
Simulations of quantum transport
with Kwant

Katherine Herperger∗

Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada
(Dated: December 18, 2021)

Kwant is an open-source Python package used to simulate quantum transport dynamics and
solve the scattering problem in tight-binding Hamiltonians. In the following, I will review the
computational methods employed by previous codes; I will discuss the benefits of Kwant; the basic
formalism of the package will be outlined; and finally an example code will be discussed. The aim of
this paper is to provide an introduction to a versatile, accessible software package in order to spark
interest in Condensed Matter Physics simulations.

I. GREEN’S FUNCTION BACKGROUND

Scattering processes are an essential tool for exploring
the dynamics of mesoscopic systems, whether through ex-
periment or theory. Specifically, neutron scattering and
X-ray scattering are commonly employed experimental
techniques. In turn, theoretical calculations can explain
or predict experimental results in great depth. Before the
arrival of Kwant, the most popular method of solving the
scattering problem in Condensed Matter Physics was by
implementing the Recursive Green’s Function (RGF) al-
gorithm. First introduced in 1981 with the purpose of
modelling disordered systems and electron transport [1],
this routine now has applications in other domains such
as Density Functional Theory [2]. The Green’s Function
requires a tight binding model, such as lattices composed
of real molecules with localized orbitals [3]. Below, I will
briefly discuss the Green’s function formalism following
the method of Ref. 4 as a preface to the wavefunction-
based method underlying Kwant.

To begin, the single particle, position-spin representa-
tion of the Green’s function G is [5](

E −H(x)
)
G(x,x’, E) = δ(x− x’) (1)

where H is the system’s Hamiltonian, E is its energy,
and x = (r, σ) is a vector of position and spin. Depend-
ing on the boundary conditions employed, Green’s func-
tion describes a wavefunction at r either resulting from
or causing an excitation at r’. An infinitesimal imagi-
nary energy component η can be introduced to enforce
the boundary conditions, such that the retarded Green’s
function is [6]

Ĝ(E) = lim
η→0+

1

E + iη − Ĥ
. (2)

So, Green’s function is essentially obtained by inverting
the Hamiltonian Ĥ.

However, we are often interested in open systems,
meaning Ĥ has infinite dimension and therefore cannot

∗ kherperger@phas.ubc.ca

be inverted. For instance, the kind of open system dis-
cussed in this paper is one where semi-infinite leads (a
wire connecting two locations electronically) are attached
to a finite scattering region. Such a system may be de-
scribed by the Hamiltonian

H = Hs +
∑
j

(
Hj

l + V j
ls + V j

sl

)
(3)

where Hs describes the scattering region, Hj
l describes

the semi-infinite lead, and V j
ls and V j

sl describe the scat-
tering region–lead coupling. The index j denotes the lead
site index. To bypass the problem of inverting Hj

l (which
has infinite dimension), we can consider the Hamiltonian
of only the scattering region, in terms of the lead:

Hs = Hs +
∑
j

(
V j
slg

j
l V

j
ls

)
(4)

We define gjl = [E + iη −Hj
l]

−1 as the Green’s function
of the lead. If only nearest-neighbour tight-binding is
considered, then V only has non-zero elements where the
scattering region connects to the lead (Figure 1, left).

Therefore, gjl can be reduced to the “surface Green’s

function” (gjl)11 (Figure 1, right). The problem is now
finite-dimensional. Depending on the presence or absence
of external fields, (gil)11 may be calculated numerically or
analytically. Lastly,

Gs = (E + iη −Hs)
−1 (5)

will be a finite 2N × 2N matrix for N lattice sites with
spin up and spin down. Since matrix inversion computa-
tion time scales as (2N)3, this limits the size of system
possible to simulate. Fortunately, sophisticated recursive
techniques exist to more efficiently solve for Gs: herein,
the scattering region is divided into subsection with indi-
vidual Green’s functions, which may be reassembled ac-
cording to Dyson’s equation in order to obtain the overall
Green’s function (see Ref. 7 for details).

2

FIG. 1. Hamiltonian elements for a semi-infinite lead. [4]

II. KWANT METHODS

In the previous section I introduced the Green’s func-
tion commonly used to solve quantum transport prob-
lems in mesoscopic physics. Now, we will explore the
functionality of Kwant, an open-source Python package
used to simulate quantum transport dynamics and solve
the scattering problem in any tight-binding Hamiltonian.
The following discussion stems from the 2014 paper pre-
senting Kwant 1.0 (see Ref. 8); since then, updates to
the software have been made.

A. Defining a geometry

The tight-binding systems modelled by Kwant can ei-
ther be entirely finite, or a finite scattering region con-
nected to semi-infinite periodic leads. In both cases, the
system may be represented as a structure, such as the
one in Figure 2. In other words, each circle in Figure
2 is a “site” at some r. The lines connecting sites rep-
resent non-zero off-diagonal Hamiltonian elements Hr,r’.
For instance, if we have the 2D hopping Hamiltonian

Ĥ = −t
∑
⟨i,j⟩

(c†i,σcj,σ + h.c.), (6)

where i, j = (r, α), (r’, α′) and α, α′ are internal degrees
of freedom, the lines simply represent nearest-neighbour
hopping. To translate a diagram into code, a Builder
object in Python maps the vertices and edges of the di-
agram to its Hamiltonian values for sites and hoppings.
Kwant stores these matrix values as subroutines to be
evaluated later, since the Hamiltonian matrix entries can
be quite complicated; several degrees of freedom (such
as orbitals) can occupy the same position in space, and
matrix elements can depend on dynamic quantities such
as position and momentum. Scattering region sites are
distinguished according to:

FIG. 2. Example of a system modelled with Kwant, where
the finite scattering region is represented in black, and three
groups of semi-infinite leads are shown in red.

Site

Family Tag

Value

Ex: Carbon atoms Ex: (i, j, 1s)

Ex: HC, (i,j,1s)

At each site, the family is the type of atom, the tag
is a unique label within this family, and the value is the
Hamiltonian matrix element evaluated at that site for
those two parameters. Defining a lead is more straight-
forward. Only three ingredients are required: the lead’s
unit cell, the site where it is located, and the lead’s sym-
metry (see the highly symmetric leads later in Figure 6).
In Figure 2, the first two unit cells are shown in different
shades of red for each lead.

B. Scattering calculations

Kwant uses a wavefunction-based approach to solve
the scattering problem. Let’s consider a finite scatter-
ing region with a single lead. In this scenario, the total
Hamiltonian matrix is composed of Hs, Hl, and Vls –
these are the same matrices as defined earlier – and now
the Hamiltonian connecting lead unit cells, Vl, as well:

Ĥ =

. . . Vl 0 0

V †
l Hl Vl 0

0 V †
l Hl Vls

0 0 V †
ls Hs

 (7)

3

The matrix in Eq. 7 is a small-scale representation of the
total Hamiltonian’s general tridiagonal block form. The
zeros indicate that we only consider nearest-neighbour
interactions for every site. The associated wavefunction
is

Ψ =
(
Ψl(i),Ψs

)
(8)

for all lead sites i. Initially, the wavefunction in the scat-
tering region Ψs is unknown, and this is one of the crucial
results of the scattering calculation, because it will yield
important system information such as the local density
of states (DOS) and current density. Due to its transla-
tional symmetry, the lead wavefunctions are expected to
be plane waves obeying the translation operator

ϕn(j) = (λn)
jχn (9)

where χn is the nth eigenvector and λn is the nth eigen-
value, normalized according to the particle current ex-
pectation value ⟨I⟩, so

⟨I⟩ = 2Im [⟨ϕn(j)|Vl|ϕ(j − 1)⟩] = ±1, (10)

and the modes ϕn can be classified according to

⟨I⟩ =

−1 → outgoing
0 → evanescent
1 → incoming

 .

An evanescent wave does not propagate like a classical
electromagnetic wave; the amplitude decays exponen-
tially as a function of distance from the source, and there-
fore has a particle current expectation value of zero. This
notation prepares us to express the wavefunction in the
leads as

Ψn(i) = ϕin
n (i) +

∑
m

Smnϕ
out
m +

∑
p

S̃pnϕ
ev
p (i), (11)

where S, S̃ are scattering matrices. The wavefunction in
the scattering region is simply Ψn(0). By inserting these

Ψ into the Schrödinger equation ĤΨ = EΨ using Eq.
7, Kwant solves for both the scattering matrix S and
wavefunction Ψ(0) inside the finite scattering region.

III. SOFTWARE GOALS

Kwant distinguishes itself from other quantum trans-
port codes by placing an emphasis on (1) calculation ef-
ficiency, (2) ease of integration with other packages, and
(3) user-friendly ways to define a variety of tight-binding
systems.

Point 3 has already been discussed in Section IIA; the
Python objects and variables (site; family and tag ; value)
echo the formalism of Condensed Matter Theory. As well,
the lattices are graphed in an intuitive way. Indeed, the
construction of the tight-binding Hamiltonian by the user
is conducted in Python for ease of use.

FIG. 3. Hamiltonians in low-level representation are trans-
lated to graph nodes and edges.

As well, the computation time required to build the
Hamiltonian scales linearly with number of sites N ,
t ∝ 2N . So using Python – a relatively slow language
– at this calculation input stage is not a problem. Diffi-
culty arises in solving for the scattering matrix and wave-
functions. As mentioned earlier, the scattering calcu-
lation time scales as t ∝ (2N)3 when matrix inversion
is necessary[9], so a faster language is required for this
stage. Therefore, following geometry assembly, Kwant
translates the Hamiltonian into a low-level system, abol-
ishing all Python-specific features. Whereas high-level
systems like Python are user-friendly and have an abun-
dance of pre-defined functions and intuitive keywords,
low-level systems are closer to hardware. In other words,
this kind of language provides little separation from the
computer’s architecture. Besides calculation speed, a
benefit of translating the Hamiltonian to a low-level sys-
tem is it can now interface easily with other languages
such as C and Fortran. An example of a low-level repre-
sentation is shown in Figure 3.

In this way, the Hamiltonian data is effectively stored
in a sparse matrix – a matrix where most of the ele-
ments are zero – that permits entries to be functions
rather than numerical values. To solve linear equations
involving such matrices, Kwant employs the MUltifrontal
Massively Parallel sparse direct Solver (MUMPS) library,
which is designed for intensive high-performance calcula-
tions [10, 11]. This hybrid method, which allows for both
user-friendly calculation setup and calculation-friendly
computations, outperforms a sample RGF method writ-
ten entirely in C in total computation time for large sys-
tems (Figure 4).

IV. CODE EXAMPLE

1| import kwant

2| sys = kwant.Builder()

3| mylattice = kwant.lattice.square()

4|

5| def stadium(position):

6| x, y = position

7| x = max(abs(x) - 70, 0)

8| return x**2 + y**2 < 100**2

9|

10| sys[mylattice.shape(stadium, (0, 0))] = 0

11| sys[mylattice.neighbors()] = -1

4

FIG. 4. Computation time versus number of sites for two
Kwant calculations (the construction phase and the solving
phase) as well as an RGF method written entirely in C.

12|

13| lead_symmetry = kwant.TranslationalSymmetry([0, -1])

14| lead = kwant.Builder(lead_symmetry)

15| lead[(mylattice(x, 0) for x in range(30))] = 0

16| lead[mylattice.neighbors()] = -1

17| sys.attach_lead(lead)

18|

19| sys = sys.finalized()

20|

21| local_dos = kwant.ldos(sys, energy=-3.8)

22|

23| import matplotlib.pyplot

24| kwant.plotter.map(sys, local_dos, num_lead_cells=10)

This short example code is provided by Kwant [8].
Here, we will simulate scattering in a stadium (i.e. dy-
namical) billiard, which is a system where particles can
move freely between and collide elastically with the con-
straint of the boundary “walls”. This problem is not
trivial to solve, as the density of states exhibits universal
conductance fluctuations, wherein the electrical conduc-
tance varies from sample to sample due to inhomogeneous
scattering sites [12, 13]. The following is a detailed ex-
planation of the above code. The first three lines import
the Kwant package and initialize a Builder object and a
lattice.square object stored in the variables sys and my-
lattice, respectively. These variables will be empty for
now. Lines 5 to 8 are a function that will be called to de-
termine the scattering region of the problem, according
to the equation illustrated in Figure 5 (orange region).
If a given point (x,y) is inside the shape, this function
returns True.

We now set an attribute of the lattice in line 10 by col-
lecting the sites inside the stadium (those that are True)
and defining (0,0) as the origin point. The onsite poten-
tial for each site is 4, meaning the hopping coefficient is
−4t and t = −1. The hopping is for nearest neighbours
only (line 11).

In lines 13 and 14, we let the variable lead symmetry
define the translational symmetry of the lead, which is
the output of kwant.builder. We then build and attach

FIG. 5. Illustration of billiard boundary conditions a2 +
y2 < 1002, where (orange) a=max(abs(x)-70,0), (purple)
a=abs(x)-70, and (green) a=abs(x). The orange condition
is for a dynamic stadium billiard, a system boundary which
may exhibit complex dynamical behaviour [14].

0

1

FIG. 6. Local density of states for a stadium billiard at a given
energy. Two leads are shown at the bottom of the figure. [8]

two kinds of leads in lines 15 to 17. Finalizing the entire
system is carried out in line 19: the system is trans-
lated from its high-level to low-level representation. One
possible calculation output is the local density of states
(line 21). The scattering matrix could be printed using
print(kwant.smatrix) for the system at a given energy.
Finally in lines 23 and 24, Python’s PyPlot can be im-
ported to graph the local density of the system (Figure
6).

V. CONCLUSION

In summary, Kwant distinguishes itself from pre-
existing quantum transport codes for tight-binding sys-
tems by approaching the scattering problem via a
wavefunction-based method rather than the Recursive
Green’s Function (RGF) algorithmn. The software is
user-friendly thanks to its use of high-level programming
for calculation and lattice set-up. A translation to low-
level representation offers a solution to long computa-

5

tion times, and has the advantage of ease of interfac-
ing with a variety of other coding languages. This hy-
brid model not only offers these benefits, but also out-
performs a standard C-based RGF algorithm for large

system sizes. Since the code is open-source, improve-
ments and suggestions can be continuously tracked at
http://kwant-project.org/.

[1] D. J. Thouless and S. Kirkpatrick, Conductivity of the
disordered linear chain, Journal of Physics C: Solid State
Physics 14, 235 (1981).

[2] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and
K. Stokbro, Density-functional method for nonequilib-
rium electron transport, Phys. Rev. B 65, 165401 (2002).

[3] F. Sols, Recursive Tight-Binding Green’s Function
Method: Application to Ballistic and Dissipative Trans-
port in Semiconductor Nanostructures, in Quantum
Transport in Ultrasmall Devices: Proceedings of a NATO
Advanced Study Institute on Quantum Transport in Ul-
trasmall Devices, held July 17–30, 1994, in II Ciocco,
Italy , edited by D. K. Ferry, H. L. Grubin, C. Jacoboni,
and A.-P. Jauho (Springer US, Boston, MA, 1995) pp.
329–338.

[4] G. Metalidis, Electronic Transport in Mesoscopic Sys-
tems, Ph.D. thesis (1980).

[5] J. J. Sakurai and J. Napolitano, Modern quantum me-
chanics (Cambridge University Press, 2021).

[6] A. Zangwill, Modern electrodynamics (Cambridge Uni-
versity Press, 2018).

[7] G. D. Mahan, Many-particle physics (Kluwer Academic
Plenum Publishers, 2000).

[8] C. W. Groth, M. Wimmer, A. R. Akhmerov, and
X. Waintal, Kwant: a software package for quantum
transport, New Journal of Physics 16, 63065 (2014).

[9] Krems, R. V. Molecular Collisions in External Fields,
chapter 8; John Wiley Sons, Ltd, 2018; pp. 187–216.

[10] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y.
L’Excellent, A fully asynchronous multifrontal solver us-
ing distributed dynamic scheduling, SIAM Journal on
Matrix Analysis and Applications 23, 15 (2001).

[11] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and
S. Pralet, Hybrid scheduling for the parallel solution of
linear systems, Parallel Computing 32, 136 (2006).

[12] D.-H. Choe and K. J. Chang, Universal Conductance
Fluctuation in Two-Dimensional Topological Insulators,
Scientific Reports 5, 10997 (2015).

[13] Y. Hu, H. Liu, H. Jiang, and X. C. Xie, Numerical
study of universal conductance fluctuations in three-
dimensional topological semimetals, Phys. Rev. B 96,
134201 (2017).

[14] J. Lei and X. Li, Some dynamical properties of the sta-
dium billiard, Physica D: Nonlinear Phenomena 189, 49
(2004).

