by by the Boltz-
mann weight. This implies that at sufficiently low tem-
peratures we expect most of the molecules to be in the
ground state. Hence if Raman scattering does occur it is
more likely that a photon will excite the vibrational mode
to higher energy states and come out with lower energy
this is often seen in experiments. This means that the
ratio of the intensity of Anti-Stokes scattering and Stokes
scattering through some Raman active mode vibrating at
ωk will be roughly given as:

IAnti−Stokes
IStokes

=
(ωI + ωk)4

(ωI − ωk)4
e−β~ωk (14)

where β = (kbT )−1. For a more precise treatment for
calculating intensity please see Ref.[1].

3. RAMAN EXPERIMENT

3.1. Experimental Set-up

Fig.4 illustrates a typical Raman system. The system
is mainly composed of three parts: incident light part,
sample part and scattered light part [6]. Fig.5 corre-
sponds to the sample part of a Raman system, where
the red arrow stands for the direction of incident light,
and the blue arrow stands for the scattered light, this
picture was taken from Dr. Guangrui Xia's lab, located
in the department of materials engineering at UBC. In
Dr. Guangrui Xia's lab Raman spectra are collected on a
backscattered Horiba Jobin Yvon HR800 Raman system
with 442nm (2.81 eV) line from a He-Cd laser. The 442
nm incident laser beam is polarized.

To measure the Raman spectra, we first use the micro-
scope to focus on the sample, then turn on the laser. The
scattered light goes through various optical devices and
finally the signal is collected by a CCD. Thus, Raman
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FIG. 4: Typical experimental set-up of a micro-Raman
spectrometer

FIG. 5: Sample part of a Horiba Jobin Yvon HR800 Raman
system

spectra will appear in the computer. A heating stage
can be used to create a higher temperature environment
for the sample.

3.2. Raman vs. Temperature

From the equation of intensity from Ref.[7] it is clear

that the Stokes Raman Intensity Is ∝ (ωI − ωk)e
~ν
kT ,

differs from the Anti-Stokes Raman intensity, Ias ∝
(ωI +ωk)(1−e− ~ν

kT )−1. At low temperatures these inten-
sity proportionalities match what was derived in section
2.2. Fig.6 shows the Anti-Stokes (AS) (left) and Stokes
(S) (right) spectra for the 610 cm−1 mode of Rhodamine
6G (RH6G) under different temperatures. The x-axis
is the differences between the frequency of the incident
light and the scattered light, which is in the units of
wave-number (cm−1). The y-axis stands for the relative
intensity of the scattered light. Since the intensity de-
pends of the parameters of the set-up, the units differ for
each experiment, and therefore are given the general la-
bel “arbitrary units”. Note the change in scale between
the AS and S spectra. Panels a and b show the AS and
S modes respectively at 300 K (dark gray) and 170 K
(light gray). It is clear that while there is little effect
on the intensity on the Stokes side there is a significant
decrease in the intensity of the AS signal as the tem-
perature is decreased, as is expected from a decrease in
thermal population [7]. This result is expected from the
theory described in section 2.2.

FIG. 6: The stokes and anti-stokes Raman spectra of
Rhodamine 6G (RH6G) under different temperatures

FIG. 7: The Raman spectra of BP in 4 different crystal
orientations. The 3 peaks correspond to the 3 different

normal modes.

3.3. Raman vs. Crystal Orientation

Fig.7 shows three typical Raman Modes in Black Phos-
phorus (BP):A1

g, A
2
g, B

2
g [8]. In this example, for the Ag

mode only has diagonal parts,

∂ ~αij
∂Qk

=

aeiσa 0 0
0 beiσb 0
0 0 ceiσc

 (15)

From Eqn.13 in section 2.2, we can see that the intensity
of the scattered light, and therefore the electric field of
the scattered light, satisfies,

~Escattered ∝
∂ ~αij
∂Qk

· ~Eincident, (16)

(in section 1.2 the specific case of ~Eincident = Eincidentẑ
was used).Usually we add a polarizer with the parallel po-
larization of the incident light when measuring the scat-
tered light. If we assume the parallel polarization of the

incident light as ~Eincident = (sin θ 0 cos θ), the intensity
is,

I
‖
Ag
∝ |(sin θ 0 cos θ)

∂ ~αij
∂Qk

(sin θ 0 cos θ)T |2

= |a|2[(sin θ2+| c
a
| cosφca cos θ2)2+| c

a
|2 sinφca

2 cos θ2].

(17)
Since the intensity is angularly resolved, we see the re-
sults in Fig.7, where intensity changes with changing an-
gles [9].
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3.4. Raman Strain vs. Stress

The Raman scattering spectrum is a useful tool to re-
solve internal strains and stresses in materials through
the high resolution of determining normal mode frequen-
cies, and it represents an effective and nondestructive
technique. Tensile or compressive stress can induce the
redshift or blueshift of each Raman peak. Once the
strain/stress relationship is known for a specific mate-
rial, it offers a convenient way, by Raman scattering, to
detect the strain/stress distribution on a sample of that
material.

Silicon (Si) and Gallium Nitride (GaN) were used as
the examples to illustrate the relationship between stress
and Raman spectroscopy. Fig.8 shows typical Raman
spectra measured from Si under tensile, free, and com-
pressive stresses. According to the result, for silicon,
a compressive stress will lead to a blueshift in spectra,
while a tensile strain will lead to a redshift. And the re-
sponse is almost linear in certain range of stress[10]. Fig.9
illustrates the Raman spectra of Si and GaN under in-
creasing compressive stress [11]. Curves “a”-“f” stand for
one Raman spectra under increasing compressive stress.
Each curve, except curve “a”, have been moved up in par-
allel for comparison. Both the materials show a blueshift,
and the shift almost increases linearly with the stress.

4. CONCLUSION

In this article we explored the experimental technique
of the Raman effect. We began by describing the theory
that predicts when Raman transitions will occur, as well
as how intense the signal from those transitions should
be. Then we looked into the experimental side of the
Raman effect. We described how Raman spectra are
measured, and analyzed various spectra from different
experimental conditions, noticing how the theory tied in
with what was experimentally observed.

FIG. 8: (a) Typical Raman spectra measured from Si under
tensile, free, and compressive stresses (b) Relation between

Si stress and measured Raman shift (peak position)

FIG. 9: (a) The Raman peaks shift of Si under applying
increasing compressive stress loadings (b) The Raman peaks

shift of GaN under the same condition
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