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I. INTRODUCTION

A wealth of information about the electronic structure
of a material can be obtained through measurements of
its photoelectrons—the electrons that are excited by in-
cident photons and emitted into the vacuum by the pho-
toelectric effect. The electronic energy states of the ma-
terial can be probed by tuning the energy of the incident
photons and by studying a range of photoelectron ener-
gies, as made clear in Eq. 1,

Ekin = hν − φ− |EB | (1)

where Ekin is the photoelectron kinetic energy, hν is the
photon energy, φ is the material work function, and EB
is the electron binding energy inside the material.

The field of PhotoEmission Spectroscopy (PES) be-
gan in the relatively high energy range, using 1.5keV X-
rays to explore the binding energies of core electrons in
materials. Those experiments, conducted in the 1950s,
successfully mapped out inner orbital energies of a vari-
ety of materials by only measuring the kinetic energy of
the photoelectrons.[1] The clear peaks in their Ekin data
corresponded to the binding energies of 1s, 2s, 2p,... or-
bitals, and is illustrated by peaks labelled ‘Core Levels’
in Fig. 1).

PES has since branched into multiple sub-fields and
techniques, and the one we focus on here is known for
its relatively direct means of measuring valence elec-
tron dispersions in solids. The technique—Angular Re-
solved PhotoEmission Spectroscopy (ARPES)—is based
on making precision measurements of both the photo-
electrons’ kinetic energies and their angular distribution.
The momenta of the photoelectrons propagating in the
vaccuum carry information about the electron momenta
within the material, and are encoded in the photoelec-
trons’ propagation angle in θ and φ. Thus by simulta-
neously measuring their kinetic energy and propagation
angle, one can infer the momentum and energy of elec-
trons in the material and thereby map out the electronic
band structure—E(k).[2] These dispersions are crucial for
studying and explaining material properties. Some novel
materials studied with this technique include unconven-
tional superconductors, topological insulators, graphene,
and more.

II. EXPERIMENTAL TECHNIQUE

ARPES begins with a light source - typically a laser
or gas-discharge lamp that produces photons with en-
ergy high enough to overcome the work function of the

FIG. 1: Photoemmission energies - (lower left) valence bands
and orbitals in the sample, with yet undefined variables E0,
the bottom of the valence band, and Ev, the vacuum level
energy i.e. EF + the work function. (upper right) example
measured photoelectron spectrum.(source [2])

material, and eject the electron with high Ekin. The
work function of most materials are 3− 6eV , which lies
in the ultraviolet range of the electromagnetic spectrum,
so photons with energies in the range of 20 − 40eV are
typically selected for ARPES. One of the most common
sources is a helium lamp. In this source, a fraction of the
helium gas is ionized and the positive ions are accelerated
to the negative electrodes by an electric field. In the sub-
sequent collisions, transfer of electrons between a neutral
atom and an ion emit a discrete spectra of photons. A
monochromator then selects the desired photon energy
and sends it down the capillary towards the sample for
photoemission.[3]

Electrons are emitted in all directions from the sample,
and are collected by a nearby electronic lens that colli-
mates the electron beam and decelerates it. The elec-
trons are then sent to the hemispherical analyzer. The
analyzer’s slit selects the angular rat of the electrons col-
lected, and the hemispherical capacitor’s voltage can be
tuned to select a specific range of energies. Electrons
with too much or too little kinetic energy are absorbed by
the walls, and do not make it to the multi-channel-plate
(MCP) where the electrons are detected. The analyzer
then backward-transforms the position of the electron on
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FIG. 2: Photoemission geometry - the angles θ and φ are de-
fined with respect to the sample surface. The sample orien-
tation on the mount is typically aligned via Laue diffraction.

the MCP to determine the energy of the electron as a
function of the angular distribution. The angle informa-
tion is related to the momentum by the following simple
relations[2]:

kx =
1

h̄

√
2mEkin sin(θ) cos(φ)

ky =
1

h̄

√
2mEkin sin(θ) sin(φ)

kz =
1

h̄

√
2mEkin cos(θ)

(2)

The sample mount is equipped with movement in the
x, y, and z directions, as well as rotation in θ and φ.
These degrees of freedom can be used to determine the
high symmetry points of the material. By mapping the
energy at kx and ky, one can reconstruct the 3D elec-
tronic volume, the top face of which gives the fermi sur-
face. Band structure can be obtained simply by taking
cuts of the volume at particular kx or ky values.

FIG. 3: Raw ARPES data of a topological insulator (bismuth
selenide) taken with a helium lamp with 21eV photon energy,
showing energy as a function of angle (θ). The top half of the
Dirac cone - the surface states - are clearly visible, along with
parts of the bulk conduction and valence bands. At 4K, the
Fermi edge is sharp and can be used to determine the energy
resolution of the system ( approx. 2meV).

A. Experimental challenges and tr-ARPES

While ARPES is a powerful technique, it is an ex-
tremely sensitive one, and experimentally challenging to
implement. The trajectory of the electrons are easily dis-
turbed by extraneous fields, so the response function of
electrons, which are often of interest, are beyond the abil-
ities of this technique. Furthermore, photoelectrons are
emitted generally within 1nm of the surface, so the sur-
face of the sample must be kept extremely clean, which
requires the sample to be cleaved in ultra-high-vacuum
(UHV). Even at pressure levels of 10−11 torr, samples
last no more than a few days, and the quality of the data
degrades over this time frame. The flatness of the sample
also limits the angular resolution of the data, this some-
times requires multiple cleaves, and no small amount of
luck. To overcome this, a laser could be used instead
of a lamp. The spot size of the laser is typically much
smaller than that of the lamp, and gives better angu-
lar resolution when focused onto a “nice” place on the
sample. Use of a laser is atypical, however, since it is dif-
ficult to make lasers with photon energies large enough to
overcome the workfunction. Non-linear crystals can be
used in sum-frequency generation to produce UV photons
( 4eV ). However, although it is difficult, development of
laser sources for ARPES is important, as it gives the abil-
ity to resolve electron dynamics in the material on time
scales of 100fs. Electronic relaxation dynamics provide
a host of information about the material, and can find
application in ultrafast optical control systems.

III. DATA ANALYSIS AND THEORY

A. Three step model

The photoemission process of one electron is evaluated
as three separate processes:

1. Optical excitation of electron in the bulk of the
material

2. Travel of the excited electron to the surface

3. Escape of electron to vacuum

The first step describes the total probability for an op-
tical transition to occur due to the incident photon, and is
dependent on the wavefunction overlap of the initial and
final states. The second describes the scattering proba-
bility of an excited electron travelling to the surface by
using an effective mean free path formalism. Lastly, the
escape of the electron into vacuum is computed by the
tunneling effect and depends on the energy of the excited
electron and the material work function φ.

All relevant information about the band structure,
which is of interest, is encoded in the first step, which
is outlined in detail here. We begin by using Fermi’s
golden rule to compute the transition probability for the
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optical excitation between the N-electron ground state
ΨN
i and one of the possible final states ΨN

f :

wfi =
2π

h̄
· | 〈ΨN

f |Hint|ΨN
i 〉 |2 δ(ENf − ENi − hν)

with ENi = EN−1i − EB(~k)

and ENf = EN−1f + Ekin.

The perturbative Hamiltonian can be found by applying
the minimal coupling of the electromagnetic field to the

system and by neglecting the term proportional to ~A2:

Hint =
e

2mc
( ~A · ~p+ ~p · ~A) =

e

mc
~A · ~p

In this Hamiltonian, we have fixed the Φ = 0 gauge, and

used the dipole approximation ~∇ · ~A = 0, in which the

operators ~A and ~p commute. Although this assumption
may not hold at the surface, it is a phenomenological
description and works well in most experiments.

Our first goal is to rewrite the final state,

ΨN
f = Aφ~kf ·ΨN−1

f .

The operator A is an antisymmetric operator which en-
sures that the Pauli principle is obeyed. The state
ΨN−1
f = ΨN−1

m is an excited state of the system with

energy EN−1m and an eigenstate to the (N − 1)-particle-
Hamiltonian. In writing the final wavefunction this way
we make use of the sudden approximation, which states
that an electron is instantaneously removed from the
system and the effective potential changed discontinu-
ously. This approximation is generally valid for ARPES,
in which the electron possesses sufficiently high energy to
escape into the vacuum on time scales shorter than the
system response time.

The initial state can be approximated using the
Hartree-Fock formalism, in which we ignore interactions
and write the wavefunction as the product of the pho-

toemitted electron orbital φ
~k
i and the (N − 1)-particle

Slater determinant,

ΨN
i = Aφ~ki ·ΨN−1

i .

It remains to note that ΨN−1
i is in general not an

eigenstate to the (N-1)-particle Hamiltonian, because

it can be displayed as ΨN−1
i = c~kΨN

i , where c~k is the

one-particle annihilation operator for the momentum ~k.

The full transition probability is then the sum over all
possible final states and separates into a product of two
parts,

wfi = |M~k
fi|2 ·

∑
m

|cmi|2 δ(Ekin + EN−1m − ENi − hν)

and the measured intensity at the detector is therefore
proportional to the total number of transitions made,

I(~k,Ekin) =
∑
f,i

wfi (3)

which is a sum over all possible initial and final states.
The final formula consists of the one-electron dipole

matrix element M
~k
fi = 〈φ~kf |Hint|φ

~k
i 〉 and the (N-1)-

electron overlap integral cmi = 〈ΨN−1
m |ΨN−1

i 〉. The
coefficients |cmi|2 can be interpreted as the probability
that the removal of an electron from the initial state i
leaves the (N-1)-particle system in an excited state m.

B. Data and modelling

Information about the band structure is encoded in the
|cm,i|2 terms. We define

A−(k, ω) :=
∑
m

|cm,i|2δ(ω − EN−1m + ENi )

=
1

π

−Σ′′

[ω − EN−1m + ENi − Σ′]2 + [Σ′′]2

(4)

where ω = hν − Ekin = φ+ |EB | is the absolute value
of the bound electron’s energy (measured from the Fermi
surface) before photoexcitation. This function A− is
called the one-particle spectral function, and is related
to the imaginary part of the one-particle Green’s func-
tion. It can also be written in terms of the electron’s self
energy Σ. (Details in Appendix.)

We can now write an expression for the ARPES inten-
sity (what we measure in experiments)

I(k, ω) = I0(k, ν,A)f(−ω)A−(k, ω) (5)

where I0 is proportional to the one-particle matrix ele-
ments, and the Fermi function f(−ω) ensures only states
below EF are photoexcited. The interesting behaviour
comes from the spectral function A−, since it is a sum of
δ-functions.

We begin with the Hartree-Fock formalism, and ap-
proximate the electrons as non-interacting. Removing an
electron then, leaves the system in an (N − 1)-electron
eigenstate (it will still be a Slater determinant). Taking
the inner product, we see that only a single cm,i term is
nonzero and I(k, ω) ∝ δ(ω−|εbk|), where εbk is the energy
of the photoelectron excited from some band b (see LHS
of III B). Repeating this process allows one to map out
the entire band structure.

Adding electron-electron or el-ph interactions means
that the final wavefunction will no longer be an eigen-
state of the system. Taking the inner product give more
than one non-zero cm,i coefficients, which amounts to a
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FIG. 4: LHS: Delta function spectrum of non-interacting elec-
trons. RHS: Broadening of spectrum do to el-ph or el-el in-
teractions. Notice a coherent ‘main peak’ remains.

broadening of the spectral function. However, if the no-
tion of quasiparticle is still valid (i.e. Fermi liquid), we
will still have a main peak. We call this the coherent
spectral weight, while the incoherent spectral weight cor-
responds to everything else (see RHS of III B). The form
of the coherent spectral weight is

A−coherent(k, ω) = Zkδ(ω − |εk|) (6)

where εk is the energy of the Fermi liquid quasi particle
and Zk is the quasiparticle strength. This Zk can be
extracted from integrating over the intensity peak, and
is a relatively good measure of the correlation in a given
system.

Zk =

∫
Acoherent(k, ω)dω (7)

In practice, identifying the coherent piece of the spec-
trum depends on the nature of interactions. If Aincoherent

originates from gapped excitations, e.g. coupling be-
tween electrons and optical phonons, the coherent part is
well separated from the incoherent tail, and the analysis
is relatively easier (as shown in the Holstein example be-
low). But if Aincoherent is due to gapless excitations, e.g.
electron-hole pair creation, the coherent part is harder to
isolate. Other methods are required in this case and we
briefly discuss this in the YBCO example below.

1. Holstein Hamiltonian example

Using many-body theory, one can calcualte A− for the
1-D Holstein model, as done in [4].

H =
∑
k

εbkc
†
kck + Ω

∑
q

b†qbq +
g√
N

∑
k,q

c†k−qck(b†q + b−q)

at various levels of the coupling λ = g2/2tΩ (see Figure
5 ). Here εbk = −2t cos(ka). At λ = 0, we only have spec-
tral weight, so that A− exactly follows the bare electronic
band εbk. At λ = .1, the band is renormalized into a quasi-
particle band εqk; for ω > this band, we have incoherent

FIG. 5: Spectral function for various levels of el-ph coupling
(λ) in 1D Holstein. The weight surrounding the quasiparticle
band (top) is coherent; the remaining weight is incoherent.

weight that smears the λ = 0 spectral line. As λ → ∞,
the amount of coherent weight goes to zero and the no-
tion of quasiparticle vanishes. We also see the phonon
excitations as bands appearing below the quasi-particle
band.

2. YBCO cuprate

When we have gapless excitations causing strong cor-
relations, as in the high-Tc cuprates, we cannot find
A−coherent by looking at the isolated, main peak. In YBCO
– one of the most studied cuprates due to its high purity
level – Zk can be calculated using a combination of exper-
iment and density functional theory (in the figure below,
what is measured is the splitting between two cuprate
bilayers). By doping the cuprate, electronic correlations
can be weakened, so that Zk increases. For low-doping,
Zk ≈ 0, and the quasiparticle picture breaks down; but
after sufficient doping, Zk lifts and Fermi liquid theory
can be applied. See references within [2] for sources of
data.

FIG. 6: (c): The spectral function A−, at the Fermi surface,
as a function of energy. (d): The coherence factor Zk, at
various levels of doping. Red is DFT calcaultion; Black is
integration of A over ‘main peak’
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FIG. 7: (a-d) Electron dispersions at the Dirac cone K-point
as a function of Li deposition duration. (e,f) Dispersions at
the Γ point.(g) The graphene BZ, with the white line show-
ing the kx-ky cut along which the K-point dispersions were
measured. (h) The electron density at Γ as a function of
deposition time. (source [7])

IV. ARPES AT UBC

With the preceding sections describing the ARPES
measurement and analysis, this final section is meant to
give a sense for where ARPES research currently stands.
The ARPES apparatus at UBC is being used to better
understand high-Tc cuprates, MgB2, graphene, topolog-
ical insulators, orbital-ordered ferromagnets, and other
materials. We briefly describe induced superconductiv-
ity in graphene by the deposition of lithium adatoms, for
which UBC has received recognition within the physics
community.

In 2015 the UBC group found the first evidence for su-
perconductivity in graphene via analysis of ARPES in-
tensity spectra [6]. While pristine monolayer graphene
does not exhibit superconductivity, it was proposed that
lithium decorated on graphene would enhance the elec-
tron phonon coupling by introducing a strong coupling
mode to in-plane lithium phonon modes. The ARPES
spectra at the K point (fig 7 (a-d)) shows the Dirac
point shift to higher binding energies for longer Li depo-
sition times, indicating that the Li atoms electron dope
the graphene. The increase of the graphene sheet carrier

density (fig 7 (h)), calculated using the Γ point ARPES
spectrum (fig 7 (e,f)), is in agreement with predictions of
the carrier density for an ordered LiC6 superstructure—
the structure needed for the proposed superconducting
mechanism.

A superconducting state can be achieved by introduc-
ing an attractive potential between electrons to overcome
the Coulomb repulsion between them and to form bosonic
Cooper pairs. These bosons form a condensate at the
critical temperature and are protected from scattering
by a superconducting gap. In conventional superconduc-
tors, this attractive potential is mediated by scattering of

electrons with momentum ~k to ~k′ by a phonon with mo-

mentum ~q = ~k′−~k, the strength of which is characterized
by the el-ph coupling.

Because the ARPES intensity spectrum contains infor-
mation about the one-particle spectral function, it can be
fit for two superconducting parameters of interest: the el-
ph coupling parameter λ, and the superconducting gap
energy ∆. To first order, kinks in the K point dispersions
(fig 7 (a-d)) indicate increased el-ph coupling; detailed
fits show that the el-ph coupling is increased by up to a
factor of 3 when monolayer graphene is decorated with Li
atoms. To explore the possibility of non-zero ∆, ARPES
data was also taken at temperatures above and below the
predicted Tc of LiC6. A temperature dependent gap was
found that translates to Tc = 5.9K, in good agreement
with theoretical predictions. Further discussion of ∆ and
λ fitting can be found in [7].

Conclusion

In conclusion, we hope this short report was able to
illustrate the basic principles behind ARPES - to give a
brief overview of it’s theoretical foundations, experimen-
tal techniques, it’s advantages, it’s disadvantages, and
how it can help us understand condensed matter systems.
ARPES as a technique is under continuous development.
Experiments are underway where ARPES chambers are
designed to be used with a spin detector, or coupled to
an ultrafast source. With an ever growing reservoir of
materials to study, and the continuous refinement of the
technique, ARPES promises to be a rich field of study
for years to come.
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V. APPENDIX

Green’s Functions

Below we briefly outline the relationship between the
sceptical function A−(k, ω), and the one-particle Green’s
function. First, a definition: The time-ordered one-
particle Green’s function is

G(λ, t− t′) = −i〈GS|Tcλ(t)c†λ(t′)|GS〉

where λ are the quantum numbers of interest. When λ =
x is the position of the electron, the cλ are field operators
ψ(x). We will be using λ = {k, σ}. This expression is
true only at zero temperature; at finite temperature, we
must take a thermal average. When the GS is a Fermi
sea, and λ = k, σ. Now, G(λ, t − t′) is the probability
amplitude that a state created at t′ will be in the same
state after |t−t′|. The time ordering implies that if t′ > t,
we remove an electron instead.

In ARPES, we are interested in electron removal of an
N -particle ground state ψNi , so we want:

−i〈ψNi |c
†
λ(t′)cλ(t)|ψNi 〉

which we get for t < t′ from the above expression. Now,

〈ψNi |c
†
λ(t′) will be an N − 1 particle state, which we can

write in terms of a complete basis of states ψN−1m :

〈ψNi |c
†
λ =

∑
m

〈ψNi c
†
λ|ψ

N−1
m 〉〈ψN−1m |

(It is not simply ψN−1i , since some time t′−t has elapsed)
and our Green’s function becomes

G(λ, t < t′) = −i
∑
m

|〈ψN−1m |cλ(t− t′)|ψNi 〉|2

[Here we’ve removed the time dependence of the state
ψN−1m by shifting t by t′]. Since energy is a more useful
description of the particle than its time of propagation,
we Fourier transform to get

G(ω, λ) =

∫ ∞
0

dteiωtG(λ, t)

Now, we expand we each term:

−i〈ψN−1m |cλ(t− t′)|ψNi 〉 =

−i〈ψN−1m |eiH(t−t′)cλe
−iH(t−t′)|ψNi 〉 =

−iei(E
N−1
m −EN

i )(t−t′)〈ψN−1m |cλ|ψNi 〉

We can Fourier transform these quantities, remember-
ing their is an implicit θ(t′ − t) term here.

−i
∫
dteiω(t

′−t)ei(E
N−1
m −EN

i )θ(t′ − t) =

1

ω − EN−1m + ENi − iη

where η � 1 is included for regularization. Using this
for each term in the summation over m, we have

G(ω, λ) =
∑
m

|〈ψN−1m |cλ(t)|ψNi 〉|2

ω − EN−1m + ENi − iη

This resembles our spectral function [reference to equa-
tion in report], except we have 1/x structure instead of
δ(x) structure. To fix this, we use the fact that

lim
η→0

1

x− iη
= P 1

x
+

1

π
δ(x)

So that

A− :=
1

π
ImG(ω, λ) =

∑
m

|〈ψN−1m |cλ(t)|ψNi 〉|2δ(ω−EN−1m +ENi )

To reiterate, at nonzero temperature, we must make a
thermal average over the RHS.

Self Energy

Many-body theory tells us that when interactions are
involved, the removed electron energy EN−1m gets shifted
by a complex self-energy function, Σ:

G(λm, ω) =

1

ω − EN−1m + Ein − iη
7→ 1

ω − EN−1m + Ein − iη − Σ(λ, ω)

To read off the imaginary part, we write Σ = Σ′+ iΣ′′,
so

A− =
1

π

−Σ′′

[ω − EN−1m + ENi − Σ′]2 + [Σ′′]2

Now, instead of a divergence at the removal energy
EN−1m −ENi , the peak is softened by the imaginary part
of the self energy. Moreover, the location of the peak is
shifted by the real part of the self-energy. In fact, the
coherence factor Zk we defined above is proportional to
Σ′′. By calculating Σ (to some order in perturbation
theory), we can obtain a theoretical expression for Zk.


