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The paper presented here today hopes to give the reader some insight into a novel method of
error detection in quantum information. Quantum information has been plagued by the process of
quantum decoherence which can cause information loss in quantum circuits. As such, a method of
protecting this information, or at the very least detecting information loss, is a necessity in quantum
computing more so than classical computing. The methodology proposed by researchers from the
United States makes use of the fact that measurements can be interspersed in a circuit of random
unitaries to introduce two distinct phases of the entanglement entropy[1, 2]. At the critical point
between the two phases, there is expected to be an entanglement that gives two regions a large
correspondence of information between said regions, known as mutual information. This mutual
information provides a duplicate of our encoded information, acting as a error detection should
it be needed. We do not seek to make any headway into this field here, but merely present the
information in a moderately digestible form for those who are interested.

I. INTRODUCTION

Quantum information is a new and impressively grow-
ing field. Just as we have done with classical comput-
ers before, the field of quantum information aims to un-
derstand how information is transmitted and stored on
quantum computers. Due to the nature and direction
that quantum computing has been taking, the topic com-
bines a variety of topics from condensed matter, statisti-
cal mechanics, and quantum mechanics.

One of the many subtopics of quantum information,
or even information in general, investigates how to effi-
ciently “protect” encoded information. In classical com-
puters, a bit can be altered unintentionally, called a soft
error, through a number of processes, such as a cosmic
ray interactions. As such, modern classical computers
have a variety of options for error correction and error
detection, such as Hamming codes. This gets more com-
plicated when we look at quantum computers. Simply
speaking, the nature of quantum computers, namely the
fact that measurements and unitary operators, or uni-
taries, must be applied, generates a phenomenon known
as quantum decoherence. Typically, coherent states are
used to encode information and are defined by their min-
imal uncertainty for all time. However, Quantum deco-
herence strips coherent states of their necessary definite
phase relationship that is required to maintain the en-
coded information. This puts a strain on quantum in-
formation theory and requires us to find a more complex
solution to error correction and detection.

Over the years, a number of ways to prevent, slow, or
mitigate quantum decoherence have been proposed. For
example, researchers at both the University of British
Columbia and the University of California, Santa Bar-
bara were able to reduce the environmental decoher-
ence rate by applying a high magnetic field[3]. Re-
cently, the researchers at the University of California,
Santa Barbara; the University of California, San Diego;
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and the University of Massachusetts, Amherst have pub-
lished papers relating to measurement-induced criticality
(or measurement-derived entanglement transition)[1, 2].
More precisely, they found that, in a quantum system
consisting of measurements and unitary gates, there is
a critical point in the ratio of measurements to unitary
gates. At this critical point, it appears that there is a
symmetry of mutual information that is shared between
small regions, acting as a form of error correcting by pre-
serving this quantum information. This novel method
in quantum information is the main investigation of this
review.
However, and rather unfortunately, this concept may

not be as related to the topics discussed in the class as
some of the others might be. Regardless, the discussions
of many-body physics and second quantization that oc-
cur in a first-year graduate condensed matter course may
make the content here more digestible. Condensed mat-
ter theory will provide a better preparation for this than
a standard quantum mechanics course. In addition, there
will, hopefully, be concepts that are a bit more familiar
to the reader in between the talk of qubits and entropy.

II. MEASURES AND GROUPS

Before the full discussion can begin, it is pertinent that
new terminology be introduced to the reader. Specifi-
cally, it is important to talk about the topics needed to
set up our circuits and qubits. Let us begin by recalling
what a qubit is. A qubit is a quantum bit, which is a
bit redundant to say. To be more rigorous about it, a
qubit is a two-state system, such as the spin of a spin-12
particle[4]. The quantum behavior of this system, which
makes it fundamentally different from a classical bit, is
that while the qubit could be in one state or the other,
it can also exist in a coherent superposition of those two
states as well. This is what makes quantum computing
so unique and desirable.
Granted, this only tells us how the units of data is

set up. In order to make proper use of quantum com-
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puting, we need to understand how to manipulate these
qubits, and, thus, how to set up circuits. In classical
computers, we define logic gates to mediate our manip-
ulation of bits. However, in quantum computers, we use
unitary operators, or “quantum logic gates”, to medi-
ate our manipulation of qubits. If we were looking at
making a quantum algorithm, we would carefully pick
and choose our unitary operators, such as the Pauli spin
gates or the Hadamard gate, in order to complete the
desired algorithm. However, we are not looking at an
algorithm, but, instead, looking at a behavior that we
suppose would hold for any circuit of a particular size.
As such, we consider a random circuit constructed from
randomly determined unitaries. While we can consider
picking this operators from a list of all possible unitaries,
we can instead consider only certain unitaries that have
certain properties assigned to them. We will refer to this
as a measure or a measure of unitaries. Once we under-
stand how the system behaves with respect to a specific
measure of unitaries, we can attempt to generalize it to
a more stringent group.

In the following sections, we will look at two measures
in particular. The more general of the two is the Haar
measure[5, 6]. A rigorous definition of the Haar measure
will not be fully discussed here, as there is a lot of math-
ematics and formalism that needs to be discussed before-
hand. For now, we will simply say that the Haar measure
is one of the most used measures of unitary groups that
are used in quantum information due to its properties as
well as its generality.

At the same time, the reasons why the Haar measure
may be useful are the same reasons why it may be a
hindrance. When we are looking at a large amount of
entanglements, which will make use of the Rényi entropy
discussed in section IV, or working with a large number of
qubits, using the Haar measure can result in challenges
with numerical simulation, even with simply modeling
the unitaries. As such, we introduce the more stringent
Clifford measure[7]. The n-qubit Clifford measure of uni-
taries, or rather the Clifford unitaries that interact with
n-qubits, is the group of unitaries such that the following
is true:

Ûeiθπ/2σj1 ⊗ · · · ⊗ σjnÛ
† = eiθ

′π/2σj′ ⊗ · · · ⊗ σj′n (1)

where θ, θ′ ∈ {0, 1, 2, 3}; jn, j′n ∈ {0, 1, 2, 3}; and σj is
the jth Pauli matrix. The less specific Clifford measure
should make it easier for people to perform numerical cir-
cuit simulations while still maintaining some interesting
behavior. After all, as we have learned, it is important
to consider the simplest interesting model.

In addition to manipulating our qubits, we will also
need a way to read the qubits, which happens through a
process known as measuring. Just as we restricted our
unitaries above, it is useful for us to restrict the measure-
ments that we perform that have a similar construction
to the unitaries that we are making use of. As the Clif-
ford measure is closely connected to the Pauli matrices, it
seems natural that we would consider only measurements
from the single-qubit Pauli group. Rather, we only make

use of spin- 12 , single-qubit measurements that can be de-
rived from the Pauli matrices.

III. CIRCUIT

Now that we have established what operators and mea-
sures we are working with, we can begin to understand
the model that is being investigated. Consider a one-
dimensional chain of L qubits, which those at the Uni-
versity of California, Santa Barbara called a prototypical
quantum circuit model[1]. The chain has a lattice con-
stant a to mark the distance between neighboring qubits.
As the chain evolves with time, we will consider two ma-
jor factors, namely the evolutions caused by applying uni-
taries and the local, single-qubit measurements that are
applied. Let us look at these individually.
To begin with, we can describe how our unitaries are

set up. For this model, we will solely be using two-qubit
Clifford gates. These gates take two qubits as an in-
put, apply their unitaries, and output two qubits after
the transformation has been completed. Furthermore,
the Clifford gates will only be used such that a qubit
interacts only with its neighbor qubits. In other words,
the two-qubit Clifford gate applied to a qubit at loca-
tion x is applied in conjunction with the qubit located
at either x − 1 or x + 1. These Clifford gates are then
arranged in what is commonly referred to as a brick-layer
pattern. At some time t = 2nτ for n ∈ Z and for some
time constant τ , every qubit at a position x = 2ma for
m ∈ Z experiences a random Clifford gate with the qubit
located at x = (2m + 1)a. Then, immediately after at
time t = (2n+1)τ , the same qubits at positions x = 2ma
experience a random Clifford gate with the qubit located
at x = (2m − 1)a, in the opposite direction as the pre-
vious time step. The result is a circuit of unitaries that
are periodic in both space and time, as shown in Fig. 1,
and that mimics brickwork, hence the name.
Before we look into the single-qubit measurements, let

us define some useful terms when working with these cir-

FIG. 1. The random circuit model. This circuit displays
the commonly used brick-layer pattern for random unitaries.
Notice that the above circuit shows both spatial symmetry,
with a lattice constant a, and temporal symmetry, with a time
constant 2τ .
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FIG. 2. The random circuit model. This circuit displays
the commonly used brick-layer pattern for random unitaries
with single-qubit measurements randomly interspersed be-
tween the unitaries. The measurements are randomly placed
with a Poissonian distribution, where each position and time
combination has a probability p. The total number of possible
combinations is simply the number of positions multiplied by
the depth.

cuits. Particularly, we want to adjust how we discuss the
nature of the time evolution. We, thus, introduce the
term depth which is defined to be the number of unitary
layers that have been applied. We will denote this as D.
It follows directly from this that a circuit with a depth
D has a number of time cycles such that T = D/2.

Now, let us move onto the single-qubit measurements.
We place these single-qubit measurements in between
brick-layer pattern of the random unitaries. As such, for
a system of L qubits and of depth D, there are a total of
L ×D sites where measurements can be placed. By ex-
tension, since the depth D is defined to be the number of
unitary layers and each unitary operates on two unique
qubits, the total number of unitaries applied to the same
system is D × L/2. We do want to consider different ra-
tios of measurements to unitaries. As such, we define the
parameter p as the fraction of total possible sites that
these single-qubit measurements have been made. These
sites can be chosen either deterministically or randomly,
depending on what is to be investigated. However, for
the purposes here, we will be randomly determining the
sites via a Poisson distribution as depicted in Fig. 2.
We, then, identify this fraction p as the rate of measure-
ments. We can also see that the ratio of measurements
to unitaries is simply 2p, which is bounded below at 0
and above at 2. By extension, we can investigate only
the unitary patterns by setting this rate such that p = 0.

For any system where we have specified the initial L
qubits and we have defined the positions of both the uni-
taries and the measurements, the state of the qubits at
any depth d is determined if we know the outcomes of the
measurements. This time evolution is known as quantum
trajectory.

IV. PHASES AND CRITICALITY

As we move to understand possible phases and critical
behavior, we need to discuss how to understand what to
look for. We will be looking specifically for how the en-
tanglement varies as we vary the rate of measurements
p. It has been shown in research that these unitary gates
increase the entanglement of a system while the use of
local measurements reduces the entanglement[8]. More
specifically, as the researchers at the University of Cali-
fornia, Santa Barbara have described, the increase to the
entanglement that the unitary gates supply is merely lo-
cal, while the decreases given by the local measurements
is thought to be non-local (or at least not entirely lo-
cal). The competition to increase or decrease the entan-
glement provided by the unitary gates and the measure-
ments produces interesting results, such as the phases a
critical behavior we will talk about here.
However, in order to observe such a thing, we need a

way to measure entanglement. Thus, we will employ the
commonly used Rényi entropy for this exact case[9, 10].
A full description of the Rényi entropy is unfortunately
unable to be recreated here without a good deal of effort
and time devoted to it. However, we can at least give
a brief overview. The Rényi entropy can be found for a
specified contiguous subregion A and it is dependent not
only on the size L of the system, but also the size |A|
of the subregion and the pure state wavefunction that is
given through the quantum trajectory. Typically, Rényi
entropies are defined with some order n, where n is a
non-negative real number with n ̸= 1, such that:

Sn
A =

1

1− n
log2 (TrA [(TrĀ [|ψ ⟩⟨ψ|])n]) (2)

where
(
A, Ā

)
is some bipartition of our L-qubit system

and |ψ⟩ is the resulting quantum trajectory wavefunc-
tion. However, Clifford gates have a flat entanglement
spectrum[11, 12], meaning that the Rényi entropies are
all equal to each other regardless of the order n. Thus, we
do not need to worry about this order n and will consider
the single Rényi entropy of a subregion A as SA.
The Rényi entropy SA serves an additional purpose as

well. In addition to being a measure of entanglement,
the Rényi entropies can be used to define our measure
of mutual information. The mutual information between
two subregions A and B can then be written as:

IA,B = SA + SB − SA∪B (3)

It is this mutual information that we will investigate as
it will preserve information through the unique entangle-
ment between two different regions.
Now we can start to get into the more interesting prop-

erties of this circuit. To begin with, we are mostly con-
cerned with the long term behavior, or steady state be-
havior, of the circuits as T → ∞. We expect that the
steady state behavior will be dependent on the measure-
ment rate p but will not be dependent on the unitary
dynamics at any finite time. To characterize this, we will
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FIG. 3. A graphic description of the resulting phase and
criticality behavior created by Li et al.[1]. The above shows
the differences in the scaling of the entanglement entropy in
both phases and at criticality.

look at the Rényi entropy in the large time limit. For a
given circuit of size L and a given subsection of size |A| it
has been shown that the Rényi entropy saturates to some
value that is dependent on the value of the measurement
rate p and independent of the choice of initial state of the
system[1]. Because of this behavior, this state is gener-
ally referred to as a bulk property of the system.

This saturated entropy, which will be referred to as
the entanglement entropy, has some unique properties to
it. The entanglement entropy has some small fluctuations
not only in time, but in different random circuits with the
same L, |A|, and p. The distribution of these entropies
are not only sharply peaked for the specified measure-
ment rate p; they also appear to be Gaussian. As such,
we will refer only to the average of these distributions.
Furthermore, for an arbitrary system, this entanglement
entropy is dependent solely on the measurement rate p,
the size of the circuit L, and the size of the subsystem
|A|. The location of the subsystem A does not affect the
entanglement entropy due to the translational symmetry
of the circuit.

As we look at this entanglement entropy, we want to
investigate how it behaves at specified values of the mea-
surement rate p with respect to the subregion size |A|.
This behavior has been analyzed many times, especially
in the extreme cases[2, 13, 14]. In the limit p → 1, the
steady state wavefunction appears to be the trivial wave-
function with all ground state qubits and the entangle-
ment energy obeys an area law, as follows:

SA = c (p) |A|0 (4)

where c (p) is some constant dependent on the measure-
ment rate p. Conversely, in the limit p → 0, the steady
state wavefunction appears to be maximally entangled as
we just have a random unitary circuit. In this phase, the
entanglement entropy obeys a volume law that behaves
as:

SA = a (p) ln (|A|) + b (p) |A| (5)

where a (p) and b (p) are also constants that depend on

the measurement rate p. There also exists a critical phase
between these two phases. Measurement rates below this
critical rate pc exhibit the volume-law dependence in en-
tanglement entropy while measurement rates above this
critical rate pc exhibit the area-law dependence. In other
words, for measurement rates p < pc, the entanglement
entropies increases linearly for large |A|. For measure-
ment rates p > pc, the entanglement entropies saturate
at some value dependent on p. However, at the critical
rate pc, the entanglement entropies increase logarithmi-
cally with respect to |A|:

SA = a (p) ln (|A|) (6)

The behavior of both the phases as well as at the critical
rate pc is qualitatively shown in Fig. 3.
While there is more information to be gained from in-

vestigating these phases, we will leave this discussion here
and move directly into an investigation of this critical
measurement rate, as it will provide some insight into
mutual information that we are interested in here. In
doing so, let us consider, specifically, the result directly
associated with the mutual information. When we ob-
serve the mutual information, we need to pick particular
regions to look at. As such, we choose the regions A
and B to be the same size of |A| = |B| = L/8, but a
distance rA,B = L/2 apart. These regions are antipodal
in a system with periodic boundary conditions. Regard-
less of the phase, if the measurement rate p is away from
criticality pc, then this mutual information between the
antipodal regions decays exponentially with respect to
the size of the system L.
However, this behavior does not occur at the critical

rate pc. Instead, due to the long-range correlations[2],
the mutual information should be enhanced as the sys-
tem grows with L. These long-range correlations are a
result of the circuit being at a point where it cannot be
disentangled into smaller pieces. By looking at the mu-
tual information at various rates p with a circuit of finite
size L, we always seem to have a peak in the mutual
information at the critical rate pc. In addition to this,
this peak seems to narrow with increasing system size L.
However, while the height of the peak also increases, it
saturates to some constant independent of L. As such,
there appears to be a critical measurement rate at which
there is some entanglement that ensures the mutual en-
coding of a region of information in two different points.
This provides the error detecting feature that we were
hoping to find.

V. FURTHER INVESTIGATION

This merely gives a brief insight into the topics pre-
sented here today. The information provided here is use-
ful but can be further expanded on by looking at the
specifics of the phases or the other properties of criti-
cality. In addition, we could even continue by looking
at how our understanding of mutual information relates
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to our understanding of operators or of correlation func-
tions. However, any further investigation into this topic
would require more background to be presented and is
not within the scope of this project.

Even though we end here, there are a number of in-
teresting routes that can be pursued from here, some of
which we will discuss here. For more experimentally-
minded readers, some may want to tackle the problem of
figuring out how to incorporate this in a physical system.
As the investigation of how to implement quantum com-
puters is still on-going, figuring out how to intersperse
these measurements with these unitaries may present and
even more unique challenge. In the meantime, there is
a variety of other theoretical frameworks that must be

developed. As some theorists have pushed to research
in the recent years, we can extend this process to other
circuits. While the Clifford gates makes the numerical
calculations easier, they does so at the risk of losing gen-
erality. As such, we can expand our understanding by
looking at circuits that make use of the Haar unitaries
instead or that have some sort of symmetry, such as the
spatial symmetry of measurements, ingrained in it.
Regardless of the path that one takes with this topic,

there is some interesting information to be gained that
could make headway in the battle to combat quantum
decoherence in quantum computers, or at the very least
a more unique understanding of the relationship between
the application of unitaries and the use of measure-
ments.
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