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The Ising ferromagnet is used as context for a discussion of critical behaviour and the application
of renormalization. The notion of criticality is introduced, and its importance for understanding
correlations amongst the spin variables of the Ising model is emphasized. For the 1D Ising model,
renormalization, in the form of the decimation technique, is used to analyze correlations and obtain
an exponential behaviour for the correlation length. In 2D, the expected power law behaviour is
observed, and a modified version of decimation is used to compute the critical exponent of correlation
length.

Phase Transitions and the Ising Model— The
behaviour of materials around second-order phase transi-
tions is among the most fascinating aspects of collective
phenomena. Phase transitions are generally character-
ized by immediate changes in macroscopic system prop-
erties that occur as some controlled parameter crosses
a particular threshold. First-order transitions are dis-
continuous in nature, where a finite jump occurs in some
macroscopic variable. Conversely, in second-order transi-
tions such variables are continuous across the phase tran-
sition boundary, but their derivatives are discontinuous.
In the 2D Ising ferromagnet, a second-order phase tran-
sition occurs at a finite value of temperature, T = TC ,
which is denoted as a critical point of its phase diagram;
see Fig. 1. The model Hamiltonian describing the Ising
ferromagnet system is

H = −J
∑
⟨ij⟩

SiSj −H
∑
i

Si (1)

where Si = ±1 are spins on a to-be-defined lattice, J is
a coupling between spins and H is an external magnetic
field. In this paper we will examine this model in 1D
and in 2D, with a particular focus on its behaviour at
criticality, which is to say near its second-order phase
transition.

The macroscopic variable used to distinguish the
phases of a material is known as an order parameter,
so named since it is a measure of the degree of ordering
within the system. In the Ising ferromagnet, the order
parameter is the average magnetization of the system,
M . Consider the phase behaviour of a typical ferromag-

FIG. 1. Phase diagram of the 2D Ising ferromagnet.

netic material sample, as presented in Fig. 1. The two

parameters that we tune to move about the phase space
are temperature, T , and the strength of an external mag-
netic field, H. Suppose we were to experimentally tra-
verse curve ‘1’ on the diagram. For a constant value of T
we vary H and will observe a sharp, first-order transition
as the material goes from a phase in which M is positive
(average spin-up) to one in which it is negative (average
spin-down). Next consider a traversal of the curve ‘2’.
At zero field, coming from high temperature through the
vicinity of the circled region about T = TC , we observe
that the system will have to spontaneously choose a path
along the parabolic curve toward non-zero field.
Correlations and Critical Exponents— Although

the magnetization varies continuously on this path
through TC , its derivative with respect to the external
magnetic field - the susceptibility χ - diverges as T → TC

according to,

χ =
∂M

∂h
≈ (T − TC)

−γ (2)

where γ is a characteristic, critical exponent that de-
scribes the divergence. The susceptibility of the system
is also related to the connected correlation function

Γc(i− j) = ⟨SiSj⟩ − ⟨Si⟩⟨Sj⟩ (3)

which is a measure of the mutual statistical dependence
of the spins Si and Sj . The susceptibility may be ex-
pressed in terms of ΓC(i) as,

χ = β

∞∑
i=0

ΓC(i), (4)

revealing that the susceptibility provides us with a mea-
sure of how statistically correlated the system is as a
whole. As each spin Si is more statistically dependent
on the other spins, χ increases.
When the system is far from the critical point, these

correlations ΓC(i) decay exponentially with distance,

ΓC(i− j) ≈ exp

(
−|i− j|

ξ(T )

)
. (5)

Here ξ(T ) is a temperature-dependent length, called the
correlation length. But, in line with the divergent be-
haviour of χ, as T approaches TC , the correlations also
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diverge, with

ξ(T ) ≈ 1

|T − TC |ν
. (6)

Here ν is a different critical exponent, similarly charac-
terizing physical behaviour near the critical point. This
divergence is a fundamental characteristic of critical phe-
nomena. The average magnetization of the Ising model
system is a macroscopic property that is computed by
summing up the microscopic values of all the different
spins. The correlation behaviour for the system far from
the critical point, described by Eq. (5), suggests that the
system can be thought of as consisting as an aggregate of
various domains, or groups of correlated spins, that are,
at their largest, of the size defined by ξ. At TC , Eq. (6)
says that ξ → ∞; the correlation length extends across
the entire system, and this picture of sub-domains ceases
to be accurate.

The order parameter M , other thermodynamic func-
tions such as χ, the heat capacity C, as well as the cor-
relation length all exhibit power law divergence in the
neighbourhood of the critical point, and the divergence
is defined by a series of the aforementioned critical ex-
ponents. It turns out to be the case that these critical
exponents have far more generality than might appear
from this Ising model context. There are many other
examples of critical phenomena, such as the liquid-vapor
transition in water and the transition undergone in Pb to
become superconducting [1]. In fact, very different phys-
ical systems often have very similar critical exponents,
despite their apparent microscopic differences. This phe-
nomenon is known as universality, and references the way
in which the behaviour of certain parameters near crit-
icality is universal across certain classes - consequently
named universality classes - of systems. In some sense,
the macroscopic similarities across a universality class
are the result of large distance correlations coming to
dominate the behaviour at criticality, such that the mi-
croscopic details become increasingly ‘washed out’.

The Kadanoff Construction— Kadanoff first con-
cretized this notion of criticality leading to a washing
out of microscopic details [2]. Consider what happens
to the correlation length ξ(T ) when we ‘zoom out’ from
the system. Here we’re assuming the system to be in-
finitely large, and that we are at any time viewing some
finite subset of it. At T far from TC , the exponential
decay of Eq. (5) governs the behaviour of ξ(T ). Thus we
should expect that zooming out by a factor of two will
lead to a shrinking of ξ(T ) by a corresponding factor of
two. As we view the system at our new perspective, the
sub-domains we observe will look half as large as they did
before. However, at T = TC the correlation behaviour is
governed by Eq. (6), and is itself infinite. No amount
of zooming out will change this, i.e. ξ(T ) is invariant
to any such zooming out procedure. The assumption of
Kadanoff was to take this one step further, and suggest
that near criticality one could zoom out from a system
and all of its properties would as a whole remain invari-

ant. The assumption of Kadanoff was to take this one
step further, and suggest that if new, composite vari-
ables are appropriately defined to capture the behaviour
of groups of spins, then one should be able to zoom out
from a system and see that all its macroscopic properties
remain invariant.
All thermodynamic properties of the system are com-

putable from the partition function, so let us now define,

Z =
∑

{Si=±1}

exp (−βH) (7)

=
∑

{Si=±1}

exp

K
∑
⟨ij⟩

SiSj − h
∑
i

Si

 (8)

where we’ve redefined the coupling constants as K = Jβ
and h = Hβ. The preceding sum is over all configura-
tions of the spins Si We anticipate a second order phase
transition to occur at K = KC , and h = 0. Our zooming
out procedure will have the effect of modifying the cou-
plings between the spins, and will redefine Z in terms of
the modified couplings. More specifically, it will leave us
with a new Hamiltonian,

−βH̃ = K(b)
∑
⟨ij⟩

S̃iS̃j + h(b)
∑
i

S̃i (9)

with the couplings K(b) and h(b) being functions of the
factor, b, by which we zoom out. This procedure of zoom-
ing out and calculating the induced modifications to the
coupling constants for a system is known as renormaliza-
tion. The expressions K(b) and h(b) are known as the
renormalization group flow equations since they can be
thought of as describing how the coupling constants ‘flow’
through their own parameter space in response to the ac-
tion of a renormalization procedure. Perhaps the most
well-known example of this type of sensitivity to scale
is that of the renormalization of the electron charge. In
early work on QED, the notion of an ’effective charge’
that varied with distance scales was fundamental to un-
derstanding the validity of the theory; the closer to the
electron one gets, the more one penetrates its positive
cloak, and the more charge is experienced [3]. With this
picture in mind, the critical point, where the system is in-
variant to zooming out, must correspond to a point from
which the coupling constants do not flow under renor-
malization. We identify the critical point with non-trivial
fixed points of these equations. Formally, the transforma-
tions generated by renormalization do not form a sym-
metry group in the rigorous mathematical sense, but the
nomenclature is conventional.

The spins S̃i must be defined by some procedure which
takes in several spins in the original system, and com-
putes some aggregate spin quantity for use in the zoomed
out system. In Kadanoff’s original proposal, the spins
would be grouped into ‘blocks’ of linear size ba, with
a being the lattice spacing. Thus each block contained
Nb = bd many spins, where d is the dimension of the sys-
tem. The new spin variables could be a simple averaging
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of the spins in each block, or some other such procedure.
Note that a major assumption has been made here that
the Hamiltonian can be written in the same form upon
rescaling. We will later observe that this assumption can
fail for quite simple models.

It can be demonstrated that the zooming out by a fac-
tor of b induces a change in the correlation length of the
following form,

ξ(K,h) = bξ(K(b), h(b)) (10)

as long as we are in the vicinity of the critical point and
can take advantage of its invariance. Furthermore, in-
troducing t = K −Kc as the deviation from the critical
point, it can be shown that the correlation length also
satisfies,

ξ(t, h) = bξ(b−
1
ν t, bλhh) (11)

where ν is precisely the critical exponent which is our
aim, and λh is related to another critical exponent which
we will not discuss. The computation of ν can be
achieved by expanding the function K(b) about the crit-
ical point, which we will ultimately demonstrate in an
example.

Decimation in the 1D Ising Model— Instead of
instituting an averaging procedure over block spins, we
will apply a cruder technique of removing every other
spin from the system. This is known as decimation. Be-
ginning with a 1D Ising model described by the partition
function of Eq. (8). The procedure of decimation achieves
the same end as the zooming out procedure of Kadanoff’s
block spin construction. We will carry out the sum over
spin configurations, but only for the Si with even-valued
i in the spin chain. The result will be a new partition
function, in terms of a new Hamiltonian, where the re-
maining sum is only over the configuration possibilities
for the remaining, odd-valued i spins Si. This new, effec-
tive result, will represent a renormalized system of half as
many spins, or equivalently, of twice the lattice constant:
a → a′ = ba where b = 2. The procedure is illustrated
schematically in Fig. 2. This procedure returns the fol-

FIG. 2. The procedure of decimation in the 1D Ising model
is presented schematically. The sum over configurations of
every second spin is carried out, yielding a remaining partition
function for the odd-value indexed spins.

lowing modifications to the coupling constants,

K(b = 2) = K ′ =
1

2
ln (cosh(2K)) , (12)

h(b = 2) = h′ = h (1 + tanh(2K)) +O(h2). (13)

Next we can analyze the thermodynamic properties im-
plied by these equations. Note that if we were to it-
eratively apply this zooming out procedure, decimating
more and more spins in the chain, these equations tell
us how the coupling constants K and h would be altered
upon each successive iteration. As discussed, the critical
point must be a point where the system is invariant to
such iterations, and so we wish to identify fixed points in
these equations. Specifically, we are looking for values of
K∗, in the equation,

K∗ =
1

2
ln (cosh(2K∗)) . (14)

This equation has no non-trivial fixed points, for fi-
nite K∗. This is observed by noting that the function
1
2 ln (cosh(2x)) < x for all 0 < x < ∞. If we begin our
zooming out procedure from any finite value of K, suc-
cessive applications of this equation will eventually bring
K → 0. We interpret this as the K = 0 (T = ∞) point
corresponding to the infinite-temperature, paramagnetic
phase of the system. Here correlations are short range
and ξ ≈ a, i.e. on the order of the separation between
the spins. Next consider the point K = ∞. This is an
unstable, non-trivial, fixed point and thus it represents
a critical point of the model where correlations will ex-
tend across the entire system (ξ → ∞). We can analyze
the behaviour of K near this point to understand how ξ
behaves. For K ≫ 1,

K ′ =
1

2
ln

(
e2K + e−2K

2

)
(15)

=
1

2
ln
(
e2K

(
1 + e−4K

))
− 1

2
ln(2) (16)

= K + ln
(
1 + e−4K

)
− 1

2
ln(2) (17)

≈ K − 1

2
ln(2) +O(e−4K). (18)

If K = ∞ then K ′ = ∞ and the system remains at the
fixed point. However if the system begins at some finite
K ≫ 1, then the above expansion tells us that K ′ will
move slowly in the negative direction. Retrieving the
parameter t quantifying the deviation from the critical
point, we wish to understand how t changes as we step
infinitesimally away from the critical point. We define
just such an object, the β-function:

βK(K) =
dK(b)

d ln b
= −1

2
. (19)

With this definition, we identify the critical point to be
βK(KC) = 0. The result for this problem of − 1

2 comes
from identifying dK with the result in Eq. (18), and
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that d ln(b) = ln(2) for our b = 2 example. Integrat-
ing the above differential equation yields the explicit b-
dependence of the coupling constant,

K(b) = K0 −
1

2
ln(b). (20)

Now suppose we iteratively apply our zooming out pro-
cedure many times, such that K(b) → 0. This corre-
sponds to returning the system to the stable fixed point;
the paramagnetic phase where T → ∞ and ξ ≈ a. To
reconcile this with Eq. (20), we have b ≈ exp(2K0) =
exp(2J/T ), and recalling Eq. (11) we have

ξ(T ) ≈ b · a = exp(2J/T ) · a (21)

in this regime. The fact that we achieve exponential,
rather than power law behaviour for ξ(T ) is expected for
the 1D Ising model, and is quite general for systems of
sufficiently low dimension. We will see that in the 2D
model this will cease to be the case.

The Migdal-Kadanoff Procedure— The fact that
the 1D Ising model Hamiltonian could be expressed in
the same form following the renormalization procedure
was critical to the method’s success. In higher dimen-
sions, this simplicity disappears, and renormalization in-
troduces new interactions as we zoom out. To observe

FIG. 3. Illustration of the Migdal-Kadanoff, or ‘bond-moving’
procedure for a 2D square lattice. The objective is to re-
tain the same interaction structure in the zoomed out lat-
tice and its model Hamiltonian. The straightforward decima-
tion approach outlined in the upper row, would yield next-
to-nearest neighbour interactions, thus making the problem
invariably more complicated. The bond-moving method of
Migdal, in the lower row, proceeds by shifting the bonds from
the summed-over lattice sites on to the remaining nearest-
neighbour bonds [4, 5]. Thus the Hamiltonian remains of the
same form by design.

this concretely, consider the partition function for the
2D Ising model,

Z =
∑

{S=±1}

exp

 ∑
⟨(ij),(kl)⟩

KSijSkl

 (22)

for simplicity we’ll focus on the case of h = 0 here. We’ll
try to follow the same decimation procedure for this

model, and observe the complications that arise. Sup-
pose, that following the upper set of lattice diagrams in
Fig. 3, we identify half of the spins to be summed over.
Denote those to-be-summed spins by Bij and those to
remain as Aij . We have,

Z =
∑
{A}

∑
{B}

exp

 ∑
⟨(ij),(kl)⟩

KAijBkl

 (23)

=
1

2

∑
{A}

∑
{B}

∏
kl

exp

{∑
η

KA(k,l)+ηBkl

}
(24)

=
1

2

∑
{A}

∏
kl

(
exp

{∑
η

KA(k,l)+η(+1)

}
(25)

+exp

{∑
η

KA(k,l)+η(−1)

})

=
∑
{A}

∏
kl

cosh

(∑
η

KA(k,l)+η

)
(26)

where η = (1, 0), (0, 1), (−1, 0), (0,−1) to cover the four
A sites that are nearest neighbours of the Bkl site. The
factor of 1

2 is introduced to compensate for double count-
ing. In Eq. (25), the sum has been carried out over the
{B} configurations, and this necessarily introduces terms
that couple sites which were next-to-nearest neighbours
in the original lattice. For example, terms of the form
Ai+1,jAi,j+1 will appear, corresponding to the diagonal
nearest neighbour lines in the upper row of Fig. 3. We
cannot, without further approximation, return this ex-
pression to the form of the original model as we did in
the 1D case.
The proposal from Migdal is to instead implement a

procedure which deliberately retains the form of the orig-
inal Hamiltonian. Bonds are selectively translated on
to new sites of the retained lattice, as illustrated in the
lower row of Fig. 3. The underlying motivation for this
choice is to retain the longer-distance behaviour of the
interactions, with each spin still being connected to only
two adjacent neighbours per direction, in the same man-
ner as the d = 1 model. The movement of the bonds
achieves this goal precisely, with the upshot of renormal-
ization group flow equations that have identical form to
what we observed in 1D, except with twice the coupling
constant value, i.e.

K ′ =
1

2
ln (cosh(4K)) . (27)

As before, we’re looking for fixed points, K∗ of this equa-
tion. The situation is qualitatively different in this case,
note that

1

2
ln (cosh(4K)) =

{
4K2 ≪ K if K ≪ 1

2K > K if K ≫ 1
(28)

Again we find that the K = Jβ = 0 point is a stable
phase of the system. However, in contrast to the 1D
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case we observe that the K = ∞ fixed point is also sta-
ble, as successive applications of K ′ = 2K will of course
not decrease K. This indicates that there is some finite
value of K for which the function K − 1

2 ln (cosh(4K))
must change sign, i.e. a value where the modification of
the coupling constants will be so as to increase them, or
to decrease them, depending on which side of the point
the system finds itself. Numerical solutions provide that
K∗ = 0.30469 [6].
Now consider replacing K = K∗+ t, with t = K−KC .

Recalling Eq. (11) and expanding in small t,

K ′ ≈ 1

2
ln (cosh(4K∗)) + 2 tanh(4K∗)t+ . . . (29)

=⇒ t′ = 1.6786t = b
1
ν t (30)

in our present setup with b = 2, we find ν = 1.3392.
Conclusions— In summary, we have demonstrated

the use of renormalization as a formal technique of zoom-
ing out in our perspective of a physical system. We’ve
found that the method of decimation can be used as an
example of this technique, to characterize the behaviour
of the correlation length, ξ(T ), near critical points in
particular. In the 1D Ising model, we found that ξ(T )
exhibits exponential behaviour, as is typical of systems

of low dimension. In 2D we observed that decimation
is not so straightforward, and without the adjustments
provided by the Migdal-Kadanoff procedure, leads to pro-
liferation of the complexity of interactions in the zoomed
out system. Following adjustment, we were able to com-
pute the critical exponent for ξ(T ), finding ν = 1.3392.
It should be noted that an exact solution for this

critical exponent has been computed [7]. The result,
νexact = 1, deviates significantly from the crude result
of our renormalization through decimation. Granted, we
truncated the expansion of Eq. (29) for simplicity, and
this leads inevitably to our inaccuracy. Furthermore, had
we chosen a different scheme for moving the bonds, for
example by carrying this out on a different lattice, we
would have computed different critical exponents. Un-
fortunately this is the price paid for the simplicity of the
Migdal-Kadanoff approach. A scheme-invariant under-
standing would require a more controlled renormaliza-
tion procedure. Nevertheless, this exploration demon-
strates the power of renormalization, and its utility for
analysis of models which do not yet admit exact solu-
tions. Second-order phase transitions are ubiquitous in
the study of physical systems, and renormalization offers
a tool that can be applied to disparate physical systems
that may differ broadly in their microscopic character.
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