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I. Introduction

In this paper we review the phenomenon of nuclear
magnetic resonance (NMR). We employ a proper quan-
tum mechanical treatment along with the usual semi-
classical picture to explain underlying principles and ex-
perimental methods. We also describe mechanisms of
relaxation in NMR systems. The paper concludes with
examples of modern uses of NMR.

II. Magnetic Resonance - Basic Theory

Nuclear magnetic resonance was first observed by Rabi
in 1938 (Rabi et al., 1938). He started with a sim-
ple Stern-Gerlach experiment consisting of nuclei fired
through a strong inhomogeneous magnetic field. De-
pending on their nuclear spin, the nuclei are deflected
by the field towards various detectors. Rabi introduced
the modification of a wire coil midway through the field
which was able to create a perpendicular magnetic field
oscillating at radio frequencies (RF). He noticed that,
when the strength of the static field was properly tuned,
it would result in a sudden dip in beam intensity at a
certain detector. Rabi correctly deduced that the oscil-
lating field had induced transitions in the spin states of
the nuclei, causing them to be deflected along a differ-
ent path by the Stern-Gerlach apparatus. By identifying
this point of resonance, Rabi was able deduce the nuclear
magnetic moment.

The results of Rabi’s experiment can be explained with
basic quantum mechanics. In an external magnetic field
~H0 = H0ẑ, the nuclear spin (assumed to be S = 1

2 )
couples as H = − 1

2γ~H0σz where γ is the gyromagnetic
ratio and σz the usual Pauli matrix. The two eigenstates
have the usual Zeeman energies, ± 1

2~ω0, where ω0 = γH0

is the Larmour frequency.

For what follows, it will be convenient and later neces-
sary to represent the nuclear spin state in terms of a den-
sity matrix ρ. The density matrix ρ represents a quantum
state that combines statistical uncertainty with quan-
tum superposition, a mixed state. The density matrix
ρ =

∑
m pm |m〉 〈m| represents a spin with probability

pm of existing in the eigenstate |m〉. A more general den-
sity matrix will have off-diagonal elements representing
superposition between eigenstates, and can be written
as ρ =

∑
n,m an,m |n〉 〈m|. Expectation values for mixed

states can be succinctly written 〈O〉 = Tr ρO, and the
Schrodinger equation immediately implies that the den-

sity matrix evolves according to the following Liouville
equation dρ

dt = i
~ [ρ,H]. For our Zeeman Hamiltonian, we

have the solution ρ(t) = Zω0tρ(0)Z−1
ω0t where Zθ = e−i

θ
2σz

is the spin rotation operator about the z-axis. Likewise,
we define Xθ for a rotation about x̂.

Expectation values of magnetic moments, 〈~µ〉 =
γS~ 〈~σ〉 , are then calculated straightforwardly:

〈~µ(t)〉 =
1

2
γ~ tr {ρ(t)~µ} =

1

2
γ~ tr

{
ρ(0)Z−1

ω0t~µZω0t

}
(1)

We see that the spin rotation operator Zθ can be thought
of as rotating the magnetic moment an angle θ about the
z axis. This is a useful classical picture that accompanies
the proper quantum description, and it will be referred
to throughout the paper to help visualize the various pro-
cesses. We see from the above that the external magnetic
field causes the magnetic moment to precess about the
z-axis at a frequency ω0. This precession is a key part of
the experiments described in the following section.

Following Rabi, we now introduce an oscillating RF
magnetic field ~H1 = H1(x̂ cosωrt+ ŷ sinωrt). In order to
make its effects more clear, we switch to a co-rotating
reference frame. The density matrix in this rotating
frame can be related to that in the lab frame accord-
ing to ρR = Z−1

ωrtρZωrt. This state evolves by means of
the rotated Hamiltonian

HR = Z−1
ωrtHZωrt +

ωr
2
σz

= −1

2
~ (ω0 − ωr)σz −

1

2
~ω1σx, (2)

where ω1 = γH1.
We are now ready to explain Rabi’s result. Suppose

our spin is initially in the + 1
2 eigenstate of Sz. When

the RF field is turned off, the spin will be deflected up-
wards by the Stern-Gerlach apparatus. Now suppose the
nucleus is in the presence of the RF field for a time t. If
ωr = ω0, then we will have

ρR(t) = e
i
~HRtρR(0)e−

i
~HRt = X(ω1t)ρR(0)X−1(ω1t).

(3)
So our spin is rotated towards the − 1

2 eigenstate at a fre-
quency ω1. This results in an increased fraction of spins
being deflected downwards by the Stern-Gerlach appara-
tus rather than upward. On the other hand, if ωr is far
from ω0, the RF field has little effect. This is because the
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Figure 1 This figure from Rabi’s papers shows the onset of
resonance marked by a dip in beam intensity (Rabi et al.,
1938).

σz term dominates the Hamiltonian and the spin would
approximately remain at the + 1

2 eigenstate. The con-
dition that ωr = ω0 is called the resonance condition:
the RF field is most effective at flipping the nuclear spin
when it oscillates at the Larmour frequency. Hence by
varying H0 until a sudden dip in upwards beam intensity
was observed, Rabi was able to determine the nuclear
magnetic moment γ = ωr

H0
(See Fig. 1).

When the RF field is on resonance, we have exquisite
control over the nuclear spin state. Starting with a spin
in the + 1

2 eigenstate, we can apply the RF field in strong
pulses to tip the spin. For example, applying the field
for a time τπ such that ω1τπ = π, we will flip our spin
to the − 1

2 eigenstate. This is called a π-pulse, and it
is an essential part of modern NMR experiments. Sim-
ilarly, we can apply a π

2 pulse, which puts our spin in
an equal superposition of the two eigenstates. In terms
of the magnetic moment vectors, a π-pulse rotates the
vector from the north pole to the south pole while a π

2 -
pulse rotates it to the equator (See Fig. 3b for a π

2 -pulse).
When the RF field is turned off (ω1 = 0), Eq. 3 shows
that the nuclear state is unchanged in the rotating refer-
ence frame, meaning it is precessing about the z-axis in
the laboratory frame.

III. NMR of Many Spins - Relaxation

Rabi’s experiment dealt with a beam of non-interacting
nuclei, allowing the experiment to be explained in terms
of the exactly-solvable dynamics of a single spin in a mag-
netic field. Modern NMR, on the other hand, deals with
large samples containing macroscopic numbers of nuclei.
The first experiments of this type were performed in 1946
by Bloch (Bloch et al., 1946) and Purcell (Purcell et al.,
1946). Their apparatus consisted of the following main
components:

Figure 2 The free induction decay (FID) signal obtained dur-
ing and NMR experiment with an oscilloscope.

• A homogeneous sample containing a large number
of nuclei. Bloch used a vial containing a gram of
water, while Purcell used solid wax.

• A strong, uniform magnetic field H0ẑ across the
sample. While these initial experiments used a
field strength of fractions of a Tesla, modern exper-
iments often use fields as strong as 21 Tesla created
by superconducting magnets.

• A wire coil with an AC current attached to an os-
cilloscope. This coil supplies the RF magnetic field
needed for resonance and also detects the NMR sig-
nal.

Similar to Rabi, Bloch and Purcell noticed a sudden
absorption of RF radiation when the system was on reso-
nance, indicated by a modulation of the oscilloscope cur-
rent. Even though the signal from each nucleus would be
incredibly small, the large number of nuclei allowed for a
measurable voltage.

To explain the elements of this experiment, we consider
the modern practice of pulsed NMR developed by both
Hahn (Hahn, 1950) and Carr and Purcell (Carr and Pur-
cell, 1954). Here, the RF field is applied in short, strong
pulses. The behaviour of the signal between pulses pro-
vides key information about the sample. Suppose first
that the nuclei are non-interacting. In this case, the
spins will initially align along the uniform magnetic field.
When the RF field is applied on resonance (ωr = ω0), it
will tip the spins according to Eq. 3 causing it to precess
about the z-axis. The total magnetization ~M = 〈

∑
i ~µi〉

will also precess. This precession creates an oscillating
magnetic field, which induces an emf in the wire coil ac-
cording to Faraday’s law. The result AC current would
then appear on the oscilloscope as simple sine curve.

In reality, we observe a signal that decays on the order
of one second, as pictured in Fig. 2. This signal is known
as free induction decay (FID), and analysing its shape
forms the basis of all NMR techniques. This decay is due
to the fact that our spins are in fact interacting. They
interact with neighbouring spins as well as other degrees
of freedom such as translational and rotational modes of



3

molecules in a liquid, or phonons in a solid. Treating
these interactions like a perturbation, their net effect is
to act as a thermal bath for the system. The equilibrium
state no longer has all spins aligned with the magnetic
field. Rather, the interaction with the bath at tempera-
ture T causes each spin to either align or anti-align with
the field, with probability given by the Boltzmann weight
e−βE where E is its Zeeman energy and β−1 = kBT . This
statistical ensemble is the reason we must describe our
system in terms of a density matrix.

In equilibrium, the total magnetization satisfies ~M =
M0ẑ, so that the transverse components vanish while the
longitudinal component reaches a positive equilibrium
value M0. If the magnetization is perturbed from equilib-
rium, by a RF pulse for example, it will return to equilib-
rium via the phenomenological Bloch equations (Bloch,
1946):

d ~M

dt
= γ ~M × ~H − x̂Mx

T2
− ŷMy

T2
− ẑ (Mz −M0)

T1
. (4)

The first term describes the precession of the mag-
netic moment that we have already derived quantum me-
chanically. The rest of the terms serve to equilibrate
the magnetization. T1 and T2 are the longitudinal and
transverse relaxations times respectively. Also called the
“spin-lattice” and “spin-spin” relaxation times, they give
the time scales over which the components of the mag-
netization equilibrate. T1 and T2 are inherent properties
of substances like solids, liquids, or solutions, and mea-
suring them provides the means to detect and identify
these substances in a laboratory setting. In the next sec-
tion, we describe how this measurement can be done by
analysing the FID signal. Later, we give an outline of
how they can be predicted theoretically and which phys-
ical processes contribute to the relaxation.

IV. Pulse Sequences

In Section II, we saw that applying the resonant RF
field for pulses of varying length can tip the total mag-
netization of the sample away from equilibrium. These
pulses form the basis of the following techniques used to
determine T1 and T2. Recall that a θ pulse rotates the
magnetization by θ about the x-axis.

A. Measuring T1 - Inversion Recovery

The sequence of pulses used to measure T1 can be com-
pactly written π − τ − π

2 . This expresses the following
sequence of events known as inversion recovery : (1) Ap-
ply a π pulse to the sample using the RF coil. (2) Wait
for a time τ . (3) Apply a π

2 pulse and record the ini-
tial amplitude of the FID signal. The initial π pulse

Figure 3 Spin echo viewed in terms of magnetic moments.
The initial equilibrium magnetization (a) is rotated by a π

2
-

pulse (b). The moments begin to precess at different rates
(c) eventually losing coherence (d). By applying a π-pulse
(e), the moments are flipped. The spins precess in the same
direction as before , so the decoherence reverses (f) resulting
in a spin echo (g) (ech).

serves to flip every spin, inverting the magnetization vec-
tor. According to the Bloch equation, the longitudinal
magnetization recovers as:

Mz(t) = M0(1− 2e−
t
T1 ) (5)

However, since the transverse components of the magne-
tization are still zero, there is no precession and hence no
signal. In order to get the signal, the π

2 pulse is applied
to knock the magnetization into the x, y plane. The re-
sulting precession gives a signal whose initial amplitude
is proportional to Mz(τ), as can be verified using Eq. 3.

By repeating this sequence for various values of τ , T1

can be obtained by fitting the data to simple exponential
of Eq. 5. It is important that the system is allowed to
equilibrate completely before taking the next data point.
Since T1 can be on the order of seconds, NMR experi-
ments can have significant downtime.

B. Measuring T2 - Spin Echoes

Suppose our magnetization lies completely in the
transverse plane at t = 0. According to the Bloch equa-
tion, the transverse components will decay as:

Mx,y(t) = Mx,y(0)e−
t
T2 . (6)

One might think that the FID signal pictured in Fig. 2
can be fit to the above to extract T2. After all, it shows
the decay of precession in the transverse plane, which is
what T2 is supposed to describe. However, the decay of
this signal is due not only to the decay of the transverse
magnetization, but also the loss of coherence between
spins. This decoherence is caused by the fact that each
spin i feels a slightly different magnetic field Hi 6= H0 in



4

the z-direction, so they each precess at a slightly differ-
ent rate. The greatest contribution to this effect comes
from inhomogeneities in the applied magnetic field ~H0.
Because of this, the transverse magnetization appears to
die out prematurely. Therefore the rate of decay of the
FID, called T ∗2 , is apparatus-dependent, and hence not a
good way to classify a sample.

In 1950, Hahn created a technique to solve this prob-
lem after observing what he called spin echoes (Hahn,
1950). Hahn noticed that, by using the pulse sequence
π
2 − τ − π, a sudden revival of the FID signal was ob-
served at a time τ after the π-pulse. To explain this,
let’s return to the density matrix picture, ignoring inter-
actions for the moment. In the rotating reference frame,
the Hamiltonian for spin i reads:

Hi,R = −1

2
~δωiσz −

1

2
~ω1(t)σx (7)

where the local difference from resonance is δωi = γ(Hi−
H0) � ω1. We’ve explicitly shown the time dependence
of H1(t) to be clear that the transverse field is only on
for finite durations (pulses). When the pulses are turned
off, the evolution operator is exp

(
− i

2δωitσz
)

= Zδωit,
showing that each spin precesses slowly about the z-axis
in the rotating frame. During the pulses, the evolution
is approximately exp

(
− i

2ω1tσx
)

= Xω1t as before. So,
with the above pulse sequence, the density matrix ρi,R
for spin i after a time 2τ can be written:

ρi,R(2τ) = ZδωiτXπZδωiτXπ
2
ρi,R(0)X−1

π
2
Z−1
δωiτ

X−1
π Z−1

δωiτ
.

Now we make a remarkable observation. Due to the
commutation relations of the Pauli matrices, we can
write ZδωiτXπ = XπZ

−1
δωiτ

. This gives the simplification

ρi,R(2τ) = X 3
2π
ρi,R(0)X−1

3
2π

, showing that every spin un-

dergoes the same evolution, regardless of the local field.
That is, the spins regain coherence at time 2τ . We see
that by applying the π-pulse, the decoherence of the spins
is reversed, giving a resurgence of the FID signal called
a spin echo. An explanation in terms of the magnetic
moment vectors is given in Fig. 3.

How does this picture change when we bring back in-
teractions? The above demonstration assumed that the
local magnetic fields Hi were constant in time. In real-
ity, the interactions cause these fields to rapidly fluctu-
ate, and the decoherence will not be completely undone
by the spin echo. These field fluctuations result from
fundamental properties of a substance such as molecular
structure and mobility. Because of this, the decay in the
spin echo amplitude determines T2. By repeating the spin
echo experiment for different values of τ , Eq. 6 can be fit
to obtain T2. More sophisticated pulse sequences can be
used to eliminate the effects of molecular diffusion, which
also contribute to T ∗2 (Carr and Purcell, 1954; Meiboom
and Gill, 1958).

Figure 4 The possible spin interactions cause by the dipole-
dipole interaction. Here, f0 = ω0

2π
(Elster, 1994).

V. Mechanisms of Relaxation

Now that we know how to measure T1 and T2, we show
how they can be predicted theoretically. Although this
becomes a very difficult problem for complex substances
like tissues, it can still be done for systems like water
and simple molecular solutions. We begin with some gen-
eral comments on the nature of the relaxation processes.
Firstly, T1 and T2 are generally not equal. Since T1 de-
scribes equilibration of the longitudinal magnetization,
any process contributing to T1 must involve a change in
energy. This change is caused by spin flips, which are
themselves caused by interaction with the bath degrees
of freedom. Any spin flip will change the local magnetic
fields seen by each spin, so it must also contribute to T2

as described above. On the other hand, we can have in-
teractions which affect only T2, such as a spin “flip-flop”
where two spins with opposite orientations suddenly flip
with no net energy change. Hence we have T1 > T2 ex-
cept in very specialized systems (Traficante, 1991).

To make more observations, we have to consider a spe-
cific mechanism of interaction. Here we choose the mag-
netic dipolar interaction between nuclear spins, which is
the dominant effect in spin- 1

2 nuclei. The dipole-dipole
interaction for two spins separated by a vector ~rij is

Hij =
γ2

r3
ij

(
~Si · ~Sj − 3(~Si · r̂ij)(~Sj · r̂ij)

)
. (8)

Since the nuclei are not fixed, ~rij and hence Hij will be
time-dependent. In order to better understand the effects
of this equation, we rewrite it as follows (Solomon, 1955):

Hij = F0S
z
i S

z
j (9)

− 1

2
F0S

+
i S
−
j + F1

(
S+
i S

z
j + Szi S

+
j

)
+ F2S

+
i S

+
j + h.c.

S±i are the usual spin ladder operators. The lattice func-
tions Fk are time-dependent functions which determine
the strength of each term based on the relative position
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of the nuclei. F0 dominates when vector connecting the
spins is perpendicular to the magnetic field, F2 dominates
when it is parallel, and F1 dominates in between. We see
that the dipole-dipole interaction has various interaction
channels that can leave both spins unchanged, flip one
of them, or flip both. This is illustrated in Fig. 4. F∆m

is labelled to correspond to spin interactions that change
the total spin by ∆m.

To see how this interaction contributes to T1 and T2,
one can employ what is known as Redfield theory (Red-
field, 1957). This technique describes the evolution of two
spins in the presence of the thermal bath. It is essentially
second order perturbation theory, with the addition that
the vector ~rij connecting the spins is a stochastic variable
due to the interactions with the bath. By taking a ther-
mal average over ~rij , one can obtain a master equation
describing the evolution of the two spins. This can be
used to determine the evolution of the magnetic moments
of each pair of spins, which gives in turn the total mag-
netization. The results of this calculation are (Solomon,
1955; Abragam, 1961):

T−1
1 =

9

4
γ4~2[J1(ω0) +

1

2
J2(2ω0)], (10)

T−1
2 =

9

4
γ4~2

[
1

4
J0(0) +

5

2
J1(ω0) +

1

4
J2(2ω0)

]
. (11)

The functions J∆m(ω) are obtained by Fourier trans-
forming thermal correlation functions of F∆m; the so-
called spectral density functions. Loosely, they encode
the intensity at which the lattice functions F∆m fluctu-
ate at frequency ω due to interactions with the bath. We
notice J∆m(ω) appears in the above only at ω = ∆mω0.
This is expected: F∆m is connected with interactions
that change the total spin by ∆m and require an ex-
change of energy ~∆mω0. Hence the amount F∆m fluc-
tuates at frequency ∆mω0 is most important for transi-
tions.

Notice that both T1 and T2 depend on J1(ω) and J2(ω).
These are thermalizing channels that involve exchange of
energy with the bath, so this is consistent with our above
discussion. However the zero-mode J0(0), describing the
static part of the fluctuations, appears only in T2. This
is because this channel involves no exchange of energy,
and it in fact corresponds to the spin flip-flop.

Similar equations can be derived for different kinds of
interactions. For nuclei of spin greater than 1

2 , electric
quadrupole radiation is the dominant interaction. For
more complex substances, intermolecular interactions be-
tween nuclei can be mediated by the electrons, causing
the so-called J-coupling. Often, it is too difficult to ac-
curately predict the relaxation times, and they must be
obtained experimentally.

VI. Conclusion - Applications of NMR

We conclude with a brief mention of some of the mod-
ern applications of NMR. As described in the beginning,
NMR provides a simple mechanism to measure the nu-
clear magnetic moment. However, by applying more so-
phisticated pulse sequences, the same principles can be
used to obtain much more information.

The most common application of NMR is magnetic
resonance imaging (MRI) (Haacke et al., 1999). Here,
images of a human body are created from the T1 and T2

properties of the composing tissues. By applying mag-
netic fields with gradients, the RF field will resonate with
only specific sections of the body. The nuclei involved in
resonance typically come from molecules of either fat or
water. Water, due to its relative lack of internal degrees
of freedom, has a long T1. Fatty acids, on the other
hand, contain complex rotation and flexing modes that
can often be near the Larmour frequency, providing the
means for T1 relaxation. Hence, by mapping the value
of T1 throughout a section of the body, an image can be
formed. Similary, we can make T2-weighted images, and
many more variations to get a comprehensive picture.

A second key example is NMR spectroscopy (Breit-
maier and Voelter, 1987). Here, the main source of infor-
mation is the Fourier transformation of the FID signal.
When a complex molecule is in solution, each nucleus in
the molecule will feel a slightly different local magnetic
field due to the other atoms. This phenomenon, known
as the chemical shift, makes each nucleus precess at a
different rate, appearing as peaks on the Fourier trans-
form of the FID. Further information can be obtained by
the number of peaks at a given frequency: the aforemen-
tioned J-coupling causes peaks to split into multiplets
when a molecule contains identical nuclei. These effects,
among others, allow us to extract not only the type of
nuclei present in a sample molecule, but also the number.

Finally, NMR has found use in the field of quantum
computation (Vandersypen and Chuang, 2005). Atoms
in a molecule with different resonant frequencies due to
the chemical shift can be controlled individually by the
RF field. This allows them to act as distinct quantum
bits (qubits) Applying a π-pulse to a single atom is equiv-
alent to a logical “X” operation (quantum NOT), and
other pulse sequences give the rest of the single-qubit
operations. By taking advantage of the J-coupling, dif-
ferent qubits can even be entangled. Of course, an NMR
sample contains many interacting molecules which will
serve to destroy the logical information. But the system
will remain coherent as long as operations are done on a
time scale much shorter than T1 or T2, and this has been
demonstrated by implemented the coveted Shor’s factor-
ing algorithm on an NMR quantum computer (Vander-
sypen et al., 2001).
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