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Graphene has been a major point of interest in condensed matter physics since the late 1900s,
when technology had advanced sufficiently to develop atomically thin layers of carbon, and theory
had predicted that graphene would have novel electronic properties that could yield wide ranging
applications in electronics. In this paper we will perform a basic theoretical analysis of the elec-
tronic band structure and properties of monolayer and bilayer graphene by constructing an effective
Hamiltonian based on the tight binding model - we hope to demonstrate that the methods we have
learned in PHYS 502 are sufficiently powerful to perform an analysis of graphene that reveals several
of the interesting features that it is well known for. We will also provide a brief survey of some
experimental methods used to probe the electron dynamics of graphene in the presence of electric
and magnetic fields.

I. MONOLAYER GRAPHENE

We will begin our theoretical analysis of graphene by
solving for the band structure in a non-interacting Hub-
bard model to obtain an approximate dispersion relation
for monolayer graphene.

FIG. 1: The lattice structure of monolayer graphene.
Lattice vectors are shown as dashed lines, and the mini-
mal unit cell is illustrated as a rectangle surrounding the
two inequivalent sites α and β.

A monolayer of graphene consists of single carbon atoms
placed on a hexagonal “honeycomb” lattice - unit cells
are constructed as shown in Fig. 1, with lattice sites at
~Rnm and lattice vectors:
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So that:

Rnm = ~R0 + n~a1 +m~a2

The isolated carbon atoms have four valence electrons
- though beyond the scope of this paper to show, the
equilibrium electron configuration in graphene is well
known and is illustrated in Fig. 2. The three hybridized
sp2 electrons are strongly bound, and the electrons
that will be actively contributing to the band structure
are those in pz orbitals, giving effectively two valence
electrons per unit cell.

FIG. 2: An illustration of the valence orbital structure
in graphene. Three electrons are tightly bound in hy-
bridized sp2 molecular orbitals, and the fourth is in an
independent pz orbital oriented out of the plane contain-
ing the honeycomb.

We will define γ0 to be the positive hopping parame-
ter (all of the pz orbitals have a positive overlap) for
nearest neighbour carbon atoms. Typical values of γ0
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obtained from experiment or first principles calculations
range from 2.5-3 eV [1]. Assuming (quite fairly) that
there is no difference in on-site energy between the two
sites α and β , our Hamiltonian can now be written as
follows:

Ĥ = −γ0
∑
n,m,σ

β†n,m,σ (αn+1,m,σ + αn+1,m−1,σ + αn,m,σ)

+ h.c.
(1)

Where α†n,m,σ creates an electron with spin σ at Rnm
and β†n,m,σ creates an electron with spin σ at Rnm + ax̂.
Fourier transforming this Hamiltonian by transforming
to a basis of Bloch eigenfunctions:

α†~k,σ
=
∑
n,m

ei
~k·~Rnm
√
N

α†n,m,σ

β†~k,σ
=
∑
n,m

eikxaei
~k·~Rnm

√
N

β†n,m,σ

(2)

We obtain:

Ĥ = −γ0
∑
~k,σ

β†~k,σ
α~k,σ

(
e−ikxa + 2e

ikxa
2 cos(ky

√
3a
2 )
)

+h.c.

= −γ0
∑
~k,σ

f(~k)β†~k,σ
α~k,σ + f∗(~k)α†~k,σ

β~k,σ

(3)

Where f(~k) = e−ikxa + 2e
ikxa

2 cos(ky
√
3a
2 ). It is then

very simple to express our Hamiltonian as a matrix in

the basis α†~k,σ
, β†~k,σ

:

H =

(
0 −γ0f∗(~k

−γ0f(~k) 0

)
(4)

Diagonalizing this Hamiltonian gives eigenbands:

ε±~k
= ±γ0

√
1 + 4 cos(kx

3a
2 ) cos(ky

√
3a
2 ) + 4 cos2(ky

√
3a
2 )

(5)

Plots of this bandstructure are given in Figs. 3 and 4.
Note that there are 6 points (2 unique, and 2 pairs at
the edges of the Brillouin zone that are equivalent by
symmetry) in the Brillouin zone where the energy in the
conduction band meets the energy in the valence band at
0, giving graphene the structure of a gapless semicon-
ductor. The density of states at these so called Dirac
points is zero, which when combined with the zero ban-
dagap gives graphene the properties of a semimetal at

half-filling. Dirac points occur where:

ε~k = 0

=⇒ 1 + 4 cos(kx
3a
2 ) cos(ky

√
3a
2 ) + 4 cos2(ky

√
3a
2 ) = 0

(6)

The two unique solutions appear at kx = 0, ky = ± 4π
3
√
3a

,

momenta which convention dictates we call ~K±. Since
the Fermi level of pristine graphene at half-filling is at
precisely these Dirac points, we’re interested primarily

in the dispersion in the vicinity of the ~K points. Taylor

expanding the dispersion about the ~K+ point:

f(~k) = e−ikxa + 2e
ikxa

2 cos(ky
√
3a
2 )

∂f(~k)

∂kx
= −iae−ikxa + iae

ikxa
2 cos(ky

√
3a
2 )

=⇒
∂f(~k)

∂kx
| ~K+

= −
3a

2
i

∂f(~k)

∂ky
= −
√

3ae
ikxa

2 sin(ky
√
3a
2 )

=⇒
∂f(~k)

∂ky
| ~K+

= −
3a

2

(7)

With this gradient of Hαβ at the origin, we can calculate

an approximate dispersion at a point ~k − ~K = v~k near
the Dirac point:

Hαβ ≈ ∇~kHαβ |~k0 · v
~k

= −
3γ0a

2
(ivkx + vky)

=⇒ ε±~k
= ±

3γ0a

2

√
(vkx)2 + (vky)2

=⇒ ε±~k
= ±

3γ0a

2
|v~k|

(8)

So sufficiently close to the Fermi level, we have a

conical dispersion that is linear in |v~k| This conical
bandstructure approximation near the two “valleys” as
they are often called in condensed matter physics will
be very useful in subsequent sections, making several
problems involving a cumbersome 4-band Hamiltonian
analytically tractable.

These Dirac cones are also interesting in their own right
- a linear dispersion is exactly what the Dirac equation
predicts for massless or ultrarelativistic fermions, as op-
posed to the quadratic dispersion we typically expect for
an electron propagating in free space (or bound near the
Fermi level in a more conventional lattice, like the 1D
chain for example). As you might expect, this leads to
some fascinating properties, several of which will be dis-
cussed in subsequent sections. Of course, right now you
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may be very skeptical of the claims we have made here,
and rightly so, since our model is extremely simple - it
turns out, however, that it has been shown both mathe-
matically [2] and in experiment [3] that graphene does in
fact exhibit a zero bandgap and conical dispersion near
the Fermi level, just as a simple tight binding model has
predicted here in our analysis.

FIG. 3: The band structure of monolayer graphene in
the tight binding approximation, plotted within the first
Brillouin zone.

FIG. 4: Several periods of the band structure of the (+)
band plotted as a heat map in kx and ky. Since the
reciprocal lattice for a honeycomb lattice is also a honey-
comb, the energy levels are “honeycomb periodic”, mak-
ing them look something like an STM image of graphene
when plotted like this - we all thought this was very neat.

II. BILAYER GRAPHENE

Now that we have developed a basic picture of the band
structure and electronic properties of a single layer of
graphene, an obvious question to ask is what happens in
structures of multiple stacked layers of carbon atoms in a
honeycomb lattice. The simplest of these is a layer of two
graphene sheets, depicted in Fig.5. Intuition tells us that
the lowest energy configuration of the nuclei should have
the layers staggered with respect to one another to min-
imize the Coulomb repulsion between layers - Ab-initio
calculations [4] have demonstrated that this is true, and
that the most stable configuration of bilayer graphene is
this so called “AB stacked” or “Bernal stacked” configu-
ration.

FIG. 5: An illustration of the bilayer graphene lattice
with AB stacking. The unit cell is labelled with greek
letters, and the relevant hopping parameters are shown
as a dashed line.

We can construct bilayer graphene on a lattice that is
identical to the monolayer graphene lattice - the differ-
ence now being that the unit cell contains four atoms.
Atoms α1 and β1 are configured precisely as the atoms
α and β were in the monolayer problem, atoms α2 sit a
distance b directly above atoms β1, and atoms β2 sit a dis-
tance b directly above the vacant center of the honeycomb
structures in the monolayer. We will adopt the standard
convention in the literature for labelling the hopping pa-
rameters, and provide their known values from Raman
scattering experiments [5]:

• γ0 ≈ 2.9eV - Between (α1, β1) and (α2, β2)

• γ1 ≈ 0.30eV - Between (β1, α2)

• γ3 ≈ 0.10eV - Between (α1, β2)

• γ4 ≈ 0.12eV - Between (α1, α2) and (β1, β2)
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At first you might be shocked (as were we) that at no
point in this paper will a γ2 appear - this is because
when discussing allotropes of carbon, γ2 and γ5 are
reserved for the two layer hopping from one atom to its
equivalent in AB stacked graphite.

All of these parameters carry a positive sign, and
in writing the Hamiltonian it will be important to note
that the integrals responsible for interlayer hopping are
overlap integrals between pz lobes of opposite phase,
which will introduce a negative sign. We will allow for
some degree of interlayer asymmetry in this model -
that is, the on-site energy will be different for the top
and bottom layers by some amount 2δ. There’s not
any particular reason for this to be the case for pristine
bilayer graphene in the absence of any doping or external
field, but it is a valuable addition to this analysis to be
able to visualize what the effect on the band structure is
for nonzero δ, as we will introduce effects in subsequent
sections that cause this to be the case.

The Hamiltonian can now be written:

H =Hin−plane,1 +Hin−plane,2

+δ
∑
n,m,σ

(
α†1,n,m,σα1,n,m,σ + β†1,n,m,σβ1,n,m,σ

−α†2,n,m,σα2,n,m,σ − β†2,n,m,σβ2,n,m,σ
)

+γ1
∑
n,m,σ

β†1,n,m,σα2,n,m,σ + h.c.

+γ3
∑
n,m,σ

α†1,n,m,σ (β2,n,m,σ + β2,n−1,m,σ + β2,n,m+1,σ) + h.c.

+γ4
∑
n,m,σ

(
α†1,n,m,σ (α2,n,m,σ + α2,n−1,m,σ + α2,n−1,m−1,σ)

+ β†1,n,m,σ (β2,n,m,σ + β2,n+1,m−1,σ + β2,n+1,m,σ)
)

+ h.c.

Where Hin−plane,1 is the Hamiltonian as written for the
monolayer with hopping parameter γ0, and Hin−plane,2

is the same, but for the upper layer in the basis α†2,

β†2.

Fourier transforming into a basis of Bloch eigenfunctions
is deceptively simple in the bilayer case. We can note
that there are only two distinct patterns in the hopping
Hamiltonians - the same sort of tetragonal pattern that
appeared in the monolayer appears, as well as an inverted
tetragonal pattern that will result in a complex conjugate

of the same function of ~k appearing in the Hamiltonian.
The vertical out of plane hopping introduces only a con-
stant to the Hamiltonian, since the two sites are not sep-
arated at all as far as the lattice is concerned. In matrix
form, with a basis (α1, β1, α2, β2), the Hamiltonian be-

comes:

H =


δ −γ0f(~k) γ4f(~k) γ3f

∗(~k)

−γ0f∗(~k) δ γ1 γ4f(~k)

γ4f
∗(~k) γ1 −δ −γ0f(~k)

γ3f(~k) γ4f
∗(~k) −γ0f∗(~k) −δ

 (9)

Where, as we recall from the monolayer analysis,

f(~k) = e−ikxa + 2e
ikxa

2 cos(ky
√
3a
2 )

FIG. 6: The band structure of bilayer graphene in the
first Brillouin zone. Parameters used for this figure: γ1 =
0.8γ0, γ3 = 0.2γ0, γ4 = 0.2γ0, δ = 0

FIG. 7: The band structure of bilayer graphene in the
first Brillouin zone. Parameters used for this figure: γ1 =
0.8γ0, γ3 = 0.2γ0, γ4 = 0.2γ0, δ = γ0

In principle, this Hamiltonian could be analytically di-
agonalized for the eigenbands. This would be very cum-
bersome and not especially educational. The system is
perfectly amenable to being numerically diagonalized in
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MATLAB however, which we have done to Figs. 6 and
7. To produce these plots, we’ve chosen an exaggerated
and unrealistic set of hopping parameters in order to il-
lustrate the features of the band structure clearly - in
reality the lowest and highest energy bands are nearly
degenerate with the two center bands due to the inter-
layer hopping being very weak in comparison to γ0.
If you’re interested in reproducing these figures or ex-
ploring the band structure for different values of the pa-
rameters in the Hamiltonian, source code is provided in
Appendix B.

III. EFFECTIVE HAMILTONIAN OF BILAYER
GRAPHENE

A. Effective four band Hamiltonian near K and K
′

A rigorous Hamiltonian for bilayer graphene has been
derived in the previous section based on the tight-binding
model, which can be used to describe the dispersion for
any wavevector k in the Brillouin Zone. However, we
are more interested in low energy properties which are
dominated by the band structure near the two valleys.
Equation (9) describing nearest neighbor hopping can be

expanded near K and K
′

points to give us:

f(kx, ky) ≈ −
√

3a(τkx − iky)/2 (10)

in which kx, ky are in-plane momenta measured relative
to the valley in question. Here we introduce the notation
τ for the valley degree of freedom, τ = ±1 . τ = +1
represents valley K = (4π/3a, 0), while τ = −1 refers to

K
′

= (−4π/3a, 0). Using this, we can write an approxi-
mate bilayer Hamiltonian:

Hb = δ v0(τkx − iky) −v4(τkx − iky) v3(τkx + iky)
v0(τkx + iky) δ γ1 −v4(τkx − iky)
−v4(τkx + iky) γ1 −δ v0(τkx − iky)
v3(τkx − iky) −v4(τkx + iky) v0(τkx + iky) −δ


(11)

Where we introduce inter-layer coupling con-
stants:

v0 =

√
3aγ0
2

v3 =

√
3aγ3
2

v4 =

√
3aγ4
2

(12)

Knowing how the hopping integrals compare in real AB-
stacked bilayer graphene will allow us to simplify the
Hamiltonian even further. As was stated in section 1,
for Bernal stacked bilayer graphene we have:

γ0 � γ1 > γ3, γ4 (13)

This can be easily understood by noting that the inter-
layer distance a between carbon atoms is larger than the
intralayer separation b in the most stable configuration
of bilayer graphene [3], and γ1 will be significantly larger
than the other interlayer hopping parameters due to a

much larger overlap between the pz orbitals belonging to
atoms that are directly opposite one another. So the in-
terlayer coupling terms v3(τkx ± iky) and v3(τkx ± iky)
in the off-diagonal part of the bilayer Hamiltonian are at
least one order of a smaller than γ1 due to the fact that
kx and ky are small deviations from the K point. In this
case, the bilayer graphene Hamiltonian can be further re-
duced to an even more simplified form, which is known
as the effective four band Hamiltonian around the two
valleys [6].

Heb = δ v0(τkx − iky) 0 0
v0(τkx + iky) δ γ1 0

0 γ1 −δ v0(τkx − iky)
0 0 v0(τkx + iky) −δ

 (14)

B. Effective two band Hamiltonian

In the vicinity of the two valleys, the effective four band
Hamiltonian derived in subsection A can be easily diag-
onalized by hand. Doing this reveals that the two outer
bands are highly localised in a superposition of the α2

and β1 orbitals, often called a dimer site in the litera-
ture. The two inner bands then correspond to atoms
localized at α1 and β2 . Note that these states are en-
tirely decoupled from the dimer sites under our effective
4 site Hamiltonian - the last two elements in the first
row as well as the first two elements in the last row are
zero. If the carrier density is low enough, the two outer
bands make no contribution to the electronic properties
of the system. For zero external field (δ = 0) and small
on-site energy difference, the dispersion for all four bands
is given as follows:

E1 = ±γ1
2

(√
1 +

4v0k2

γ21
− 1

)
(15)

E2 = ±γ1
2

(√
1 +

4v0k2

γ21
+ 1

)
(16)

Where E1 is the dispersion for the inner two bands and
E2 for the outer bands, which can be easily seen by set-
ting k = 0.

For the inner bands:

k � γ1/v0 =⇒ E1 ≈ ±
~2k2

2m∗
, m∗ =

~2γ1
2v20

k � γ1/v0 =⇒ E1 ≈ ±vf~k vf =
v0
~

(17)

Implying that at low carrier density, the inner bands have
a dispersion corresponding to that of a massive fermion
with mass m∗. The Fermi level of a 2D electron gas with
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density N is given by:

kF = (πN)1/2 (18)

Where we have already taken spin and valley degeneracy
into account. k � γ1/v0 corresponds to a density
N∗ = 8.72 × 1012cm−2 [7]. The carrier density N∗

is relatively high in experiments even with electrical
doping, so the conditions we have assumed are justified
in most natural situations. We can make a simple
estimation to justify this as well - a typical capacitance
for 300nm thick silicon dioxide is roughly 10−10F/cm2,
which means it can host an electron density of 1012cm−2

under 100V , which is usually comparable to or beyond
the breakdown voltage of a typical device used in
experiments, so it is fair to assume that the two high
energy bands can be neglected when exploring low
energy properties.

Combining these approximations, a much more ef-
ficient way to describe the bilayer Hamiltonian at
low energy is to eliminate the dimer site components
completely, reducing our Hilbert space to the space
spanned by non-dimer sites α1 and β2. The basic idea
is to project the effective four band Hamiltonian onto
this non-dimer site basis. If we ignore the on-site energy
difference and v3 ,v4 contributions, we get an effective
two band Hamiltonian describing the two center bands
at a K valley. The detailed procedure is just a matter
of linear algebra, and is expanded upon in Appendix
A.[8]

Heff = − ~2

2m

(
0 (π†)2

(π)2 0

)
+ δ

(
1 0
0 −1

)
π = kx + iky

(19)

FIG. 8: The effect of the warping term Hw will be to
distort the circular iso-energy lines, reducing them to
a three-fold triangular symmetry. The strength of the
warping term has been exaggerated for the purpose of
illustration.

It should be noted that the effective two band Hamilto-
nian derived above is based on the simplest four band
Hamiltonian, which can be viewed as a zero order ap-
proximation. If we take the inter-layer coupling v3 into
account and use the same procedure, there will be a first
order correction near the K valley,

Hw = v3

(
0 π
π† 0

)
(20)

The effect of this Hamiltonian correction is a trigonal
warping of the bandstructure’s iso-energy lines as shown
in Fig. 8.

C. General solution of the Two Band Effective
Hamiltonian

In this subsection, we are going to discuss the general
solutions of biased bilayer graphene based on the effective
two band Hamiltonian. At the K valley,

Heff =

(
δ −v

2
0

γ1
k2e−i2φk

−v
2
0

γ1
k2ei2φk −δ

)

k =
√
k2x + k2y

φk = tan(ky/kx)

(21)

The general solution of this 2 × 2 Hamiltonian is E =

±
√
δ2 +

v40
γ2
1
k4 with corresponding eigenstates in the con-

duction band and valence band [7]:

|c, k〉 =

(
cos( θk2 )

sin( θk2 )e2iφk

)
|v, k〉 =

(
sin( θk2 )e−2iφk

cos( θk2 )

)
(22)

where cos θk = δ√
δ2+

v40
γ21
k4

Because we’re operating in the

basis (α1, β2), each component in the wave function rep-
resents the probability amplitude for an electron to be
found in the top layer or bottom layer of bilayer graphene,
i.e. one conduction band electron with a wave vector
(kx, ky) could be found in the top layer with a probabil-

ity cos2( θk2 ).

IV. TUNABILITY OF BILAYER GRAPHENE’S
BANDGAP

Although graphene’s characteristic zero bandgap has lim-
ited its application for electronics, it has been proven pos-
sible to open a bandgap in bilayer graphene. Successful
experimental attempts include one side chemical doping
[9, 10], single electrical gate tuning [11, 12] and dual gate
tuning [13]. Notably, employing a dual external gate con-
figuration, a controllable doping can be achieved with a
widely tunable bandgap can be demonstrated.
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FIG. 9: Band diagram of bilayer graphene with δ 6= 0. (a)
The “Mexican-hat” shape band diagram. (b) A bandgap
∆ opens up.

A. Band structure with interlayer asymmetry

Pristine bilayer graphene, similar to its monolayer coun-
terpart, is gapless with lower energy bands touching each
other at K and K ′.. However, either asymmetric doping
or a vertically applied electric field can lead to an asym-
metry between the top and bottom layers, since there
is now a gradient in potential between the top and bot-
tom layers, which can give a nonzero relative on-site en-
ergy 2δ. We can obtain the band structure in this case
by solving exactly the four band effective Hamiltonian
Eq.14. Writing the energies as E = ±En, n = 1, 2, we
obtain,

E2
n =

γ21
2

+ δ2 + v20k
2 + (−1)n

√
Ω (23)

Ω =
1

4
γ41 + v20k

2(γ21 + 4δ2) (24)

where τ = ±1 denotes the Kτ valley, k =
√
k2x + k2y and

φk = arctan(ky/kx). Lower energy bands ±E1 represent
the interlayer coupling between non-dimer sites α1, β2.
Higher energy bands ±E2 are related with the coupling
γ1 between the orbitals on the dimer sites α2, β1. The
asymmetry 2δ would yield a band diagram like the one
shown in Fig. 9(a), in which a “Mexican-hat” shape ap-
pears for the lower bands. Apart from the change in band
shape, a bandgap ∆ opens up,

∆ =
|2δ|γ1√
γ21 + 4δ2

. (25)

It’s worth noticing that for large interlayer asymmetry
values |2δ| � γ1, the bandgap goes to the limit γ1, whose
value is typically around a few hundred meV. The opened
bandgap is illustrated in Fig. 9(b).

B. Self-consistent tight-binding

As mentioned in the previous subsection, an external
applied potential could be an effective tool for control-
ling the interlayer asymmetry 2δ. However, apart from
this contribution, changing the vertically applied exter-
nal field will also induce doping in graphene devices,
changing the electron density N . This is called a screen-
ing effect, as with extra charges accumulating on both
graphene layers, the electrons on them will not only feel
the field caused by the gates, but also a field produced
by the difference in charge between layers. Because of
this effect, the interlayer on-site energy asymmetry as
well as the bandgap will be altered and take a somewhat
more complicated form when expressed as a function of
gate voltage than what we would expect without any
screening considered. In this section, making use of the
effective Hamiltonian derived previously, we will investi-
gate the functional dependence of the bandgap in bilayer
graphene to an applied external field.
Based on the general solutions of the effective two band
Hamiltonian, intuitively, the number of electrons per unit
area could be directly computed by multiplying the den-
sity of states at a value of k with the states occupation
probability[14], to get

N = g

ˆ
Ψ†(k)Ψ(k)

kdkdθ

(2π)2
(26)

In bilayer graphene, we have good quantum numbers τ
and σ corresponding to spin and valley degrees of free-
dom, making the degeneracy factor for a given k, g = 4.
For the upper layer, the electronic wave function in the
conduction band is |c1, k〉 = cos θk2 . According to this
solution, conduction band electron density in top layer is
given by:

N cb
t =

1

π

ˆ kF

0

kdk +
1

π

ˆ kF

0

cos θkkdk

=
N

2
+
Ncδ

2γ1
ln(

Nγ1
Ncδ

+

√
1 + (

Nγ1
Ncδ

)2)

Nc =
γ21
πv20

(27)

Unlike the conduction band, the valence band is normally
fully filled in the ground state. In order to compute an
electron density contribution from the valence band, we
can note that there is a wave vector cut off kc beyond
which effective two band Hamiltonian fails. This is ex-
actly the point where parabolic dispersion and linear dis-
persion cross with each other at kc = γ1/v0, as discussed
in section 3A. If we assume that we can only transfer
electrons across layers that do not break the assumptions
that made our two band Hamiltonian valid, the top layer
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valence band electron density reads:

Nvb
t =

1

π

ˆ kc

0

kdk − 1

π

ˆ kc

0

cos θkkdk

=
Nc
2
− Ncδ

γ1
ln

(
γ1
δ

+

√
1 + (

γ1
δ

)2
) (28)

Similarly, we get bottom layer conduction band and va-
lence band electron density.

N cb
b =

N

2
− Ncδ

2γ1
ln

(
Nγ1
Ncδ

+

√
1 + (

Nγ1
Ncδ

)2

)

Nvb
b =

Nc
2

+
Ncδ

γ1
ln

(
γ1
δ

+

√
1 + (

γ1
δ

)2
) (29)

We will only examine pristine, charge neutral graphene
with N = 0. In the ground state, we then have zero
electron density in the conduction band, and the total
valence band electron density is Nc = k2c/π, where we
are assuming the only electrons available to interact with
the external field are those near the Fermi level in the
vicinity of kc. In an external field, the electrons will re-
distribute along the interlayer axis. Forcing a portion
of the electrons n∗ from the lower layer’s valence band
to the upper layer’s valence band in this way creates a
nonzero net charge for the individual layers. In this case,
if we denote the externally applied electric displacement
as Dext, the elementary charge to be e, the spacing be-
tween the two graphene layers to be b as before, and the
dielectric constant for the space between the layers to be
εBLG, then the difference in potential energy between the
two layers satisfies the following equation:

2δ =
Dexted

εBLG
− n∗e2d

εBLG
(30)

where net charge density is

n∗ =
Ncδ

γ1
ln

(
γ1
δ

+

√
1 + (

γ1
δ

)2
)

(31)

The interlayer asymmetry 2δ is then invariably less than
it would be in the case where the layers are not charged,
leading us to refer to this as a screening effect. Finally,
this effective two band tight binding model leads to a
self consistency equation, from which we can get quan-
titatively bandgap with variable external displacement
field,

2δ +
Ncδ

γ1
ln

(
γ1
δ

+

√
1 + (

γ1
δ

)2
)

e2d

εBLG
=
Dexted

εBLG
(32)

We can finally calculate the bandgap in the regime of the
two band effective Hamiltonian,

∆ = 2δ (33)

As Fig. 10 shows, a tunable bandgap as large as 250meV
has been achieved in previous experiments [13]. For com-
parison, we have used three different methods of theoret-
ical computation to generate the bandgap ∆ as a func-
tion of Dext, plotted in Fig. 10. Compared with the
unscreened result, the self-consistent screening method
fits very well to experiments in the low field regime. In
the intermediate and high field regime, the dispersion re-
lation is not accurate any more because we expect the
bandgap to begin to saturate as it approaches γ1. This is
perfectly intuitive - as we begin to pull electrons from one
layer to the other that are far from the K points, our two
band approximation should fall apart. What is happen-
ing mathematically is that we assumed a maximum elec-
tron density 5×1012cm−2, much smaller than the typical
values on the order of 1019cm−2 in real bilayer graphene.
Full range fitting requires a self-consistent tight binding
method based on the full, four band Hamiltonian.

FIG. 10: Comparison of our theoretical calculations in
the two band and four band regimes with experimental
results. Experimental results from [13] are plotted in cir-
cles. The blue line represents the results produced in
our analysis in the preceding section, using a screening
function and bandgap consistent with the two band ef-
fective Hamiltonian. The red line represents the result
when we use the screening function calculated for the
two band Hamiltonian, and a bandgap consistent with
the four band Hamiltonian.

V. OPTICAL PROPERTIES OF BILAYER
GRAPHENE

A. Pseudospin Texture

As we have already discussed in Sec.III.C, the eigenvec-
tors for our effective two-band Hamiltonian are:

|c, k〉 =

(
cos( θk2 )

sin( θk2 )e2iφk

)
|v, k〉 =

(
sin( θk2 )e−2iφk

cos( θk2 )

)
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Under our low energy two-band approximation, the
eigenstates in the conduction band and valence band
state resemble the form of a spinor, which is pointing
along ~n = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). This is
often called a pseudospinor - the difference between
this pseudospinor and the spinors that we’re familiar
with (especially those of us currently in PHYS500)
is that the angles determining the direction of the
pseudospinor are in k-space rather than real space, and
that there is a factor of two in the phase e2iφk . As

shown in Fig. 11, when the parameter ~k = (kx, ky)
rotates counter-clockwise around the K valley by an
angle 2π, the pseudospin actually rotates by 4π in
the same direction, giving a winding number ω = 2,
similar to orbital angular momentum. The concept of
pseudospin is more than just a mathematical oddity, and
has measurable physical consequences. The conduction
and valence band pseudospinors are linear combinations
of the two non-dimer site basis states. The pseudospin
up state pointing out of the interlayer axis corresponds
to electrons residing exclusively on site α1, and similarly
the pseudospin down state corresponds to electrons
residing exclusively on site α2. For zero interlayer
asymmetry, the electrons are equally distributed on
these two sites, making the pseudospin lie parallel with

the graphene plane, rotating with ~k = (kx, ky).

FIG. 11: Projection distribution in kx and ky plane. If
the parameter (kx, ky) rotates about the origin by 1 cycle,
the pseudospin rotates by 2 cycles corresponding to a
winding number ω = 2 [15].

So far, all calculations have been performed near the K
valley - for the K

′
valley, the pseudospin winding num-

ber is ω − 2, meaning (in a semiclassical sense) that the
pseudospin rotates in a direction opposite to that of the
K valley. This indicates the presence of some kind of
chiral fermions in bilayer graphene.

B. Excitonic states in biased bilayer graphene

Excitons are composed of an electron-hole pair bound
through the Coulomb attraction, and are widely un-
derstood in conventional semiconductors such as GaAs.
The widely (several hundred meV) electrically tunable
bandgap in bilayer graphene opens a new opportunity to
study excitonic states in this system. In recent years, ex-
citons in biased bilayer graphene have been observed via
Fourier transform spectroscopy. [16].

(a) Microscope image of a
bilayer graphene device

(b) Scheme of bilayer
graphene based FTIR

(c) A typical FTIR mea-
surement result

(d) Absorption spectrum
of bilayer graphene

FIG. 12: Observation of a p-state exciton in biased bi-
layer graphene, giving strong evidence for a pseudospin
winding effect[16].

As shown in Fig. 12(a), a piece of bilayer graphene is
encapsulated by two layers of h-BN with two electrodes
(source and drain) measuring a photo-current. The back
gate can be used to tune free carrier densities while the
top gate applies a vertical electric field to open a bandgap
in near infrared to mid infrared frequencies. An FTIR
spectrum is used to measure bilayer absorption as shown
in Fig. 12(b). After propagating through the Michelson
interferometer with delay τ , the light is incident on the
graphene sample with an intensity:

I(τ) = ξ21 + ξ22 + ξ1ξ2(e−2ikλcτ + e2ikλcτ ) (34)

As you can see, there are two D.C. terms, as well as
a term oscillating with frequency 2kλ. There will be a
strong photo-current detected if bilayer graphene absorbs
at a wavelength that will generate electron-hole pairs, due
to the biased voltage between source and drain dissociat-
ing excitons into free carriers. The photo-current will be
proportional the absorption coefficient, resulting in the
equation:
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j(τ) =

ˆ
[ξ21(kλ) + ξ22(kλ) + ξ1(kλ)ξ2(kλ)(e−2ikλcτ

+ e2ikλcτ )]α(kλ)dkλ

(35)

FIG. 13: Zeeman effect of excitonic peak[16]

In experiments, one can make ε1(kλ) and ε2(kλ) nearly
independent of kλ with the right choice of light source
and mirrors, which means that the absorption coefficient
for the sample at a given wavelength will be recorded as
the Fourier component for frequency kλ. The absorption
spectrum can then be constructed simply by Fourier
transforming the so-called ”interferogram” collected by
measuring the photocurrent. As shown in Fig. 12(c)
and 12(d), the absorption spectrum of bilayer graphene
shows two excitonic peaks within the bandgap.

Surprisingly, bilayer graphene’s absorption spectrum
indicates that absorption lines for p-like excitons (with
` = 1) are very intense, while in conventional quantum
wells like GaAs, the selection rule forbidding these
p-like transitions is very strict. Although a quantitative
description of this drastic difference requires a deeper
analysis than we can justify including in this paper,
we can still develop a qualitative understanding of this
phenomenon based on the effective two band model and
our understanding of pseudospin texture developed in
the previous section.

It turns out the winding pseudospin is equivalent to an
internal orbital moment along z direction, correspond-
ing to a magnetic momentum ±2. In the formation
of electron-hole pairs, angular momentum must be con-
served, so the sum of the electrons internal angular mo-
mentum and the angular momentum of the photon is
equal to the angular momentum of the exciton envelope

wave function.[16]

menv = mpseudospin +mphoton (36)

For the K valley we have mpseudospin = +2, which can
couple with left handed photons with mphoton = −1,
making the creation of a p-state exciton optically
allowed. This has been verified both experimentally, and
with much more theoretical rigor in [17].

In the presence of a magnetic field, this transition splits
into two Zeeman components as shown in Fig. 13.
This confirms that the excitation is p-like, and that
the internal magnetic moment must be contributed by
pseudospin- the conduction band and valence band are
both composed of pz orbitals with zero angular momen-
tum projection on the z axis, and electron and hole pairs
have opposite spin. We also observe in these experiments
that the s-type exciton transitions are not strictly for-
bidden - this can be shown to be a consequence of the
trigonal warping term.[16]

VI. LANDAU LEVELS IN BILAYER
GRAPHENE

In this section, we will briefly discuss solutions of the
electronic Hamiltonian in bilayer graphene under a strong
magnetic field. In a conventional 2D electron gas system,
the conductivity tensor component σxy perpendicular to
the in-plane electric field shows a step function like de-
pendence on a strong out of plane magnetic field, a phe-
nomenon known as the integer quantum Hall effect. The
step space is precisely 2e2/h - for a detailed analysis of
the integer quantum hall effect, see Philipp, Simon, Jun,
and Aly’s project from last year - we found it very help-
ful. The integer quantum hall effect has been observed
in monolayer and bilayer graphene. [18]. Based on the
two band effective Hamiltonian of bilayer graphene in the
low energy approximation Eq.19, electrons in a magnetic
field Bẑ are described by a Hamiltonian:

H =
1

2m

(
0 P 2

−
P 2
+ 0

)
(37)

where P+ = ~kx + i~ky − ieBx = P †− when we choose
the Landau gauge with vector potential A = (0,−Bx, 0).
The commutator relation between P+ and P− is:

[P−, P+] = −2~eB (38)

In this case, the energy spectrum is given by,

E2 =
1

4m2
P−P−P+P+

=

(
P−P+

2m

)2

− ~ωB
P−P+

2m

(39)
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where ωB = ~eB
m ; the energy spectrum of P−P+

2m is:

P−P+

2m
=

~2k2x
2m

+
(~ky + eBx)2

2m
− 1

2
~ωB = l~ωB

l = 0, 1, 2, 3...

(40)

When we substitute Eq. 40 into the eigen-equation for
the bilayer spectrum, we obtain:

El,± = ±~ωB
√
l(l − 1), (41)

We notice that there are two main differences compared
with conventional Landau levels in a 2D electron gas.
First, in the bilayer system, there are energy bands cor-
responding to both an electron gas and a hole gas. Sec-
ondly, the ground state is doubly degenerate in orbital
angular momentum, having the same energy for l = 1
and l = 0. After considering spin and valley degener-
acy, the total degeneracy factor for the ground state is
g = 8. This results in an unusual quantum Hall effect in
bilayer graphene, with an unconventionally large step in
the conductance at zero carrier density, as shown in Fig.
14.

FIG. 14: Quantum Hall effect in bilayer graphene. Step
spacing at zero density is ∆σ = 8e2/h [19].

VII. CONCLUSION

The study of bilayer graphene systems has been a fron-
tier in condensed matter physics for nearly two decades.
One of the most valuable and important properties of
graphene is the electrically tunable bandgap we intro-
duced in this paper - a semiconductor with a tunable
bandgap could have powerful and far-reaching implica-
tions in electronics. New degrees of freedoms such as
valley and pseudospin cause a broad range of emergent
phenomena in this system, and are exciting potential
new avenues for storing and manipulating information

in quantum systems. What is most fascinating is that
our relatively simple theoretical analysis based on the
tight binding model provides a very accurate description
of the electronic behavior of graphene in electric and
magnetic fields, due mainly to electrons in the graphene
system generally having weak correlations, making the
non-interacting Hamiltonian a very good approximation
in all but the most obscure cases.

Graphene still has many secrets to hide, however -
recently, the study of graphene has been pushed into a
new era after the recent observation of unconventional
superconductivity in twisted bilayer graphene in 2018.
[20] Condensed matter physicists are hopeful that if the
mechanism leading to superconductivity in graphene
could be understood, it would lead to us having a better
understanding of unconventional superconductivity in
other materials, potentially leading to a revolution in
modern technology.

Appendix A: Effective two band Hamiltonian[8]

The effective four band Hamiltonian around K point can
be rewritten as

Heb =

(
H11 H12

H21 H22

)
(A1)

In the basis (α1, β2, α2, β1)T , the four 2 × 2 blocks
are:

H11 =

(
−δ 0
0 −δ

)
H12 =

(
0 v0π

†

v0π 0

)

H21 =

(
0 v0π

v0π
† 0

)
H22 =

(
−δ γ1
γ1 δ

)
We assume l = (α1, β2)T corresponds to the inner bands
while h = (α2, β1)T represents the outer bands. The
stationary Schrodinger equation is now reduced to(

H11 H12

H21 H22

)(
l
h

)
= E

(
l
h

)
(A2)

We can write this as a system of linear equations for h
and l

h = (E −H22)−1H21l (A3)

(H11 +H12(E −H22)−1H21)l = El (A4)

It should be pointed out that effective two band Hamil-
tonian approximation is only justified in the low energy
regime, γ1 � E. So that compared with H22 , the eigen-
value can be omitted on the right side of equation (A4)
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. The final form of the effective two band Hamiltonian
is:

Heff = H11 −H12H
−1
22 H21 (A5)

Appendix B: MATLAB Source Code - Diagonalizing
Full Hamiltonian

%Appendix B - bilayerg.m
%Bradley Guislain
%Numerically diagonalizes tight-binding
%Hamiltonian for bilayer graphene.

clc;
clear;

%Construct k-space grid
kx = [-2.1*pi/(3):0.01:2.1*pi/(3)];
ky = [-2.1*pi/sqrt(3):0.01:2.1*pi/sqrt(3)];

%Define hopping parameters
t0 = 1;
t1 = 0.8;
t3 = 0.2;
t4 = 0.2;

%Interlayer asymmetry
U = 0;

%Realistic parameters
%t1 = 0.381/3.16;
%t3 = 0.38/3.16;
%t4 = 0.14/3.16;

%Diagonalizing:
for n = 1:length(kx)

for m = 1:length(ky)

f(n,m) = exp(-i*kx(n)) + ...
2*cos(sqrt(3)*0.5*ky(m))*exp(0.5*i*kx(n)/2);

u = f(n,m);
v = conj(f(n,m));

H{n,m} = [U,-t0*u,t4*u,t3*v;...
-t0*v,U,t1,t4*u;...
t4*v,t1,-U,-t0*u;...
t3*u,t4*v,-t0*v,-U];

E{n,m} = eig(H{n,m});
Emat = E{n,m};

for k = 1:4
bands{k}(n,m) = Emat(k);

end
end
end

%Plotting:
figure(1)
hold on
for k = 1:4

band = bands{k};
surf(ky,kx,band)
shading interp
colormap jet

end
xlabel(’k_ya’)
ylabel(’k_xa’)
zlabel(’E/\gamma_0’)
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