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X-ray magnetic circular dichroism (XMCD) is a form of X-ray absorption spectroscopy (XAS) that
takes advantage of the unequal population of the 3d shell in magnetic transition metal compounds.
By combining magnetic sensitivity with chemical specificity, XMCD allows for unique experiments
to be performed on magnetized samples. Most prominently, site occupations, oxidation states,
crystalline distortions, orbital ordering and microscopic parameters can be measured. A brief outline
of XAS and its main features is presented, followed by a description of XMCD’s fundamental ideas.
The required experimental setup and selection rules for XMCD are then introduced and explained.
Finally, we briefly illustrate the general analysis procedure in terms of ligand field multiplet theory
and transition-specific sum rules, without delving into their mathematical intricacies.

I. INTRODUCTION

The proliferation of synchrotron sources has made
X-ray absorption (XAS) experiments ubiquitous in
physics, chemistry, and materials science. While X-ray
diffraction (XRD) remains unmatched when it comes
to analyzing the long-range order of a sample, XAS
measurements encode information about its short-range
structure [1], making them complementary techniques.

Two regions are typically distinguished in a given
XAS dataset. Analyzing so-called X-ray absorption
near edge structure (XANES) spectra provides informa-
tion about an atom’s oxidation state and crystal field.
Meanwhile, extended X-ray absorption fine structure
(EXAFS) is concerned with the oscillations that arise
away from the “edge” region, which we define in sec-
tion II. These are associated with self-interference of
a photoelectron’s wavefunction, and provide informa-
tion of short-range correlations in the sample. Unlike
pair-distribution function (PDF) measurements, which
provide similar structural information, XAS measure-
ments provide chemical selectivity. This feature makes
them particularly suitable for studying multicomponent
systems, where we are often interested in discerning the
effect each atom has on the material’s electronic struc-
ture [2–7].

While XAS is a powerful technique, its capabilities
when analyzing magnetic samples can be augmented
by using polarized light. The careful selection of the
polarization gives rise to two techniques: X-ray mag-
netic circular dichroism (XMCD) and X-ray magnetic
linear dichroism (XMLD). While linear polarization is
easier to attain and define, XMLD experiments can only
be performed on single crystals, limiting their scope.
XMCD, on the other hand, can also be applied to poly-
crystals and even molecules. Here we focus on XMCD,
on account of its greater applicability.

By directly probing the d-shell of transition met-
als, XMCD attains a high level of magnetic sensitivity.
The inherited chemical specificity from XAS then makes

XMCD one of the few techniques that can provide a di-
rect measurement of an ion’s spin and orbital moments
[2]. This work aims to provide a very general view of
the field while illustrating the uniqueness of XMCD as a
tool for the study of condensed matter. The discussion
is centred around the 3d transition metals for simplicity
and brevity. However, similar results can be obtained
for the rare-earths.

II. X-RAY ABSORPTION SPECTROSCOPY

A basic understanding of the main features of typical
XAS spectra is required to understand XMCD, along
with the standard terminology. In an XAS experiment,
a sample is exposed to X-rays. Some photons are ab-
sorbed, while others go on undisturbed. By edge, we
refer to the sharp rise in absorption that occurs when a
photon reaches the energy needed to excite an electron
for a given orbital [8], as illustrated for Pt in Fig. 1.
These energies are element-specific, granting XAS with
its chemical selectivity, and the edges are named accord-
ing to the transition they describe (the more general
case of core-electron spectroscopies is covered in this ar-
ticle’s Appendix ) The selection of the appropriate edge
therefore allows us to measure the states we are inter-
ested in. For the 3d transition metals, this will typically
mean the L2,3 edges, and the analogous M4,5 edges for
the rare-earths. This consideration does not rule out
other states, such as the K edges, as they can relay im-
portant structural information. Due to being typically
unaffected by many-body effects, they are ideal when
analyzing EXAFS data, which is a self-interference phe-
nomenon [8]. Alternatively, the O K edge can comple-
ment the analysis of the transition metal L edges in a
complex oxide [3].

To begin making sense of these ideas, it is important
to consider where the information we get comes from.
What all transitions involved in XAS have in common
is that they follow Fermi’s Golden Rule:



2

Figure 1. Au L3 edge absorption spectra for AuAl2 and
elemental Au, showing the main features of typical XAS
experimental data, including the effect of short-range order.
The ∆A region corresponds to further analysis, and can be
ignored for our purposes. Taken from [9].

Wfi ∝
∑
q

| ⟨f | |eq · r |i⟩ |2δ(Ef − Ei − ℏΩ) (1)

Where Wfi is the transition rate between the two
states, |i⟩ , |f⟩ denote the initial and final states, respec-
tively, ℏΩ is the energy of the incoming photon, and
eq · r is the electric dipole operator. Therefore, XAS
(mainly) involves dipole-allowed transitions, following
the well established selection rules:

∆L = ±1 (2)

∆m = ±1, 0 (3)

∆S = 0 (4)

These rules restrict the available final states, simpli-
fying the analysis considerably. However, our discussion
does not explain the presence of oscillations in the ab-
sorption spectrum, nor how the states themselves relate
to the spectral shape. If the one-electron approximation
is involved, one can simplify Eq. 1 by replacing |i⟩ by
the core electron wavefunction |c⟩, and |f⟩ by a free
particle wavefunction |ϵ⟩, giving:

| ⟨f | |eq · r |i⟩ |2 = | ⟨ϵ| |eq · r |c⟩ |2 = M2 (5)

Where one can safely assume that M2 only has a
small energy dependence [1] Then, the presence of the
delta function in Eq. 1 means we are approximately
observing the density of empty states, ρ:

IXAS ∼ M2ρ (6)

At this level of approximation, the absorption spec-
trum should resemble the partial density of states of the
∆L = ±1 level 1 on the absorbing site [1]. There is also
a Lorentzian broadening, which derives from the finite
lifetime of the observed core-hole, which amounts to an
uncertainty in its energy in agreement with Heisenberg’s
uncertainty principle [10]. Finally, as the strength of
spin-orbit coupling varies significantly depending on the
atom being studied, one typically works within the J-
coupling scheme. From these features, one can under-
stand the most prominent qualities of XAS, mainly its
sensitivity to the oxidation state, spin state and crystal
field of the measured ion [1, 11]. Modifying either of
them amounts to altering the partial density of states,
and thus these changes reflect in the spectral shape. A
more thorough look reveals that XAS can also study
orbital effects, such as orbital ordering and Jahn-Teller
effects [10].

Of course, these approximations rely on being able
to treat the transition as a one-electron process, which
is not the case when ions contain partially-filled d or
f states. However, the one-electron picture provides
a rough idea and intuition for the underlying physics
in general XAS experiments. When many-body effects
are prevalent in absorption spectra (and XMCD, by as-
sociation), we move to the more sophisticated ligand
field multiplet theory (LFMT) [11]. A brief discussion
of LFMT applied to XMCD is included in section IV,
where the dichroism arises as a natural consequence of
the many-body effects. We are now in a position to
introduce dichroism effects in X-ray absorption spec-
troscopy.

III. X-RAY MAGNETIC CIRCULAR
DICHROISM

Dichroism implies that the absorption of light in a
material is polarization-dependent [10, 11]. For circu-
lar dichroism specifically, this can happen by breaking
either the inversion or time-reversal symmetries in a sys-
tem. The former is known as natural circular dichroism
and occurs in non-centrosymmetric systems. By XMCD
we typically mean the latter effect [10], which is the fo-
cus of this work. Historically, XMCD was first predicted
in 1985 [12], and observed just one year later [13].

The origin of the XMCD effect in a magnetized sam-
ple can most easily be understood in terms of a one-
electron picture. In a 3d transition metal, the 2p core
states are split in a j = 3/2 level (L3 edge) and a j = 1/2
(L2 edge) level. This corresponds to the spin and orbit

1 More accurately, the partial density of states in the presence of
a core-hole.
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angular momenta being coupled parallel and antiparal-
lel to each other, respective (as J ∈ {|L−S|, ..., |L+S|}).
XMCD can then be described as a two-step process.
Initially, the incoming beam’s helicity is parallel (an-
tiparallel) to the 2p orbital moment. This arrangement
results in the preferred excitation of electrons in the
spin up (down) direction. The second step consists of
the electron occupying a state in the 3d band. If there
are less spin up than spin down holes available, the
XMCD spectrum then has a net negative 2 L3 peak,
and a positive L2 peak [10]. Taking right (µ+) and left
(µ−) polarizations, and B as the sample magnetization,
the XMCD signal can be defined as the difference spec-
trum between them. The process is presented in Fig. 2.

∆µ = µ+(−B)− µ−(−B) = µ−(B)− µ+(B) (7)

Figure 2. (a) Two-step picture for XMCD of a single-
electron system in a magnetic material. Electrons from the
2p3/2 level are preferentially excited into spin up states in
the 3d band, while those from the 2p1/2 level are preferen-
tially excited into spin down states. (b) XAS and XMCD
spectra for the Co L2,3 edge, showing the right (µ+) and left
(µ−) handed polarization, along with their sum (absorption
spectrum) and the difference spectrum (XMCD). From [10].

The value of XMCD then becomes evident: it directly
probes the 3d magnetic states of transition metals. This
capability, in turn, opens up a variety of experimental
setups. Describing them all would be well beyond the
scope of this work, so we will only discuss a pair of
exciting possibilities.

2 The correct sign of the XMCD is a matter of convention that is
hotly debated. For the data analysis, however, being consistent
suffices.

One aspect of XMCD that is perhaps unique amongst
magnetic measurement techniques is the ability to per-
form element-specific magnetometry. Such studies are
instrumental in systems where one wants to isolate
the magnetic behaviour of each ion [14, 15]. Alter-
natively, this ability also allows quantification of mi-
croscopic parameters such as single-ion anisotropies or
next-neighbour exchange for unconventional magnetic
systems such as dilute magnetic semiconductors (DMS)
[16]. These parameters can, in turn, improve exist-
ing model Hamiltonians, or point to discrepancies with
them. In single crystals, a thorough description of the
magnetic configuration of complex oxides becomes pos-
sible [17].

A. Experimental setup

The main hurdle in performing an XMCD experi-
ment is obtaining a monochromatic, circularly polarized
beam with sufficient intensity. In practice, this difficulty
means that one is restricted to large-scale facilities such
as synchrotrons [11]. In the past, another hurdle was
the degree of polarization of the photon beam, as one
relied in an “inclined angle view” with imperfect polar-
ization [10]. This problem was solved with the advent
of third-generation synchrotron sources, where helical
or elliptical undulators provide the necessary circularly-
polarized X-rays.

The rest of the experimental setup is relatively
straightforward, as shown in Fig. 3. An applied mag-
netic field keeps the states magnetized in a non-random
direction. Once impacted by the circularly polarized
light, different signals can be collected that provide the
desired information. While ideally one would want to
measure transmission and directly relate that to ab-
sorption, that would require a sample thickness that
is difficult to achieve in practice [10]. Various possi-
bilities are available, and their discussion can be arbi-
trarily intricate. Here we restrict ourselves to the two
most common methods. Total electron yield provides
a high-quality signal, which consists of secondary elec-
trons ejected from the sample, with the one drawback
of being surface-sensitive [10]. Fluorescence yield meth-
ods, on the other hand, provide bulk-sensitive, noisier
signals by measuring X-rays emitted from the sample
[1, 10].

B. Selection rules in XMCD

We now know how XMCD works and what an exper-
imental setup typically looks like. However, to analyze
the data from a dichroism experiment, one must con-
sider the spin degree of freedom’s interaction with the
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Figure 3. Experimental setup for an XMCD experiment.
The circularly polarized X-rays are provided by an undula-
tor, which then irradiates the sample, which is kept magne-
tized by an applied magnetic field. From [10].

transitions. XMCD therefore comes with its own set of
additional selection rules. The derivation is lengthy, so
it is not covered here, but extensive discussions exist
[1, 10]. Typically, it invokes the Wigner-Eckart the-
orem and is formulated in terms of the electric mul-
tipole operator TQ

q where Q is the rank of the tran-
sition (dipole, quadrupole, et cetera) and the Wigner
3j-symbols. The Hamiltonian now has an additional
magnetic term in terms of total angular momentum J,
the applied field B, the Bohr magneton µB , and gJ is
the Landé splitting factor, which arises when describing
J-coupled magnetic materials (for a thorough review of
magnetism the reader is referred to the standard text-
books by Coey [18] and Blundell [19]):

Hmag = µB(L+ gS) ·B = µBgJJ ·B (8)

For a transition between a final state |J ′,M ′⟩ and an
initial state |J,M⟩, the XMCD selection rules read:

∆J = J ′ − J = −Q,−Q+ 1, ..., Q (9)

q = M ′ −M = −Q,−Q+ 1, ..., Q (10)

These rules are the starting point for the in-depth anal-
ysis of an XMCD spectrum.

IV. LIGAND FIELD MULTIPLET THEORY

Oftentimes, the objective of XAS and XMCD exper-
iments is to identify the oxidation states present in a
given system and their ratio. Another common goal is
to identify the coordination of ions in the crystal struc-
ture. These analyses are typically achieved through the
simulation of spectra from model Hamiltonians. The
best description for a given XMCD spectrum then de-
pends on the nature of the sample. Perhaps unsurpris-
ingly, most of the characteristic features of the K edges
in (conventional) metallic samples can be reproduced
in the one-electron picture [11]. However, we are of-
ten concerned with the 3d levels of strongly correlated
systems, where many-body effects become significant,

and this approximation breaks down. In such cases, we
resort to multiplet theory.

When partially-filled 2p and 3d shells are present,
such as in the processes involving an L2,3 edge, the 2p
and 3d wavefunctions overlap significantly. The final
states can then be found by considering vector coupling
of the 2p and 3d wavefunctions within the appropri-
ate scheme [20]. By multiplet effects, we refer to the
large 2p-3d integrals that happen in such systems [1].
Typically, states are coupled in an L-S (J) scheme, so
they are now identified by the standard term symbols
2S+1LJ [1]. This consideration will then lead to many
possible states for a given configuration. They are now
taken into account for both the initial and final states.
The possibilities then increase drastically, as the de-
generacy of a 2p53dN will have a degeneracy that is
six times larger than a 3dN configuration. The next
step is identifying the term symbols for the degenerate
states. Their relative energies are then calculated ac-
cording to an electron-electron interaction [20], in terms
of semi-empirical parameters related to the overlap of
the 2p and 3d levels. Calculations for these from atomic
Hartree-Fock (HF) theory exist, and a starting point
for a model is 80% of their value (HF is known to over-
estimate such calculations). Importantly, the energies
follow Hund’s rules, and their difference accounts for
the emergence of XMCD in magnetized materials. A
thorough description of the parameters involved can be
found in DeGroot’s excellent review of multiplet effects
and LFMT [20].

There is still one piece missing in the puzzle of re-
producing the L2,3 edges of the 3d transition metals.
What we are missing is that we are not dealing with an
atom in vacuum. We will fail if we try to simulate most
such spectra up to the level of theory described before.
Therefore, we resort to crystal field theory, or its more
general extension, ligand field theory.

Loosely speaking, one approximates the transition
metal as an isolated atom surrounded by the appropri-
ate point charges representing its first neighbours [20].
These neighbours are typically arranged in a symmetry
corresponding to some point group. The main goal be-
comes exploiting the results from group theory to iden-
tify the splitting of atomic energy levels. The relation of
these splittings with the symmetry, and their effect on
the atoms’ electronic structure are well developed and
understood, allowing for an elegant interpretation of the
obtained results [21]. This sensitivity to the symme-
try of the local environment provides XAS and XMCD
with the ability to account for distortions in the crystal
structure and distinguish between crystallographically
inequivalent sites. Alternatively, one can also tell apart
high, low, and intermediate spin states. These abilities
have been exploited in the study of transition metal ox-
ides with unconventional properties, such as the distri-
bution of ions in spinels [6, 22], or unusual spin states in
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barium cobaltate [3]. An example of one such simulated
spectrum is presented in Fig. 4.

Figure 4. L2,3 XAS and XMCD spectra for Fe3O4, along
with multiplet calculations for different crystal fields. The
individual contribution of ions to the XMCD signal is shown.
Taken from [6].

V. SUM RULES

No discussion of XMCD is complete without men-
tioning the various sum rules that can be derived for
the expectation value of the orbital and spin angular
momentum of an atom. This possibility arises because
the incoming radiation only interacts with the orbital
part of the wavefunction, allowing XMCD to distinguish
between the two contributions [1, 2, 10]. Generally
speaking, the sum rules relate the integrated intensities
of the XMCD to the spin and orbital moments of the
ground state [2, 10, 23]. Importantly, they are valid for
both localized and itinerant electron systems, and the-
ory independent. Furthermore, when combined with
angular-dependent studies, they allow for a thorough
exploration of anisotropic magnetic properties with mi-
croscopic origins, such as magnetocrystalline anisotropy
energies, magnetostriction and coercivity [10].

Sum rules are transition-specific, so different sets of
them exist for the L2,3 and M4,5 edges. The derivations
are too lengthy to include in this work, and involve sev-
eral assumptions that are not necessarily valid for every
system 3. Thorough discussions of different derivations
exist in several reviews and textbooks [1, 10, 11]. One
such set of sum rules for the 2p3d transition (corre-
sponding to the L2,3 edge) can be written in terms of

3 In fact, this has also led to several sets of sum rules for equiv-
alent transitions.

the right and left handed absorption, µ+ and µ−, the
total absorption µ, and the number of holes in the 3d
shell corresponding to the oxidation state of the sample,
as well as the spin-quadrupole coupling Tz [2].

⟨Lz⟩ = 2

∫
µ+ + µ−∫

µ
⟨Nh⟩ (11)

〈
(Seff )z

〉
=

3

2

∫
L3

µ+ − µ− − 2
∫
L2

µ+ − µ−∫
µ

⟨Nh⟩

(12)〈
(Seff )z

〉
= ⟨Sz⟩+

7

2
⟨Tz⟩ (13)

One issue that becomes immediately evident comes
from the presence of Tz in Eq. 13. In practice, it is
either assumed as zero, or previously known [1]. For-
tunately, it has been shown to average to zero for pow-
dered samples [11], increasing the applicability of the
sum rules. They, therefore, provide a direct, straight-
forward measurement of the (average) moment of each
ion. These results can then be compared with those
from other techniques, such as conventional magnetom-
etry or neutron scattering, to thoroughly characterize a
material’s magnetic structure.

However, one important caveat is that one must be
careful when applying the sum rules to a given ion’s
spectrum. Several of the assumptions involved in their
derivation are not always valid. Their fulfillment must
then be considered before trusting any results. While
some of the conditions relate to the correct experimen-
tal setup [10, 11], others pertain to specific properties
of the ions under study. First of all, one must have L3
and L2 edges with pure 2p3/2 and 2p1/2 character, re-
spectively [1]. Multiplet effects can mix them, leading
to mixed states. Therefore, the sum rules become more
accurate once one goes up the periodic table, as the
states are more strongly spin-orbit split. The possibil-
ity of unevenly occupied d3/2 and d5/2 due to spin-orbit
coupling must also be accounted for [1].

VI. CONCLUSIONS

X-ray magnetic circular dichroism (XMCD) is a pow-
erful technique for measuring systems where a net mag-
netization is observed. A specialized form of X-ray ab-
sorption spectroscopy (XAS), XMCD can be measured
in single crystals, polycrystals, thin films, and even
molecules, making it versatile. Its chemical specificity
and sensitivity to the local coordination environment of
the ions have made it a valuable tool. XMCD allows
the quantification of microscopic parameters of mag-
netic ordering in a material, by enabling experiments
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akin to an “element-specific magnetometer”. Such ex-
periments also distinguish between different magnetic
states for the same element. XMCD coupled with XAS
can also distinguish orbital ordering phenomena. Fi-

nally, the XMCD sum rules provide a straightforward
way to measure the (average) spin and orbital angular
momenta from each ion in the material, complementing
other magnetic characterization techniques.
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Appendix: Core-level spectroscopy

One of the central principles in condensed matter
physics is that the electronic properties of any mate-
rial can be understood in terms of its outermost elec-
trons. This insight motivates the division of electrons
into so-called “core" and “valence" electrons. The latter,
being more exposed to each atom’s environment, will be
strongly modified by the surrounding crystal field. Core
electrons, on the other hand, lie much deeper within
the atomic shell, and are thus shielded from these ef-
fects. They therefore remain mostly unchanged when
we go from isolated atoms into solids. These different
responses motivate the use of core electrons as a probe
of the valence states of a given solid, through what we
appropriately call core electron spectroscopies. XAS
and XMCD fall into this category, along with other
techniques. A select few are presented in Fig. 5 and
loosely described in the following paragraph.

What these spectroscopies have in common is a gen-
eral mechanism where one excites a core electron and
studies one of its possible transitions. By starting from
a state that is thoroughly understood and character-
ized, the effects of the unknown valence states can be
singled out. Perhaps more importantly, the chemical
selectivity of these techniques emerges because the en-
ergies corresponding to these transitions are unique for
each element.

Of course, something must change, otherwise these
techniques would all be equivalent. The variable that
changes is what we measure. In an X-ray photoelectron
spectroscopy (XPS) experiment the electron is excited
to the continuum, and detected as a photoelectron. The

Figure 5. Schematic representation of a select few core
electron spectoscopies: X-ray photoelectron spectroscopy
(XPS), X-ray absorption (XAS), normal X-ray emission
spectroscopy (NXES), and resonant X-ray emission spec-
troscopy (RXES). Taken from [1]

main factors that influence the spectral shape are the
charge-transfer energy (∆) and the d-d Coulomb inter-
action (Udd) for transition metals (the interested reader
is referred to the landmark paper by Zaanen, Sawatzky
and Allen [24]). In XAS, the core electron is instead ex-
cited to the conduction band, and the appropriate level
of theory will depend on the measured transition. Ide-
ally, one would want to measure the absorption, which
follows a Beer law type of behaviour. Finally, X-ray
emission spectroscopies (XES) are a two-particle pro-
cess where the first electron’s excitation induces the de-
cay of a second one in the valence band, emitting a
photon which is then measured. It is for this reason
that XES provides the most information about the sys-
tem. We can relate the emitted photon’s frequency to
the valence band electron’s energy (as the core electrons
are well-characterized), at the time that we get similar
information to XAS. However, its signal is much weaker
than XAS, so the latter is more commonly applied.
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