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This report presents a basic overview of the crossover from the Bardeen–Cooper–Schrieffer (BCS)
state of weakly-correlated pairs of fermions to the Bose–Einstein condensation (BEC) of diatomic
molecules in the atomic Fermi gas. We discuss how this crossover (called the BEC-BCS Crossover)
is achieved without any phase transition by tuning the interaction strength via Feshbach resonances.
This is supplemented by a discussion on boundstates and the contingencies of their appearence in
an atomic gas.

I. INTRODUCTION

The BEC paradigm, first developed for non-interacting
bosons and later generalized to take into account repul-
sive interactions, describes bosonic fluids like 4He or ul-
tracold Bose gases like 87Rb. The condensate is a macro-
scopic occupation of a single quantum state that oc-
curs below a transition temperature Tc, which, even in
strongly interacting Bose systems like 4He, is of the same
order of magnitude as the quantum degeneracy temper-
ature at [1] which the inter-particle spacing becomes of
the order of the thermal de-Broglie wavelength.

Even though the BCS theory became successfully and
widely applicable to many phenomena, it is basically
a weak attraction theory. A generalization of the BCS
theory has been developed to include the strong attrac-
tion regime in which fermion pairs become tightly bound
diatomic Bose molecules and undergo Bose–Einstein
condensation. The BEC state is on the the strong
attraction side of the phase space, and is formed by the
condensation of bound fermions in real space. There
is now a clear recognition that the BCS and BEC
paradigms are not as distinct as they were once thought

FIG. 1: BEC-BCS crossover. By tuning the interaction
strength between the two fermionic spin states, one can
smoothly cross over from a regime of tightly bound molecules
to a regime of long-range Cooper pairs, whose characteristic
size is much larger than the inter-particle spacing. In between
these two extremes, one encounters an intermediate regime
where the pair size is comparable to the inter-particle spacing
[2]

FIG. 2: Simultaneous cooling of a bosonic and fermionic quan-
tum gas of 7Li and 6Li to quantum degeneracy. In the case
of the Fermi gas, the Fermi pressure prohibits the atom cloud
to shrink in space as quantum degeneracy is approached. [3]

to be, but rather are the two extrema of a continuum.
The difference between the pairs and the molecules is
that the molecules are localized in the real (position)
space, whereas the BCS pairs are made of two particles
with opposite momenta. Thus, the BCS pairs are large
(much larger than the inter-particle spacing), whereas
the BEC molecules are small (Figure 1).

This report goes over a basic description of the
BEC-BCS crossover, and discusses its realization in
terms of a simple account of Feshbach resonances
which are used to tune the interaction between the
system’s constituents. We also present a discussion on
bound-state formation in quantum systems, and how
results from the same describe Cooper Pairing.

II. THEORY

A. Bound States

In contrast to bosons, the non-interacting Fermi gas does
not show any phase transition down to zero temperature
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figure(2). One might assume that this qualitative fact
should not change as interactions are introduced, at least
as long as they are weak. This is essentially true in the
case of repulsive interactions [4]. For attractive interac-
tions, the situation is, however, dramatically different.
Even for very weak attraction, the fermions form pairs
and become superfluid, due to a generalized form of pair
condensation. The idea of pairing might be natural,
as tightly bound pairs of fermions can be regarded as
point-like bosons, which should form a Bose-Einstein
condensate. However, for weak attractive interaction –
as is the case for the residual, phonon-induced electron-
electron interaction in metals – it is not evident that a
paired state exists. Indeed, we will see in the following
that in three dimensions there is no bound state for
two isolated particles and arbitrarily weak interaction.
However, by discussing exact solutions in 1D and 2D,
where bound states exist for weak interactions, we gain
insight into how a modified density of states will lead
to bound states even in 3D – this is the famous Cooper
instability. What physical quantity decides whether
there are bound states or not? To answer this question,
we formulate the problem of two interacting particles
of mass m in momentum space [2]. This identifies
the density of states in the different dimensions as the
decisive factor for the existence of bound states.

We start our search for a bound-state state of energy
E = −ℏ2k2

m (as m/2 is the reduced mass) and write the
Schrodinger equation:

ℏ2

m

(
∇2 − k2

)
ψ = V ψ (1)

A Fourier-transform takes us to the equivalent
momentum-space relation:

ψk(q) = −m

ℏ2
1

q2 + k2

∫
dnq′

(2π)n
V (q− q′)ψk (q

′) (2)

Assuming a short-range potential, we can introduce
a cut-off |q| < R in the integral. For a short-range
potential of range R ≪ 1

k , V (q) is practically constant
as V (q) ≈ V0, for all relevant q, and falls off to zero on
a large q-scale of ≈ 1

R . For example, for a potential well
of depth V and size R, we have V0 ≈ V Rn.

We integrate over q, and divide by the common factor on
either side of the equation to get:

− 1

V0
=
m

ℏ2

∫
q< 1

R

dnq

(2π)n
1

q2 + k2
=

1

Ω

∫
ϵ<ER

dϵ
ρn(ϵ)

2ϵ+ |E|
(3)

with the bound-state energy E, the density of states
ρn(ϵ) in n dimensions, the energy cut-off ER = ℏ2/mR2

and the volume Ω of the system (note that V0 has units
of energy times volume). The second equality in (3) is

because ℏ2

mΩρ3D(ϵ) = 1
2π2

√
2mE
ℏ2 . This equation has a

solution for small |V0| only if the right hand side also
diverges for vanishing bound state energy |E| → 0 and
this involves an integral over the density of states. The
calculations of ρn shows that in 1D, the integral diverges
as

√
E, and for 2D (where ρ(ϵ) is constant) it does so

logarithmically [2]. Hence, we infer that boundstate
solutions exist in 1D and 2D for arbitrarily shallow
potentials. However, in 3D the integral is finite for
vanishing |E|, and there is a threshold for the interaction
potential to create a boundstate.

These results indicate why there might be a paired state
for two fermions in attendance of a Fermi sea, even for ar-
bitrarily weak interactions: the density of available states
to the two fermions is maybe modified. This is precisely
what happens, as will be discussed in the next section.

B. Fermionic Pairing

Consider now two weakly interacting spin 1/2 fermions
not in vacuum, but on top of a (non-interacting) filled
Fermi sea. We can write the Schrodinger equation for
the two interacting particles as before, but now we need
to search for a small binding energy EB = E − 2EF < 0

on top of the large Fermi energy 2EF of the two particles:

− 1

V0
=

1

Ω

∫
EF<ϵ<EF+ER

dϵ
ρ3D(ϵ)

2(ϵ− EF ) + |EB |
(4)

In conventional superconductors, the natural cut-off en-
ergy ER is given by the Debye frequency ωD, ER = ℏωD,
corresponding to the highest frequency at which ions
in the crystal lattice can respond to a bypassing elec-
tron. Since we have ℏωD ≪ EF , we can approximate
ρ3D(ϵ) ≈ ρ3D(EF ) and find:

EB = −2ℏωDe
−2Ω/ρ3D(EF )|V0| (5)

This result, applicable to a gas of electrons can be easily
modified to deal with our system of interest: an atomic
Fermi gas. We replace V0 by the physically relevant scat-
tering length a < 0 as follows:

1

V0
=

m

4πℏ2a
− m

ℏ2

∫
d3q

(2π)3
1

q2
(6)
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The origin for this expression can be seen from the usual
definition of a [5]:

a = − lim
k≪1/r0

tan δs
k

(7)

where δs is the s-wave phase shift. Here, it is assumed
that the gas is sufficiently dilute and that the behavior
is insensitive to the microscopic details of the potential.
For ultracold collisions, we are interested in describing
the scattering process at low momenta k ≪ 1

r0
, where r0

is the range of the interatomic potential. In the absence
of resonance phenomena for l ̸= 0, s-wave scattering
l = 0 is dominant over all other partial waves (if allowed
by the Pauli principle). The integral in (6) will usually
have a natural cut-off at k = ℏ

r0
.

Repeating the calculations as previous for |EB |, we get:

EB = − 8

e2
EF e

− π
kF |a| (8)

Hence, the essence of Cooper pairing in this language
is that our density of states becomes constant, just like
it does in 2D, and allows a small attractive potential
to bind two fermions. An interesting extension of this
result shows that this is true even in N-dimensions:
all we require is the ρN (ϵ) be constant, irrespective of
in how many dimensions the "motion" is taking place. [6]

These calculations were made assuming that we have
non-interacting Fermi Sea, and indicates that the ground
state should be a Bose-Einstein Condensate of these
weakly bound pairs. However, as we increase the
density of particles in the system, the Pauli pressure
of the fermionic constituents becomes important. The
origin for this can be traced to the Pauli limitation of
unity occupation per momentum space: only when the
fermions are tightly bound (Figure 3) are they spread
out in momentum space. We can then treat the bound
fermion-pairs as bosons, as indicated by the bosonic
commutation relations in eq(12). This indicates that
the fermionic nature of the constituents of the system
becomes irrelevant only when the size of the molecules
is much smaller than the interparticle spacing i.e when
the binding energy exceeds the EF . Relevant details for
these inferences will be discussed in the next section.

We have explicitly calculated the conditions for the ap-
pearance of the bound state, with the critical parameter
being the density of states. Because of the restriction to
a "small" manifold of energy above the Fermi sea, the
system can be approximated as having a constant ρ(ϵ).
This endows it with the properties reminiscent of a 2D

FIG. 3: From tightly bound molecules to long-range Cooper

pairs [2]. Evolution of the pair size ξ0 =

√
⟨ψ(r)|r2|ψ(r)⟩
⟨ψ(r)|ψ(r)⟩ as a

function of the interaction parameter 1
kF a

. The dashed line
indicates resonance.

system, namely the ability to support bound-states for
arbitrarily low binding energy.

C. The BEC-BCS Wavefunction

Leggett [7] realized that the crossover from BCS to the
BEC regime is smooth. This is somewhat surprising
since just focusing on the two-body physics shows a
threshold behavior at a critical interaction strength,
below which there is no bound state for two particles.
In the presence of the Fermi sea, however, we simply
cross over from a regime of tightly bound molecules to a
regime where the pairs are of much larger size than the
interparticle spacing.

For s-wave interactions, the orbital part of the pair wave
function φ(r1, r2) will be symmetric under exchange of
the paired particles’ coordinates. In a uniform system,
it will also only depend on their distance |r1 − r2|. We
hence analyze the many-body wavefunction:

Ψ(r1, ..., rN ) = A{φ(|r1−r2|)χ12...φ(|rN−1−rN |)χN−1,N−2}
(9)

that describes a condensate of such fermion pairs, with the
operator A denoting the correct antusymmetrization of all
coordinates, and the spin singlet χij = 1√

2
(|↑⟩i |↓⟩j −|↓⟩i |↑⟩j .

In second quantization, we write:

|Ψ⟩N =
∫ ∏

i d
3riφ (r1 − r2)Ψ

†
↑ (r1)Ψ

†
↓ (r2) . . .

φ (rN−1 − rN )Ψ†
↑ (rN−1)Ψ

†
↓ (rN ) |0⟩

(10)

where the fields Ψ†
σ(r) =

∑
k c

†
kσ

e−ik.r
√
Ω

. Using the fourier

transform of the wavefunction φ(r1−r2) =
∑
k φk

e−ik.(r1−r2)
√

Ω
,

we introduce the pair creation operator b† =
∑
k φkc

†
k↑c

†
−k↓,

finding:
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FIG. 4: Evolution of the momentum distribution v2k with in-
teraction 1

kF a
across the BCS–BEC crossover. [4]

|Ψ⟩N = b†
N
2 |0⟩ (11)

This expression for |Ψ⟩N is formally identical to the Gross-
Pitaevskii ground state [8] of a condensate of bosonic parti-
cles. In order to treat fermionic pairs on the same footing as
bosons, we need to establish that the correct bosonic commu-
tation relations are satisfied :[

b†, b†
]
−
=

∑
kk′

φkφk′
[
c†k↑c

†
−k↓, c

†
k′↑c

†
−k′↓

]
−
= 0

[b, b]− =
∑
kk′

φ∗
kφk′ [c−k↓ck↑, c−k′↓ck′↑]− = 0[

b, b†
]
−
=

∑
kk′

φ∗
kφk′

[
c−k↓ck↑, c

†
k′↑c

†
−k′↓

]
−

=
∑
k

|φk|2 (1− nk↑ − nk↓)

(12)

The third commutator is equal to one only in the limit where
the pairs are tightly bound and occupy a wide region in
momentum space. In this case, the occupation numbers nk
of any momentum state k are very small (Figure 4), and[
b, b†

]
− =

∑
k |φk|

2 = 1.

The ground-state wave function can be written as a coherent
state of these bosons:

N|Ψ⟩ =
∑
Jeven

N
J/4
p

(J/2)!
|Ψ⟩J =

∑
M

1

M !
NM/2
p b†M |0⟩ = e

√
Npb

†
|0⟩

=
∏
k

e
√
Npφkc

†
k↑c

†
−k↓ |0⟩ =

∏
k

(
1 +

√
Npφkc

†
k↑c

†
−k↓

)
|0⟩

(13)
where Np = N

2
is the number of pairs. It can be argued [9]

that the coherent state is energetically favored over the num-
ber state |Ψ⟩N = b†

N
2 |0⟩ in the presence of weak repulsive

interactions. However, in practice they both yield equiva-
lent results for thermodynamic quantities and thus we can
use whichever is most convenient. If we choose the constant
N =

∏
k

1
uk

=
∏
k

√
1 +Np|φ|2, then |Ψ⟩ becomes a properly

normalized state:

|ΨBCS⟩ =
∏
k

(uk + vkc
†
k↑c

†
−k↓) |0⟩ (14)

FIG. 5: Illustration of the Feshbach Resonance [12]

with vk =
√
Npφkuk and |uk|2 + |vk|2 = 1. This is the fa-

miliar BCS wavefunction [10]. The above derivation makes it
clear that this wave function encompasses the entire regime
of pairing, from point bosons (small molecules) to weakly and
non-interacting fermions.

III. FESHBACH RESONANCES AND
INTERACTION TUNING

We now explore the tuning of the interaction strength a,
which determines the BEC-BCS crossover. The BCS and
BEC regimes then correspond, respectively, to the limits

1
kF a

≪ 1 and 1
kF a

≫ 1. This can be intuitively understood
from the following qualitative discussion of Feshbach reso-
nances.

Feshbach resonances [11] are a unique tool for the study of
ultracold atoms. By the simple change of a magnetic field,
the interactions between atoms can be controlled over an
enormous range. This tunability arises from the coupling
(say, by a hyperfine interaction) of free unbound atoms to
a molecular state in which the atoms are tightly bound
(Figure 5). The closer this molecular level lays with respect
to the energy of two free atoms, the stronger the interaction
between them. Indeed, right on resonance the scattering
length describing this interaction diverges (Figure 5).

As a simple example [13] consider a two channel Hamilto-
nian H with one open and one closed channel. This means
that H has one inaccessible (bound) eigenstate |C⟩ = ψ(r) |c⟩
with energy Ec. The state |c⟩ labels the channel, which is
closed in this case. In addition to this bound state, there is
a continuum of eigenstates |E⟩ = ϕ(r, E) |bg⟩, where |bg⟩ is
the open background scattering channel. The wave functions
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FIG. 6: The two channels of a Feshbach resonance. The red
curve corresponds to the closed channel |c⟩, while the black
curve corresponds to the open channel |bg⟩. The potential
curves are given in the center of mass frame. [11]

ψ(r) and ϕ(r, E) are eigenfunctions of the Hamiltonian with
the potentials Vc and Vbg given in figure 6. If the Hamiltonian
contains a small mixing term ∝ |c⟩ ⟨bg|+h.c. true eigenstates
are mixtures of the ones given above. If the atoms in the
trap have different magnetic moments, an external magnetic
field can be used to tune Ec to lie above or below E. If E
is close to Ec the two channels strongly mix. This changes
the scattering length. For these magnetically tuned Feshbach

resonances, the scattering length is given as a function of an
external magnetic field B as [14]

a = abg

(
1− ∆

B −B0

)
(15)

where abg is the scattering length associated with Vbg,∆ is
called scattering-width and B0 is called the resonance posi-
tion. On the left-hand limit of the lower branch in Figure 5,
we have strongly bound pairs that form Bose-Einstein con-
densates, whereas to the right we have weakly bound pairs
which can form Cooper pairs in the presence of a Fermi sea.

IV. CONCLUSION

We have given a basic overview of the BEC-BCS crossover,
and there are many interesting details that we omitted that
can be explored in the literature. In particular, the calcu-
lations of the single-particle excitation spectrum in the BCS

1
kF a

≪ −1 limit and BEC 1
kF a

≫ 1 limit show the the ex-
istence of a superfluid gap, which results in phase separation
in imbalanced Fermi mixtures[15]. Another notable omission
was the discussion of the cross-over regime. Here, the pair
size becomes of order the interparticle spacing and thus the
system can no longer be regarded as either a weakly inter-
acting Bose or Fermi gas. The unitarity limit 1

kF a
= 0 gives

rise to a universal strongly interacting Fermi gas [16] that is
independent of any interaction length scale.
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FIG. 7: Condensate fraction as a function of interaction
strength. Comparison of theory and experiments.[2]. On the
BEC side heating due to vibrational relaxation leads to the
rapid decay of the condensate.[2]

1103/PhysRevLett.95.110404.

V. APPENDIX: EXPERIMENTAL
OBSERVATION OF SUPERFLUIDITY IN

FERMIONIC SYSTEMS

On the BEC side of the Feshbach resonance the superfluid
state of tightly bound molecules should be very similar to a
condensate of Bosonic atoms. Hence one can look for stan-
dard signatures of superfluidity: bimodal density distribu-
tions both inside the trap and after some expansion. Ob-
servation of vortex lattice is another important signature of
superfluidity.
On the BCS side of the Feshbach resonance Cooper pairs ex-
ist only as a manybody effect. To demonstrate pairing in
this regime one should convert Cooper pairs into molecules
first and expand after that. This can be achieved by quickly
sweeping the magnetic field to the BEC side of the resonance
[17] [2]. We will discuss only the simplest model of such ex-
periments, in which we assume that the sweep rate is very
large, and we can treat these experiments as a projection of
the many-body wavefunction. In analyzing real experiments
there may be important corrections due to finite rate of the
magnetic field sweep [18].
We can express the operator that creates a molecule in the
final point of the projection experiment as

b†q =

∫
dkϕf (k)c

†
q
2
+k↑c

†
q
2
−k↓ (16)

Here q is the momentum of the molecule and ϕf (k) is the
molecular wavefunction. The number of molecules with mo-
mentum q is nm(q) = b†qbq. For a projection type experiment
we can calculate the number of molecules by taking the ex-
pectation value of nm(q) in the initial state

nm(q) =

∫
dkdk′ϕ∗

f (k)ϕf
(
k′
) 〈
c†q

2
+k↑c

†
q
2
−k↓c q

2
−k′ ↓ c q

2
+k′↑

〉
(17)

FIG. 8: Condensate fraction as a function of magnetic field
and temperature in experiments on 6Li. Arrow marks the
position of the Feshbach resonance.[2]

We take the initial state to be of the type (14). Direct calcu-
lation gives

nm(q) =δ(q)

∣∣∣∣∫ dkϕ(k)
〈
c†k↑c

†
−k↓

〉∣∣∣∣2
+

∫
dk|ϕ(k)|2

〈
n q

2
+k↑

〉〈
n q

2
−k↓

〉 (18)

The first term in (18) measures the number of molecules cre-
ated in the condensate, i.e. in the q = 0 state. This contri-
bution is present only when there is coherent pairing in the
initial state and ⟨c†k↑c

†
−k↓⟩ ≠ 0. Not surprisingly this term is

proportional to the overlap of the wavefunctions for Cooper
pairs and the final state molecules. The second term in (18)
gives the number of non-condensate molecules produced after
the sweep. This contribution is present even when the initial
state is not paired. It reflects a finite probability of atoms to
be close to each other in the initial state, so that the magnetic
field sweep can turn them into molecules. In the simplest ap-
proximation one can take the wavefunction of the final state
molecules to be constant for k < 1

a∗
and zero otherwise. Here

a∗ is the size of the molecule. Note that this is not the size of
the closed channel bound state but the size of the Feshbach
molecules including the open channel, which should be of the
order of the scattering length. For the coherent part we find

N0

V
=

6a3∗
(2π)3

∫ a−1
∗

0

dkk2∆/2√
∆2 + ξ2k

=
9n

8

(
∆

Ef

)2

kfa∗ (19)

Here n is the density of atoms. It is easy to understand why
the final result is proportional to |∆|2 and a∗. The Cooper
pair wavefunction goes as ϕc(r) ≈ ∆

r
at short distances. The

molecular wavefunction is ϕ(m) ≈ a3/2 for r < a∗. Hence
| ⟨ϕc| |ϕm⟩ |2 ≈ |∆|2a∗. Figure 7 shows comparison of this
simple model with the experimental results.
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FIG. 9: Observation of vortices in a strongly interacting Fermi
gas. Superfluidity, coherence, and vortex lattice were estab-
lished at different value of the magnetic field. magnetic field
was ramped to the BEC side for imaging. [2]


