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This paper gives a brief introduction to the classification of 1D bosonic symmetry protected
topological (SPT) phases. We first give a big picture of the map of quantum phase of matter and
then motivate the idea of SPT phases via concrete examples of 1D Haldane phase and exact solvable
AKLT model. We formulate the classification 1D bosonic SPT phases by the classification of the
projective representation of its symmetry group GΨ i.e. the second group cohomology H2(GΨ,U(1))

via illustration upon the concrete example of Z2 ×Z2 upon the AKLT model.

I. MAP OF QUANTUM PHASE OF MATTER

A. Phase and Order

One of the central theme of condensed matter physics
is the classification and understanding phase of mat-
ter. Different organization of the constituent particles
which is formally called order leads to different physical
properties of the matter and thus can be used to distin-
guish difference matters. When the change of the order
leads to some non-analytical behaviour of the physical
property, we say such process a phase transition, and
states of matter that admits no phase transition in a same
phase. Different phases are revealed by different physi-
cal conditions1. We can probe the order using the order
invariant which stays unchanged for transformation but
become distinct under phase transition, thus labelling
the different phase of the matter. Each particular phase
of the matter can be regarded as an equivalence class
where every element is smoothly deformed to a repre-
sentative state and associated with an particular value
of the order invariant. Therefore, different orders denote
different spaces of phases of the matter and different
order invariants identify different equivalence classes
(i.e. phases) within the space of phases. In essence,
the classification of phases hinges at finding the order
invariants.

B. Symmetry Breaking Order

Landau realized that many phase transitions accom-
pany symmetry breaking, and subsequently developed
a general theory with Ginzburg to describe the phase
transition using symmetry group of the matter[5–8].
The full symmetry group GH Hamiltonian H is sponta-
neously broken into the symmetry group of the ground

1 We are very familiar to the four fundamental phases of matter: solid,
liquid, gas and plasma, manifested in different pressure and tem-
perature. Magnetization could reveal some other phases of matter
to be either paramagnetic, ferromagnetic or anti-ferromagnetic. In
low temperature, we have observed superfluid He4 characterized
by zero viscosity[1, 2] and superconducting material characterized
by zero resistance[3] and Meissner effect[4].

state GΨ ⊂ GH. Therefore different symmetry breaking
characterizes different phases of matter, thus we call it
symmetry breaking order. We therefore naturally have
symmetry breaking order invariant as the pair (GH,GΨ)
which leads to full classification. This is a very elegant
and powerful paradigm which allows us to classify all
of the 230 different kinds of crystals via their associated
space group in 3 dimensions2.

C. Topological Order

Yet, new discoveries of fractional quantum Hall (FQH)
effect[9] and high Tc superconductors[10] posed a the-
oretical challenges to Landau’s paradigm which fail to
explain both in a satisfying manner3. We soon realized
that there are many distinct phases lies beyond sym-
metry breaking order which indicates a new kind of
order to classify those phases, thus entering the topo-
logical order4. This leads to a new theme of condensed
matter physics to go beyond Landau’s symmetry de-
scription of phase transition. Analogously, to describe
the topological order, we need to identify its order in-
variants called topological invariants5, where it stays
invariant for transformation without phase transition
but any change of it indicates a phases transition. This
gives us a macroscopic probe for those distinct phases
that symmetry group cannot. It is an ongoing question

2 For interested readers who want to see all those 230 crystals, I
would recommend the following blog as a starting point: https:
//crystalsymmetry.wordpress.com/230-2/

3 Some early attempts to explain high Tc superconductor leads to the
construction of quantum spin liquid[11]. Later chiral spin liquids
was constructed to study FQH[12] and was subsequently understood
to have different phases under same SSB order[13].

4 The nomenclature follows from early attempt to explain chiral spin
state using the low energy effective field theory - Chern-Simons
theory which is a topological quantum field theory (TQFT).

5 Later works identified some topological invariants as follows[14]:
(1) the robust ground state degeneracy (on closed space manifolds),
(2) the non-abelian geometric phases (the modular matrices) of the
degenerate ground state, (3) the chiral central charge c of the edge
states. It was conjectured at least in 2D, the above description based
on those topological invariants provides a complete characterization
of topological orders[14, 15].

https://crystalsymmetry.wordpress.com/230-2/
https://crystalsymmetry.wordpress.com/230-2/
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and active research to investigate and understand the
nature of topological phases.

D. Gapped Quantum Phases

In many-body quantum system, it is remarkable that
we still find different phases even at zero temperature
called quantum phase, and can study the phase transi-
tion without introducing heat to the system. We usually
focus on the quantum phase of a gapped local Hamil-
tonian, whose Hilbert space is the product of local site
Hilbert spaces, H =

⊗
i hi and exists a gap ∆ between

the ground state and the first excited state, and remains
gapped even in thermodynamic limit when system size
goes to infinity6. Similarly, we call it a gapped quantum
state if there exists a gapped Hamiltonian which admits
it as the grounds state.

This allows us to formulate quantum phase as a prop-
erty of a class of Hamiltonians called H-class, and refine
our definition of phase transition at zero temperature
related to the inevitability of gap closing during the
transformation. Consider a H-class H(g) as a collec-
tion of Hamiltonian that depends on some parameter
g. Then for every H(g), it admits corresponding ground
state |Ψ(g)⟩, finite gap ∆(g) and expectation value of any
physical observable with respect to the ground state
⟨O⟩(g) ≡ ⟨Ψ(g)|O|Ψ(g)⟩. Then H(g) defines a path when
we smoothly change parameter g with corresponding
|Ψ(g)⟩ and ⟨O⟩(g) change accordingly. We can use per-
turbation theory to calculate the change of ⟨O⟩(g) for
a small g only if ∆(g) > 0 along the path. If the gap
closes at some particular g0, ∆(g0) = 0, we can have
a singularity in any physical quantity. Therefore, two
system H(g = 0) and H(g = 1) are said to be in the
same phase if-and-only-if (iff) there exists a smooth path
H(g), g ∈ [0, 1] connecting two and the gap remain finite
∆(g) > 0, ∀g.

This formalism can be very generally defined using
local unitary (LU) transformations[16, 17] which cor-
responds to product of local unitary operators acting
locally on the wavefunction, i.e. LU transformation gen-
erates the path H(g). Therefore, we can say that two
gapped ground states are in the same phase if there is
exist a LU transformation for one into another. The quan-
tum phase of matter can be identified to the equivalence
classes of LU transformation. We can have a “trivial"
product state of form |Ψ⟩ =

⊗
i |Ψi⟩, and define all states

that can be transformed into this “trivial" product state

6 The introduction of this limit is to exclude the trivial gap due to
finite size of the Hamiltonian. Therefore, technically, when we
talk about gapped Hamiltonian, we are thinking about a series of
Hamiltonian of increasing size towards thermodynamic limit. All
of them admits a finite gap between the ground state and the first
excited state.

as short-ranged entanglement (SRE) states, i.e. they
differed from the “trivial" product state only by local
fluctuations. All SRE states are in same phase under LU
transformations. For the states cannot be transformed
into a “trivial" product state, we call them topologically
ordered state as they exhibits long-ranged entangle-
ment (LRE) features like non-local correlations. There-
fore, under this paradigm, the product states and the
topologically ordered states are not in the same phases.
LU transformation can also include symmetry breaking
ordered states differed from the aforementioned two
phases. Therefore we arrived at a map of quantum
phases in terms of LU classes, shown in Figure. 1. We
included the gapless states for completeness, but they
are in generally very hard to analyze thus out the scope
of this brief survey.

(LRE)

(SRE)

FIG. 1. LU classes of quantum phases maps the space of phases
for different orders. We include gapless phase into our picture
indicating all other three phases in consideration are gapped.
(Credit to [18]).

The product states fall outside of both symmetry
breaking order and topological order. Both symmetry
breaking space of phases and topological order space of
phases admit very rich phases. By parallel, We want to
investigate whether inside the spaces of product states
admits different phases or not as well. This leads us
to a very interesting kind of quantum phase and order
within the space of the product state when there is a
symmetry constraint. We call them symmetry protected
topological (SPT) phases, which is the main subject of
this brief survey.

II. SPT PHASE

It turns out that those gapped product states with no
symmetry breaking order and topological order, shown
in Figure. 1, are not as trivial as to simply sit inside a
single phase when there is a symmetry around. There
are different phases between them and go across them
requires a gap-closing phase transition if we retain its
symmetry GΨ on the ground state. We therefore say
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that the symmetry “protects" the states from smoothly
deformed into a trivial product state, hence the nomen-
clature7. what SPT phases exist? What properties do they
have? Is there a way to classify them? This are the three
main questions to be addressed in the rest of this brief
survey. We will see that there is a non-trivial SPT order
by looking at the edge states on the boundary as long
as the symmetry is imposed. We will mainly use the
Haldane phase[19, 20] and AKLT model8[21, 22] as a
primary example of the 1D bosonic SPT phases to illus-
trate how we approach to a mathematical classification
of SPT phases.

A. Prototypical Two Spins System

Let us first consider the ground states of two spin-S
system. For a classical spin S = (Sx,Sy,Sz) ∈ R3 as a
vector and |S| = S, we have two possible way to construct
a classical two spins system, either via ferromagnetic
interaction EFM = −S1 · S1 or antiferromagnetic interac-
tion EAFM = S1 · S1. Both classical two spins systems
admit infinitely many ground states. Now, we promote
S to quantum spin operator Ŝ = (Ŝx, Ŝy, Ŝz) and respect
so(3) algebra [Ŝi, Ŝj] = iϵijkSk, and spin is quantized to
take values 1

2 , 1, 3
2 , · · · . Then similar to the classical cases,

we can construct two Hamiltonian ĤFM = −Ŝ1 · Ŝ2 for
ferromagnetic interaction and ĤAFM = Ŝ1 · Ŝ2 for anti-
ferromagnetic interaction, and we denote their ground
states as |ΨFM⟩ and |ΨAFM⟩ respectively. It is quite
easy to check that for spin-12 , |ΨFM⟩ is the linear com-
bination of the spin triplets |↑↑⟩ , |↓↓⟩ , 1√

2
(|↑↓⟩ + |↓↑⟩),

thus admits infinitely many ground states. However,
|ΨAFM⟩ = 1√

2
(|↑↓⟩ − |↓↑⟩) is the spin singlet, which is

unique and rotational invariant ground state and it has
an energy gap to any first excited states. Therefore, we
see that the quantum antiferromagnetic Hamiltonian
ĤAFM yield a strong quantum effect on the ground state,
and is very different than other models.

B. Haldane’s Conjecture

This observation motivates us to consider 1D quantum
Heisenberg antiferromagnetic (HAF) chain with Hamil-
tonian H =

∑L
j=1 Sj · Sj+1 with system size L >> 1. In

1931, Bethe obtained the first exact solution for fermions
and is now celebrated as the Bethe ansatz[23]. The re-
sult can be briefly summarized as: (1) the ground state
|ΨHAF⟩ is unique both for finite9 and infinite L; (2) there

7 It was originally named symmetry protected trivial state as it is
connected to trivial product state under LU transformation.

8 Named after I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki.
9 For finite L, it is known as the Marshall-Lieb-Mattis theorem

FIG. 2. Haldane’s conjecture on energy spectra of the spin S
Heisenberg antiferromagnetic chain. For half-odd integer spin,
in the thermodynamic limit, we have continuous energy spec-
tra while for integer spin, we have a unique gapped ground
state with Haldane gap ∆EH scales linearly with L. (Credit to
[34]).

is no energy gap above ground state energy in L ↑ ∞
limit10; and (3) the ground state correlation function
decays as a power law11. These results was believed to
be hold for both fermionic and bosonic system.

However, in 1983, Haldane discovered that 1D Heisen-
berg antiferromagnetic chain with integer spin has dif-
ferent low energy properties to those of half-odd-integer
spin as shown in Figure. 2. He conjectured[19, 20] the
integer spin chain to possess a unique gapped ground
state with a exponential decay in the ground state cor-
relation function12, in sharp contrast to Bethe’s results
(2) and (3). Such gap is called Haldane gap which is
subsequently checked via numerical calculations[24–27]
and experimental data[28–33], and also hinted by the
exact solution of a slightly modified model called AKLT
model[21, 22] which exhibits the exponential decay in
correlation. We will then focus on the AKLT model
below as a primary example of SPT phases.

C. AKLT Model and VBS State

The AKLT model will be our prototypical example
for SPT phases and the Hamiltonian is given by,

HAKLT =
∑
i

Si · Si+1 +
1

3
(Si · Si+1)

2, (1)

where Si is the spin-1 operator, i.e. we are now look-
ing at a spin-1 HAF chain with an additional quadratic
interaction. It is important to notice HAKLT has a SO(3)
spin rotation symmetry which will play a key role to
“protect" the non-trivial product states. The ground state
wavefunction can be explicitly constructed and is called
valence-bond solid (VBS) state[21, 22] and denoted as

10 For finite L, there is a energy gap due to the finite size, but the gap
scales with L like O

(
L−1

)
.

11 ⟨ΨHAF|SxSy|ΨHAF⟩ ∼ (−1)x−y

√
log |x−y|

|x−y|
, 1 ≪ |x−y| ≪ L.

12 ⟨ΨHAF|SxSy|ΨHAF⟩ ∼
(−1)x−y√

|x−y|
exp

(
−

|x−y|
ξ

)
, ξ ≪ |x−y| ≪ L,

where ξ is the correlation length.
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FIG. 3. The VBS state in projected entangled pair picture where
the entangled singlet pair (blue line) |ΨAFM⟩ which is called
valence bond and each lattice site (blue oval) contains two
spin-12 s (blue dot) forming the triplets |ΨFM⟩. (Credit to [18]).

|ΦVBS⟩ (whose precise matrix product state (MPS) rep-
resentation is included in Appendix. A 1) and we can
represent it as a 1D chain of entangled singlet pairs
with two spin-12s on each lattice site forming triplets, as
shown in Figure. 3. Therefore we see a very interesting
correlation between |ΨFM⟩ at lattice site and |ΨAFM⟩ at
the valence bond.

This pictorial representation of VBS state can help us
intuitively understand the properties of the state. Notice
that so far, we have not assumed any boundary condi-
tions and we have two possibilities. If periodic bound-
ary condition (PBC) is imposed, our projected entangled
pair chain forms a ring and the ground states preserves
the SO(3) spin rotation symmetry and is unique and
gapped. However, on a open chain with boundary, we
have two edge spin-12s sit freely at the edge as shown
in Figure. 4 which leads to the fourfold degeneracy13of
the ground states. We can write them as

∣∣ΦσL,σR
VBS

〉
, with

σL,σR = {↑, ↓} denote the edge spins at left and right
boundaries respectively.

FIG. 4. This is one of the four degenerate ground states,
∣∣∣Φ↑,↓

VBS

〉
.

For open chain, we have two free edge spin-12 at the boundary
which leads to fourfold degeneracy of the ground states (Credit
to [34]).

We provide a heuristic explanation that the VBS states
as SPT phases as follows: For spin-1 chain, we could
have a “trivial" product state |Φ⟩trivial = |· · · 000 · · ·⟩, i.e. a
chain (or ring if PBC is imposed) of spin with Sz eigen-
value 0 at each site. admitted by a trivial Hamiltonian
Htrivial =

∑
i(S

z
i )

2. We would like to know whether our
VBS states sit in the same phase with the “trivial" prod-
uct state. If we allow symmetry of the VBS states to

13 More precisely, a nearly-fourfold degeneracy. The reason comes
from the correlation between the two edge spin 1

2 s, for the finite
chain, the correlation is not zero. However, if one take the infinite
size limit, we will have a unique gapped ground state as the cor-
relation decays exponentially to zero as suggested by Haldane’s
conjecture.

break, we can freely rotate our spin at each site to arrive
at a “trivial" product Sz = 0 chain, therefore they sit in
the same phase. However, if we retain the symmetry of
the VBS states at any point, it does not sit in the same
phase as the “trivial" product state. One quick way to
see this is to consider their transformation properties
under SO(3) rotation. the VBS picks up a factor −1

under 2π rotation because of the non-trivial presence
of edge spin1

2s14, but the trivial Sz = 0 state picks up
nothing under 2π rotation. Therefore, they can not be
smoothly deformed into each other as there will be a
singular point that the symmetry transformation in any
path. This gives us a very simple example of bosonic SPT
phases in 1D15. The key observation from this heuris-
tic analysis is that the symmetry acts independently on
the two edges. The symmetry transformation leads to
a relative phase at the edge which may only admit a
discrete set of possible values, which is our hint for a
non-trivial topological index as the order invariant. But
if the symmetry is removed, this distinction of between
SPT phases and “trivial" product state vanishes.

D. Topological Phase Transition

We have argued how SPT phases arise in context of the
ground states associated to it. We know the exact ground
state of AKLT model on a ring has unique gapped
ground state. We have also considered a trivial model of
spin-1 ring Htrivial =

∑
i(S

z
i )

2, whose ground state easily
to be found to be uniquely gapped |Φtrivial⟩ = |· · · 000 · · ·⟩
a trivial product state. Therefore, both model admits a
unique gapped ground state and also breaks no symme-
try. We can carry out a more formal analysis via their
Hamiltonians which admits those ground state.

To understand that, we can write down an interpolat-
ing model H(g) = gHAKLT + (1− g)Htrivial with g ∈ [0, 1],
i.e. constructed a path H(g) to connect the trivial model
at g = 0 to the AKLT model at g = 1 and see whether
smooth change of g leads any gap-closing behavior or
not. The numerical results suggest there is a gap-closing
point at some g0, as shown in Figure. 5. We call g0 a
gapless/critical point which signals a topological phase
transition which is not characterized by symmetry break-
ing order. Similar behaviour was seen for the interpolat-
ing model of HAF model and trivial model numerically,
where the parallel analysis on the ground states can be
difficult.

14 As a spin- 12 particle return to itself after a 4π rotation around any
axis under SO(3) rotation.

15 One can in fact generalize this construction using the projected
entangled singlet pairs to higher spin chain or to higher dimensions
on different lattices, such as 1D spin-2 chain, 2D square spin-2 lattice
and 2D honeycomb spin- 32 lattice, etc..
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gg0

∆

←− • −→
Trivial Gap Haldane Gap

FIG. 5. The energy gap of the interpolating model where we
see the gap closing at some g0, indicating phase transition.
(Modified upon [34])

It turns out that HAKLT and Htrivial can be smoothly
connected if any short-ranged Hamiltonian is allowed
to interpolate16, which reflects the idea of existence of
a LU transformation to connect SPT phases to “trivial"
product state. However, if certain symmetry are allowed,
then these two Hamiltonian cannot be smoothly de-
formed into each other, which is the hallmark of a SPT
phase[37]. Therefore, in the space of Hamiltonian that
admits a uniquely gapped state, we can understand the
SPT phases have the behaviour shown in Figure. 6.

Htrivial
HAKLT

(1)

(2)

FIG. 6. A schematic diagram of SPT phases: Two models
represented by dots 0 and 1 are along path-(1) continuously
connected in the larger parameter space. But when certain
symmetry restrict the larger parameter space to smaller one
represented here by the plane, path-(2) separated by a definite
phase boundary (g0) (Credit to [34])

As the above example illustrate, AKLT model and
its ground state |ΦVBS⟩ in Haldane phase serves as a
simple example of 1D SPT phases. It has a gapped
bulk SRE states with non-trivial SPT order manifested in
the existence of non-trivial edge states on the boundary
and cannot be smoothly deformed into a trivial product
states when symmetry group GΦ is present.

16 Rigorously proved by [35, 36].

III. SYMMETRIES OF 1D BOSONIC SPT PHASES AND
ITS CLASSIFICATION

So, what are those symmetries that can protect the SPT
phases? For Haldane phase of a spin-1 chain, the non-
trivial SPT phase is protected either by: (1) π spin ro-
tation about three axes, i.e. Z2 ×Z2 symmetry; (2)
time-reversal symmetry; (3) bond-centered reflection
symmetry. We focus on Z2 ×Z2 symmetry to illustrate
how it leads to the classification of SPT phases. We first
pay a quick revisit of the unitary representation and
projective representation of a generic symmetry group
G.

A. Unitary and projective representation

A unitary matrix u(g) is called unitary representa-
tion if it forms a representation of symmetry group
G, i.e. satisfies u(g1)u(g2) = u(g1,g2), ∀g1,g2 ∈ G.
If such group multiplication is preserved only up to
some phases ω ∈ U(1) ≡ {z ∈ C : |z| = 1}, we call
u(g) projective representation of G, i.e. u(g1)u(g2) =
ω(g1,g2)u(g1,g2), ∀g1,g2 ∈ G. We have two additional
condition of the phases:

(1) From the associativity of representation, we have
u(g1)[u(g2)u(g3)] = [u(g1)u(g2)]u(g3),

=⇒ ω(g2,g3)ω(g1,g2g3)
ω(g1,g2)ω(g1g2,g3)

= 1, ∀g1,g2,g3 ∈ G. (2)

We call ω that satisfies this condition a 2-cocycle, and
this relation cocycle condition17. And we denote the set
of all 2-cocylce of group G to be Z2(G,U(1)), where U(1)
denotes that ω ∈ U(1) is a phase.

(2) The projective representation is equivalent to
each other up to a phase β ∈ U(1), i.e. u ′(g) =
β(g)u(g). Then, we have for all g1,g2 ∈ G,
u ′(g1)u

′(g2) = β(g1,g2)u ′(g1g2) =⇒ ω ′(g1,g2) =
β(g1)β(g2)
β(g1g2)

ω(g1,g2). Therefore we have an new equiva-
lence relation condition called coboundary condition:
for some β, ∀g1,g2 ∈ G

ω ∼ ω ′ iff ω ′(g1,g2) =
β(g1)β(g2)

β(g1g2)
ω(g1,g2). (3)

And we call the set of the index of the equivalence
classes of 2-cocycle ω second group cohomology, de-
noted as H2(G,U(1)) ≡ Z2(G,U(1))/ ∼. Therefore, we
can label those equivalence classes of the projective
representation of G by an index ind ∈ H2(G,U(1)).
In essence, the projective representation of symmetry
group G is classified by the second group cohomology
H2(G,U(1)).

17 seen by multiply both numerator and denominator by u(g1g2g3).
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As it turns out, the projective representation of the
symmetry emerges naturally in the MPS representation
of a general quantum spin chain18 which includes the
Haldane phase and AKLT VBS states. We now move
on to the discussion of generic on-site symmetry, and
use Z2 ×Z2 symmetry of the VBS states as a concrete
example to illustrate how this index could be used to
distinguish different SPT phases.

B. General Formalism for Infinite Spin Chain

We can now set up a formal discussion of the gen-
eral quantum spin chain. For local gapped Hamiltonian,
with the finite-dimensional local site Hilbert space, we
can define the notion of local operator if it only act
on the tensor product of the local Hilbert space of the
finite portion of the chain. They, after taking the com-
pletion wit respect to the operator norm, forms a C∗-
algebra to be denoted as U := {all local operators}. Then
for a generic symmetry group G, its unitary projective
representation u

(j)
g := u(j)(g) acts on local site Hilbert

space hj, and has the index indj ∈ H2(G,U(1)). Then
the group action g ∈ G can transform a local operator

A ∈ U as Ξg(A) :=
(⊗L

j=1 u
(j)
g

)
A
(⊗L

j=1 u
(j)
g

)†
, which is

a ∗-automorphism on U, and satisfies Ξg1
Ξg2

= Ξg1g2
,

i.e. a representation of a group G. In essence, we set
up the on-site symmetry for local operator in terms of
∗-automorphism from the projective representation of
G.

we have previous observed that SPT phases need
the symmetry to protect it from smoothly connected
to trivial phase. Therefore, we consider G-invariant
short ranged Hamiltonian of form H =

∑
j∈Z hj, where

hj = h†
j is a self-adjoint operator and acts only on⊗

k;|k−j|⩽r0
hk, i.e. a finite size of chain localized near

site j with size r0, and hj is also G-invariant, i.e. Ξg(hj) =
hj, ∀j ∈ Z, g ∈ G. We can define a ground state denoted
as |Φ⟩ of H to be unique and with a nonzero energy gap,
via a linear function denoted as Φ : U→ C the expecta-
tion value of any local operator A ∈ U that satisfies (1)
Φ(1) = 1 (i.e. normalization) and Φ(A†A) ⩾ 0, ∀A ∈ U;
(2) Φ(A†[H,A]) =⩾ 0, ∀A ∈ U which make sure that it is
indeed taking expectation value respect to the ground
state19; (3) ∃γ > 0, Φ(A†[H,A]) ⩾ γA†A, ∀A ∈ U such
that Φ(A) = 0, which makes sure that |Φ⟩ has a nonzero

18 We refer the reader to [18] for explicit presentation. The essence
is that after the simplification of the MPS, the symmetry acts via a
projective representation of G at the fixed point of renormalization
flow, where the technique is to long to include in this brief essay.

19 This can be clearly seen by in finite chain case that H |Φ⟩ = E |Ψ⟩
and ⟨Φ|A†[H,A]|Φ⟩ ⩾ 0 =⇒ ⟨Φ|A†HA|Φ⟩

⟨Φ|A†A|Φ⟩ ⩾ 0, thus Φ is indeed
a ground state.

gap20.
We therefore have define a index ind for local site spin

via the group cohomology. How can we define an index
Ind to denote a G-invariant unique gapped ground state Φ on
infinite chain to distinguish SPT phases? We defined Φ to
be G-invariant, but if we make a fictitious cut at site j

and perform symmetry transformation only on the half
portion of the infinite chain then there might be some
non-trivial index Indj

21 account for the transformation
property of the half infinite chain. We will see that
this indeed leads use to construct a topological index
as order invariant for different SPT phases. We now
proceed to illustrate a way to construct an index for the
infinite chain using our Z2×Z2 invariant chain for both
AKLT model and trivial model as an concrete example,
which will holds true for generic symmetry group, and
with some modifications to higher dimensional cases as
well.

C. Z2 ×Z2 Symmetry

The symmetry group of π spin-rotation around three
axes, G = Z2 ×Z2 has four elements, G = e, x,y, z sat-
isfying relation x2 = y2 = z2 = e, xy = yx = z, yz =
zy = x, zx = xz = y. And the computation of the second
group cohomology H2(Z2×Z2,U(1)) = Z2 = {0, 1}. The
projective representation u(g), g ∈ Z2 ×Z2 is generated
by the four elements of G, i.e. u(g) = exp(−iπSg), g ∈
{x,y, z}, together with identity element u(e) = 1. They
satisfies u(x)u(y) = u(z), u(y)u(z) = u(x), u(z)u(x) =
u(y). But for g1,g2 ∈ {x,y, z}, g1 ̸= g2, we see there
is a difference: (1) the integer spin, where (u(g))2 =
1, [u(g2),u(g2)] = 0, respecting the bosonic nature of
the spin; (2) the half-odd-integer spin, where (u(g))2 =
−1, {u(g2),u(g2)} = 0, respecting the fermionic nature of
the spin. Therefore, we can use ind ∈ H2(Z2 ×Z2,U(1))
to label the two different equivalence classes as,

ind =

{
0, S = 1, 2, · · · (trivial)
1, S = 1

2 , 3
2 , · · · (non-trivial)

(4)

The fact that there are two distinct indices illustrate
Haldane’s claim that integer spin chain is transforms
qualitatively different under same symmetry group G to
half-odd-integer spin chain.

D. Towards MPS Index

Now imagine we have |Φtrivial⟩ and |ΦVBS⟩ and we
make a fictitious cut at left-hand side of site j. When

20 This can be clearly seen analogously in the finite chain case.
21 which might dependent on the location of the cut, thus the subscript

j
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|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

↑

j Indj = 1

Indj = 0

|ΦVBS⟩

|Φtrivial⟩

FIG. 7. Index for both |Φtrivial⟩ and |ΦVBS⟩ in presence of a
fictitious cut. The difference edge spin state leads to distin-
guishable Indj.

we act G on the left portion of the infinite spin chain
via the projective representation u

(j)
g , we have to use

different indice due to the difference of the effective
edge spin at the cut: (1) for |Φtrivial⟩, the edge spin-0
leads to Indj = 0 = indj(S = 0); (2) for |ΦVBS⟩, the edge
spin1

2 leads to Indj = 1 = indj(S = 1
2 ). So, we see that

this would indeed distinguish |ΦVBS⟩ and |Φtrivial⟩, as
shown in Figure. 7.

But this is dependent on local site j thus is not a prop-
erty of the ground state. How can we define a index for
the ground state? One might try to define the index as
the sum of local site index for a large but finite chain as
Indj =

∑k=j
L indk, with indk tells us the transformation

property of the projective representation u
(k)
g at k site.

However, we observe that such definition leads to same
index for both Z2 ×Z2 invariant chain. But MPS repre-
sentation come to rescue, as we can define such an index
analogously on the MPS which will distinguish differ-
ent SPT phases. We Start with a G-invariant injective
MPS given by (A3), where the symmetry acts on MPS
via the transformation of matrices as Mσ → ugM

σu
†
g.

Therefore, if we introduce a fictitious cut at j-th site on
the MPS, at the edge, we will have free ug not be able to
contract with u

†
g, and therefore Indj =

∑k=j
L indk will

detect SPT order, as shown in Figure. 8. The detail
construction can be found in [38]. The upshot is that this
allows us to define a valid index Indj ∈ H2(G,U(1)) that
can detect SPT phases of injective MPS which include
AKLT model as Ind = 1 and trivial model as Ind = 0 for
infinite chain. In fact, such construction of the index is
generic and apply to a general class of SPT phases.

Therefore, we arrive at the classification of the
1D bosonic SPT phases using the group cohomology
H2(GΨ,U(1)), whose elements are the topological in-
dices labelling those different SPT phases. If we com-
bine with Landau’s symmetry breaking order, we can
in fact classify all 1D bosonic SPT state using the order
invariant (GH,GΨ,H2(GΨ,U(1)))!

IV. CONCLUSION

This conclude our brief introduction to the classifica-
tion of 1D bosonic SPT phases using group cohomology

H2(G,U(1)), where each element of H2(G,U(1)) gives
index for a distinct SPT phase. When G is imposed, dif-

g

FIG. 8. A schematic diagram of the fictitious cut of the MPS
which leads to edge ug carries corresponding index (repre-
sented in red dot). The orange bond shows the bulk site to be
G-invariant due to the u∗

gug cancellation, but the edge have
non-trivial transformation properties.

ferent SPT phases associated with different MPS index
cannot be smoothly deformed into one another without
closing the gap. Therefore, we can refine our map of
the quantum phase shown as Figure. 9, where now we
have more information about the structure the space of
the product state. There are some recent work on con-

(LRE)

Ind1

Ind2

· · ·

Ind3

FIG. 9. Map of quantum phases with SPT phases classificed
by H2(G,U(1)). (Modified upon [18]).

structing a more general index called Ogata index[39]
which leads to a full classification of SPT order. For
higher dimensional bosonic SPT phases, it was shown
and partially verified that (d+ 1)-D SPT states with on-
site symmetry G are labeled by the elements in group
cohomology class Hd+1(G,U(1)). And as we only dis-
cussed bosonic case, one can easily obtain classification
of fermionic SPT phases via the Jordan-Wigner transfor-
mation to account for the intrinsic Z2 parity of fermions.
But we leave the reader to explore those interesting re-
sults. We therefore conclude a brief glimpse of the rich
world of the quantum phase of the matter.
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Appendix A: Matrix Product State (MPS)Representation

1. VBS States

In practice, we can write |ΦVBS⟩ using matrix product representation [40–42] in terms of a product of matrices:

|ΦVBS⟩ =
∑

σ1,··· ,σL=0,±1

Tr[Mσ1 · · ·MσL ] |σ1, · · · ,σL⟩ , (A1)

where σi = 0,±1 (spin-1) denotes the eigenvalue of local Sz
i operator on site i and

M+ =

(
0 0

− 1√
2

0

)
, M0 =

(
1
2 0

0 −1
2

)
, M− =

(
1√
2

0

0 0

)
.

The trace reflects the periodic boundary condition where we identify the bond between two ends as taking the trace.
The advantage of MPS representation is that they admit a nice diagrammatic representation as shown in Figure. 10.

Tr

Mσ1 Mσ2 Mσ3 Mσ4 · · · MσL−3 MσL−2 MσL−1 MσL

σ1 σ2 σ3 σ4 · · · σL−3 σL−2 σL−1 σL

|ΦVBS⟩ =

FIG. 10. This is diagrammatic representation of the MPS representation of VBS state (we overlay it on the projected entangled
pair picture for clarity).

For an on open chain, we can write |ΦVBS⟩ as,

|ΦVBS⟩ =
∑
σ

lσ1Mσ2 · · ·MσL−1rσL |σ1, · · · ,σL⟩ , (A2)

where now we insert the row vector lσ1 at site 1 and the column vector rσL at site L reflecting boundary effect of the
two free spin-12s. And as before the orientation of the edge spins lead to a fourfold degeneracy of the ground states
which we can denote as

∣∣ΦσL,σR
VBS

〉
, with σL,σR =↑, ↓ denote the edge spins.

Using this, the correlation function can be verified to satisfies Haldane’s claim of exponential decay behaviour.
The correlation function of |ΦVBS⟩ indeed decays exponentially as

⟨ΦVBS|Si · Sj|ΦVBS⟩
⟨ΦVBS|ΦVBS⟩

= 4(−3)−|i−j|, (i ̸= j)

.

2. MPS and Symmetry Transformation

VBS states is just a special case of a general class called matrix product state (MPS)[40–42] where σ can take
eigenvalues of arbitrary spin.

|Φ⟩ =
S∑

σ1,··· ,σL=−S

Tr[Mσ1 · · ·MσL ] |σ1, · · · ,σL⟩ , (A3)

It turns out that any unique gapped ground state of a spin chain can be approximated accurately by MPS. This
allows us to calculate easily for some physical quantity.

The symmetry operation on the MPS (in canonical form) is given by the projective representation of the group G,
u(g), where the local site matrix transform as Mσ → u(g)Mσu†(g). And the
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