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In this paper, the Hall Effect, Integer Quantum Hall (IQH) Effect, and Fractional Quantum Hall
(FQH) Effect are discussed. The Hall Effect is explained in terms of the Drude Model of metals
and IQH states through a band structure of non-interacting electrons. We introduce interactions
between our electrons to explain FQH states of odd-integer fillings.

I. INTRODUCTION

The Hall Effect is a resistance in the transverse direc-
tion of the current in a 2D conductor that emerges when a
magnetic field is applied perpendicular to the conductor.
The Integer Quantum Hall (IQH) Effect shows that this
resistivity is quantized to extraordinary precision in inte-
ger multiples of fundamental flux when the conductor is
brought to very low temperatures. A satisfactory model
of IQH states emerges from a non-interacting model of
the electrons in the conductor and a band structure of
these states can be found. The Fractional Quantum Hall
(FQH) Effect, or the emergence of Hall Resistances quan-
tized in fractional multiples of flux quantum, requires
us to treat the interactions between electrons, which is
tractable in this paper for a few simple cases.

II. HALL EFFECT

In a 2D conductor carrying current with density j⃗ =
jx⃗, we define the x̂ direction as the direction of the elec-
tromotive force and ŷ transverse to this.

An experiment conducted by Edwin Hall to determine
whether a magnetic field acts on the whole of such a con-
ductor or just on the current itself (this was 20 years
prior to the discovery of the electron) gave rise to what
we now call the Hall Effect. Hall supposed that a mag-
netic field perpendicular to a conductor would cause cur-
rent to collect on the edges of the surface, leading to a
transverse field Ey emerging [1]. This field after a large
time has passed negates the transverse current emerging
from the magnetic field and produces a transverse resis-
tivity which depends on the strength of the field applied.
This resistance is well motivated by the Drude theory
of metals and well documented by experiment (following
discussion based on [2]).

If we apply a magnetic field in the ẑ direction, electrons
undergo a force (working in units where c=1 and e is
positive):

f⃗B = − e

m
(p⃗× B⃗) (1)

in addition to the electromotive force f⃗E = −eE⃗ =
−eEx̂, that drives the current. The first order Drude
Model relation for electron momentum gives:

d

dt
p⃗ = f⃗E + f⃗B − m

ρone2
p⃗ (2)

with ρo being the resistivity of the material in the ab-
sence of magnetic fields and n the density of charge carri-
ers. We desire a steady state solution (after enough time
has passed, momentum becomes constant), which leads
to the following set of coupled equations:

0 = −eEx − e

m
Bpy −

ρone
2

m
px

0 = −eEy +
e

m
Bpx − ρone

2

m
py

We make the substitution j⃗ = −ne
m p⃗ and collect our

terms in a matrix[
Ex

Ey

]
=

[
ρo

B
ne

− B
ne ρo

] [
jx
jy

]
(3)

We can define then the resistivity tensor:[
ρxx ρyx
ρxy ρyy

]
=

[
ρo

B
ne

− B
ne ρo

]
(4)

Note in particular that ρxy = −ρyx (ρxy is called the Hall
resistivity). One reads easily that:

ρxy =
−B
ne

= RHB (5)

Where RH = −1
ne , commonly known as the Hall Coeffi-

cient, is a function only of the density of charge carriers
in the material. As B can be fixed and ρxy may be mea-
sured to high precision, whether values of RH measured
in this manner agree with theoretical expectations is an
excellent test of our understanding of metals.
One may see in Table 1 that the expected value of RH

coincides relatively well with experimental data for ele-
ments with a small number of valence electrons, but the
relation given by Equation 5 breaks down for elements
with a high density of charge carriers. This is somewhat
expected, as the Drude Model no longer applies in this
limit.
Largely however, one sees that in a metal the Drude
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TABLE 1: Metals that form a cubic lattice have had their Hall

Coefficients measured to high precision. Shown here are the

values for different groups of the periodic table. Column 1 shows

expected RH in Drude Model, Column 2 the measured value

(units of RH in 10−11 m3C−1 and c = 1) with a low applied field

at room temperature. Note that Group 1 Metals, for which the

Drude Model applies well at room temperature, have a very good

experimental agreement with theory [3].

Model approximates decently, applying a magnetic field
perpendicular to the conducting surface produces a trans-
verse resistivity linear to the field strength.

III. INTEGER QUANTUM HALL EFFECT

This linearity breaks down in the very low temperature
regime, giving way to the IQH Effect.

In 1980, a group of researchers lead by Klaus von Klitz-
ing published their measurements of the Hall resistivity
of an oxidized silicon transistor at very low temperatures
(≈ 1 K, achieved using liquid Helium) and strong mag-
netic fields (>10 Tesla). They found that in this regime,
the Hall resistivity (the original paper expressed it as the
Hall conductivity, but we continue with our scheme from
section II) is quantized according to:

ρxy = −2πℏ
e2

1

n
= −Φo

en
(6)

where n ∈ Z and we define a fundamental quanta of
magnetic flux Φo [4]. As one may observe in Figure 1,
increasing the magnetic field strength still leads to higher
Hall resistivity, but the increases are not smoothly linear
and take on a discrete nature.

This quantization can be explained through an analyi-
sis of the magnetic field’s interaction with the conductor
when we ignore electron-electron interactions (plausible
in the low temperature limit) as we demonstrate in this
section.

Figure 1: Response of ρxy (red) and ρxx (green) to increasing

magnetic field in a GaAs material, sub-Helium temperatures [5]

A. Landau Levels and IQH Wavefunctions

If we ignore electron-electron interactions, we need
only one electron wavefunction to solve the system (fol-
lowing discussion based on [6] and [7]). The Hamilto-
nian of a charged particle in a magnetic field with c=1 is
known:

H =
1

2m
(p⃗+ eA⃗)2 + U(r⃗) (7)

We include some potential U(r⃗) since we know that
near the edges of the material, some large potential must
exist to confine our electrons [8]. We deceive ourselves
for now and assume we are far from the edges of our
material, neglecting U(r⃗) for now.

We are free to fix the gauge of our field so long as

∇× A⃗ = Bẑ. We choose the Landau Gauge:

A⃗ = Bxŷ (8)

This leads to the Hamiltonian:

H =
1

2m
p2x +

1

2m
(py + eBx)2 (9)

We see that while [px, H] ̸= 0, [py, H] = 0, motivating
the guess for our wave function:

∣∣ψky

〉
= eikyyf(x) (10)

Thus, H
∣∣ψky

〉
= E

∣∣ψky

〉
depends only on ky and

x and in particular can be rearranged to be the
Schröedinger Equation for a one dimensional quantum
harmonic oscillator:

1

2m
p2xf(x) +

e2B2

2m
(x+

ℏ
eB

ky)
2f(x) = Ef(x) (11)
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with the frequency ωL = eB
m centered around xo =

− ℏ
eBky. Thus, we can immediately say f(x) = ϕn(x−x0),

where ϕn is the nth excited wavefunction of the harmonic
potential with frequency ωL. Thus, our wavefuntions
have the form:

∣∣ψky,n

〉
= eikyyϕn(x− x0) (12)

and energy spectrum En = ℏωL(n+ 1
2 ).

Our reader may be wondering why we have only con-
sidered the interaction of the magnetic field with elec-
trons in our conductor, and not the electromotive force
driving the current in the x̂ direction. One sees that this
term contributes a −eEx term to the Hamiltonian. Note
that py still commutes with this, and one can complete
the square to create an analogous relation to Equation
11. All that this electromotive force amounts to in our
wavefunction is a shift in the value of xo = − ℏ

eBky−
mE
eB2 .

Thus, our wavefunctions take the form of Equation 12
whether this force is considered or not.

This energy spectrum and the associated wavefunc-
tions are known as Landau Levels. Each Landau Level in
the absence of an electromotive force may be interpreted
as a flat band structure, meaning that changing the mo-
mentum does not affect the energy value. Thus, each k
value is degenerate and the degeneracy of these Landau
Levels is of particular importance to understanding the
IQH Effect. We discuss this in the next subsection.

B. Degeneracy of En

The degeneracy of a Landau Level is determined by
how many allowed values of k there are. We may count

the number of allowed k values using g =
∑kmax

kmin
1 in

integral form:

g =
1

∆k

∫ kmax

kmin

dk (13)

Calculating this integral requires us to examine the
boundary conditions of the problem that influence k,
namely U(r⃗) from Equation 7. U(r⃗) must satisfy two
conditions (following discussion based on [9])):

1. As electrons must be confined to the material - thus
we posit that at the edges of the material, U(r⃗)
must increase rapidly and go towards infinity.

2. In the low temperature limit, internal interactions
between electrons are weak. In our model of the
IQH effect, we choose to neglect them altogether.
Thus, U(r⃗) must vary slowly in the interior of the
metal, else the interactions between electrons be-
comes too significant to ignore.

Two examples of allowable U(r⃗) are shown in Figure
2 (one may even take a trigonometric function as [8] do

Figure 2: Top: An exaggerated example that U(r⃗) can vary

between the end points, so long as its variations are small

compared with the dimensions of the conductor. The difference in

EF on the left and right stems from an electromotive force

driving current [7]. Bottom: A smoothly varying U(r⃗) and a |ψ⟩
worked out in III.a shown near the edge - it is clear that a

different wavefunction emerges on the edge states [9].

in their analysis). It is an excellent approximation then
to take ∆k = 2π

Ly
, as one may approximate U(r⃗) as an

infinite square well potential of width Ly, for the pur-
poses of calculating the degeneracy, given our conditions
on U(r⃗).
We define the dimensions of our conductor as having

transverse length Ly and longitudinal length Lx. We
discuss

∣∣ψky,n

〉
in absence of an electromotive force for

the moment, as it only adds more to the algebra while
revealing no new physics.
We choose our origin x = 0 on the right side of the

material and x = −Lx on the left side. Note that
∣∣ψky,n

〉
is highly localized in x, as it falls off exponentially away
from xo = − ℏ

eBky. Thus, any
∣∣ψky,n

〉
with an xo not

on the interval [−Lx, 0] has almost no probability to be
in the conductor. This naturally defines kmin = 0 and
kmax = eB

ℏ Lx as the range of allowed ky values.
We thus read off the degeneracy of one Landau Level

from Equation 13:

g =
LyLxeB

2πℏ
=
LyLxB

Φo
(14)

This result claims that the degeneracy of a Landau
Level depends only on the external field applied and the
area of the conductor. Understanding this result is key
to our coming derivation of Equation 6.

C. The Quantization of IQH Flux from Landau
Levels

On inspection, there are features of
∣∣ψky,n

〉
and its

energy spectrum that indicate a ρxy response to B like
that shown in Figure 1. Firstly, there are large gaps in
the band spectrum on the order of ωL which would ac-
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count for the spikes shown in Figure 1. Secondly, there
are many allowed states at each energy level (one for each
allowed ky), which would account for the “plateaus” in
ρxy. Intuition aside, we now show explicitly that this
resistivity is quantized as per Equation 6 from our wave-
functions in Equation 12 (following discussion based on
[7]).

To discuss the resistivity of this state, we must discuss
the current density:

J⃗ = I/A = − e

LxLy

ν∑
n=1

∑
ky

〈
ψky,n

∣∣ d
dt
x⃗
∣∣ψky,n

〉
(15)

where we assume the first ν Landau Levels are occu-
pied. Making the canonical substitution for velocity:

J⃗ = − e

mLxLy

ν∑
n=1

∑
ky

〈
ψky,n

∣∣ p⃗+ eA⃗
∣∣ψky,n

〉
(16)

We are interested in the transverse current density, or

the y-component of J⃗ . Using our Landau Gauge once
more:

Jy = − e

mLxLy

ν∑
n=1

∑
ky

〈
ψky,n

∣∣ ℏky + eBx
∣∣ψky,n

〉
(17)

We know that the expectation value of x for
∣∣ψky,n

〉
must be xo:

eB
〈
ψky,n

∣∣x ∣∣ψky,n

〉
= eBxo = eB(

−ℏ
eB

ky −
mEx

eB2
) (18)

eB
〈
ψky,n

∣∣x ∣∣ψky,n

〉
= −ℏky −

mEx

B
(19)

Plugging Equation into Equation 17 gives:

Jy = e

ν∑
n=1

∑
ky

Ex

B
(20)

There is no dependence left in our sum over n or ky,
so the result is:

Jy =
e

LxLy
νg
E

B
= eExν

1

Φo
(21)

We now calculate Jx:

Jx = − e

mLxLy

ν∑
n=1

∑
ky

〈
ψky,n

∣∣ px ∣∣ψky,n

〉
(22)

Though
〈
ψky,n

∣∣ px ∣∣ψky,n

〉
vanishes for all n. Thus, col-

lecting our terms in a matrix:

[
Ex

Ey

]
=

[
ρxx −ρxy
ρxy ρyy

] [
Jx
Jy

]

[
1
0

]
=

[
ρxx −ρxy
ρxy ρyy

] [
0
eν
Φ0

]
(23)

We may thus read off immediately from Equation 23.
that ρxy = −Φo

eν where ν is an integer. Thus, the non-
interacting Hamiltonian given by Equation 7 is able to
predict the proper degeneracies, proper energy levels, and
even the proper quantized resistivities of IQH states.

IV. FRACTIONAL QUANTUM HALL EFFECT

Just a short two years after the IQH effect was es-
tablished and explained through Landau Levels, research
teams at Bell Laboratories and Princeton discovered the
FQH Effect, which had not been predicted or expected
by theorists. They measured a Hall resistivity across a
semiconductor cooled to ≈ 0.1 K under an applied mag-
netic field of 30 Tesla of ρxy = −Φo

e
1

1/3 [10].

This does not mesh immediately with the scheme we
developed to explain IQH states. To make matters worse,
this value of ν = 1/3 is not the only extension of our
theory we need to make. Since its discovery in 1982,
dozens of FQH plateaus have been found, five of which
are plotted in Figure 3 [7, 11].
The scheme we have developed for IQH states relies

on the absence of interactions between electrons. If this
has proved inadequate, the natural next step is to include
interactions between electrons. We follow the derivations
of [7, 9, 12] that produce the ground state of any FQH
state with ρxy = Φo

e
1

1/ν , where ν is an odd integer.

A. Symmetric Gauge and Single Particle
Wavefunctions

In order to incorporate Coulomb Interactions, a change
in gauge will make calculations easier. We use the same
symmetric gauge as Laughlin does in his original deriva-

tion: A⃗ = B
2 (xŷ − yx̂). The kinetic energy operator is

the Hamiltonian given by Equation 7 if we neglect U(r⃗):

T =
1

2m
(p⃗+ eA⃗)2 =

1

2m
p⃗2 +

e

m
(p⃗ · A⃗) + e2

2m
A⃗2 (24)

Capitalizing on our choice of gauge:

T =
1

2m
(p2x+p

2
y)+

Be

2m
(xpy−ypx)+

e2B2

8m
(x2+y2) (25)
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Figure 3: FQH plateaus can be observed in this graphene sample.

Note that these are measured in conductivity, the inverse of

resistivity (units e2/ℏ). Sample was cooled to 0.30 mK., under

field strength of a. 15 T, b. 21.5 T [11]

This first and last term form a two dimensional quan-
tum harmonic oscillator, and the middle term can be
written as Be

2m L̂z.

T = HHO + αLz (26)

We can thus write our single free-particle wavefunc-
tions as |ψmn⟩, with mℏ being the z projection of the
angular momentum of the nth excited state of the har-
monic potential given by ωL = eB

m . We are interested
in FQH states with low fillings, so we assume n=0 and
suppress this index.

It can be shown through some algebra that |ψm⟩ takes
the form:

|ψm⟩ ∝ zm exp

{
−|z|2

4l2

}
(27)

Where z = x− iy and l is a characteristic length of the
system 2πl2 = Φo

B (electron is relatively localized within

a radius
√
2ml, m here the quantum number, not the

mass). We see intuitively that the Gaussian corresponds
to the HO ground state while zm gives |ψm⟩ the proper
angular momentum.

It is worth noting that this is not a “new” wavefunc-
tion. If we desired, we could make the proper gauge
transformations and return our single particle eigenstates
to their form in Equation 12, but the form given in Equa-
tion 27 is much preferred for the coming analysis.

B. Laughlin’s Trial Function

From our single, free-particle wavefunctions, adding in-
teractions between our electrons gives a grand-ensemble
wavefunction:

Ψ(z1, ..., zn) = f(z1, ..., zN ) exp

{
− 1

4l2

N∑
i=1

|zi|2
}

(28)

where f is antisymmetric under particle exchange as
electrons are fermions.

Solving for f analytically or numerically is not possible.
However, Laugliln was able to guess a trial function that
gives the proper ρxy ∝ ν, ν odd:

ψ(zi) = exp

{
− 1

4l2

N∑
i=1

|zi|2
}∏

i<j

(zi − zj)
ν (29)

One sees that this form of f(z1, ...zn) is perhaps the
simplest guess Laughlin could make that could reason-
ably approximate interactions. We understand that the
interactions are dependent on the distances between par-
ticles, and the displacement between each pair of parti-
cles appears in Equation 29 exactly once. Furthermore,
it is antisymmetric under particle exchange as ν is odd.
The power law dependency on ν is the only feature that
defies an intuitive explanation. However, this relation
can be shown to have to the properties we expect of FQH
states.

It has been calculated that Laughlin’s trial function
very closely matches the true ground state energy for
the odd ν case in computational tests at low N (as N
becomes large, computational tests become impossible)
[12]. We illustrate briefly how it produces the proper Hall
resistivity.

Consider z1 - the leading power of z1 is approximately
νN , which is thus the largest projection of Lz for z1. In
Section IV.A., we discussed that a particle is localized to
a radius r =

√
2Lzl =

√
2νNl, meaning it occupies an

area A = πr2 = 2πνNl2 = νN Φo

B .

Given the area that it occupies, we can calculate the
number of states in this Landau Level from Equation 15:

g =
AB

Φo
= νN (30)

If we were to rework our integral from section II.B., the
only value that should change is the value of ∆k picking
up a scaling by 1/ν. Thus, the degeneracy matches a
Landau Level of a state with ρxy = Φo

e
1

1/ν .
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V. CONCLUSION

The Hall Effect, IQH Effect, and FQH Effect are fas-
cinating examples of how edges can lead to interesting
states in condensed matter. It is excellent that our mech-

anism of band structures does an excellent job of describ-
ing IQH states, but they can only get you so far in FQH
States. Much of the research done in FQH materials
involves topological orders, which are still not fully un-
derstood. Thus, while a comprehensive theory of FQH
states does not yet exist, that is why it is an exciting field
of study.
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