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We provide a very brief overview of a topological phase of matter that has a gapless bulk and
edge modes that are protected solely by an on-site symmetry action and the gaplessness of the bulk.
To this extent, we study the Ising-Hubbard model as a 1+1D IGSPT and derive its phase diagram
under tuning the external field and chemical potential. We also provide an effective field theoreric
construction of the 1+1D IGSPT that allows us to explicitly obtain the protected edge modes and
also characterize its topological properties.

I. INTRODUCTION

Topological Insulators (TIs) are a novel phase of
matter that have an insulating bulk but admit con-
ducting states on the edge [1]. Thus, their properties
are intrinsically linked to the topology of the manifold
the system is placed on [2]. Such systems are generally
described by free electron theories. A generalization that
includes interactions is given by Symmetry Protected
Topological Phases (SPTs) [3].

SPTs typically have a bulk gap protected by a global
on-site symmetry of the system, but admit non-trivial
surface states. The trivial and topological phases of an
SPT are connected by a phase transition that involves
closing the bulk gap. It can also be continuously
connected to the trivial phase if one of the symmetries is
spontaneously broken (Hence “Symmetry Protected”).

The topic of this paper however is intrinsically gapless
SPT phases (IGSPTs). Such phases, initially proposed
by Thorngren et al. [4], are fundamentally different from
standard SPTs in that the bulk is gapless but the system
hosts topological edge modes. In fact, opening up the
bulk gap tunes the system out of the topological phase.
Furthermore, the phase can be studied by looking at
charges at the end of long-range string operators. The
topological properties of the system can be linked to the
edge and the bulk transforming differently under the
on-site symmetry. A simple 1+1D IGSPT is realized by
the Ising-Hubbard model.

Another mechanism for generating an IGSPT is by
examining the 1D edge of a 2+1D SPT. The bulk of the
SPT can be trivialized by adding fermionic couplings,
thereby changing the action of the on-site symmetry. We
provide a simple bosonized description of such a model
using K-matrix theory to complement the Ising-Hubbard
construction, and to explicitly obtain the edge modes.
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II. ISING-HUBBARD IGSPT

The 1D Ising-Hubbard model describes a 1D lattice
that can host spinful fermions (electrons) with an on-
site repulsion and a nearest neighbour spin-spin coupling.
The Hamiltonian is given by:

H = HHub +HIsing (1)

HHub = −t
∑
j,σ

(ĉ†jσ ĉj+1σ + h.c)− µ
∑
j,σ

n̂jσ + U
∑
j

n̂j↑n̂j↓

(2)

HIsing = J
∑
j

Ŝz
j Ŝ

z
j+1 + h

∑
j

Ŝx
j (3)

where ĉjσ are the usual electron annihilation operators

and n̂jσ = ĉ†jσ ĉjσ is the on-site number operator. To
obtain the spin operators, we can assemble the electron
operators into vectors and take a matrix product with
the Pauli sigma matrices. Let ĉ̂ĉcj = (ĉj↑, ĉj↓). Then

Ŝα
j = ĉ̂ĉc†jσ

αĉ̂ĉcj . We can tune the filling-fraction of the
system using the chemical potential µ. We also assume
an anti-ferromagnetic coupling J > 0 and the external
field strength parameter h allows us to tune the Ising
phase of the system.

We begin by studying the ground state of the sys-
tem at half-filling. The on-site Hubbard repulsion
favours a single electron per site, giving us an effective
Ising system. At h = 0, we have a standard Ising anti-
ferromagnet, eventually undergoing a phase transition
to a paramagnet at some critical value h = hc.

Things start to get interesting when we dope the
system with electrons by tuning the chemical potential
[7]. The doped electrons pair with up with the singly
occupied sites (termed a “doublon”) and and form a
gapless state. This state is gapless since the paired
electrons do not contribute to the Ising energy and we
essentially have just the hopping term dictating the
dynamics of the system. This phase is described by
a gapless Luttinger liquid, which is a model used to
describe interacting electrons in 1D.

The unpaired spins still retain a trace of their anti-
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ferromagnetic order due to the dynamics of the paired
“doublons”. To see this, consider a doublon sandwiched
between two unpaired spins. The energy cost for the
doublon hopping to the next site is determined by the
energetics of the final state. If the unpaired spins are
aligned, the energy is raised by J , while if they are
anti-aligned, the energy is lowered by J . Thus, in the
ground state, we obtain an anti-ferromagnetic spin-1/2
chain, albeit with doublons interspersed between the
spins. This phase is identified as the topological Lut-
tinger liquid phase of the system. We will address what
makes it topological shortly.

The discussion proceeds in a similar manner when
the system is an Ising paramagnet and is then doped
with electrons to form doublons. This bulk state is
described by a gapless Luttinger liquid, as before. We
however do not have the long range anti-ferromagnetic
order that was present in the toplogical phase. Thus,
this phase is identified as the trivial Luttinger liquid.
The four phases of the system as functions of the
parameters h and µ are shown pictorially in FIG. 1.

FIG. 1: Phase diagram for the Ising-Hubbard model obtained
using DMRG calculations by Thorngren et al. [4] The circles
represent the paired doublons away from half filling at µ =
µ0. The anti-ferromagnetic and paramagnetic Ising states are
labelled as Ising and trivial Mott insulators in this graphic. h
is the external magnetic field applied to the system and µ is
the chemical potential.

Returning to the topological phase, consider the
fermion parity operator P̂j = (−1)n̂j↑+n̂j↓ . This op-
erator checks the number of fermions at a site mod
2 and assigns a phase of ±1. We can thus create a
string of parity operators P̂i...P̂j that has the effect of
“squeezing” the doublons out of the chain, since the
P̂j acts trivially on them. This allows us to map spin
correlations between the doped chain and the undoped
chain at half filling.

⟨Ŝz
i P̂i+1...P̂j−1Ŝ

z
j ⟩doped ∼ ⟨Ŝz

i Ŝ
z
j ⟩undoped (4)

Thus, the expectation value of the string operator is non-
zero in the topological phase, while it decays exponen-
tially with distance in the trivial phase (FIG. 2). Observe

that in order to diagnose the topological phase, we are
required to make non-local measurements of the fermion
parity (through the parity string operator). This is char-
acteristic of the topological phase and is not captured
by the local order parameter of Landau-Ginzburg theory.
The non-trivial expectation value also points towards the
existence of edge-modes in the topological phase. To see
this, consider a finite length chain (open boundary condi-
tions). Then, the string order points towards a non-zero
expectation value between the ends of the chain. How-
ever, the sandwiched parity string now simply measures
the total fermion parity of the chain.

0 ̸= ⟨Ŝz
1 P̂2...P̂N−1Ŝ

z
N ⟩ = (−1)N ⟨Ŝz

1 P̂1P̂N Ŝz
N ⟩ (5)

Thus, we have non-trivial Ŝz charge on either end of
the string with a two-fold degeneracy (corresponding to
states of fermion parity).

Finally, we want to discuss the symmetries of the

FIG. 2: The string order, with the sandwiched parity string,
has non-trivial expectation value with increasing distance,
whereas the standard two-point correlator decays exponen-
tially, displaying the topological nature of the phase [4].

Hamiltonian and the phases above. The full Hamilto-
nian has a Z4 symmetry which corresponds to rotating
the system by π around the x-axis (recall that spin-1/2
fermions get a − sign on a 2π rotation). At half
filling, the anti-ferromagnet spontaneously breaks the
Z4 symmetry to its Z2 subgroup of 2π rotations, while
the paramagnet preserves the full symmetry. In the
topological phase, however, the gapless bulk has a
“hidden” symmetry-breaking, since we explicitly see the
Z2 symmetry only when we squeeze out the doublons.
The edge in fact is anomalous in that it respects the
full Z4 on-site symmetry, which is characteristic of the
topological phase. Explicitly breaking the symmetry by
tuning to the anti-ferromagnetic phase drives us to a
topologically trivial phase. Thus, the edge modes are
protected by the Z4 symmetry.
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III. BOSONIZED EFFECTIVE FIELD THEORY

Thorngren et al. remark that a possible way to con-
struct IGSPTs is to take the gapless edge of an SPT and
trivialize the rest by gapping out the relevant degrees
of freedom [4]. This means we add interaction terms
to the Lagrangian that creates a gap in the excitation
spectrum of certain degrees of freedom. Thus, at low
energies, this degree of freedom is not excited since it
requires a finite energy cost.

We consider the edge of a 2+1D bosonic SPT and
trivialize the bulk by adding fermions. Then we estab-
lish a boundary on the 1D edge by gapping out only the
fermions in the topological phase and gapping out all the
degrees of freedom in the trivial phase. The following
model has solely been constructed by the author.

We begin by employing the K-matrix formulation
of 2+1D SPTs to describe a simple bosonic SPT edge
[5][6]. Consider 2π periodic fields ϕϕϕ(x, t) = (ϕ1, ϕ2)
whose dynamics is determined by the Lagrangian
density:

Lϕ = ∂xϕϕϕ
Tσx∂tϕϕϕ− ∂xϕϕϕ

TVϕ∂xϕϕϕ (6)

where σx is the usual Pauli matrix and Vϕ is an undeter-
mined 2× 2 matrix of parameters. It might seem a little
strange to use fields that only take values on [0, 2π), but
they resolve several complications that arise if we use the
base boson degrees of freedom. In particular, the edge
description in terms of a Lagrangian density becomes
exceedingly complicated due to interactions. To recover
the original bosonic creation/annhilation operators, we
simply exponentiate linear combinations of the ϕϕϕ fields.

The ϕϕϕ fields are endowed with the following com-
mutation relations:

[∂xϕi(x), ∂yϕj(y)] = 2πi(σx)ij∂xδ(x− y) (7)

This algebraic structure is referred to as the “Kac-Moody
algebra” and is chosen to reproduce the commutation
relations for the original bosonic operators.

In a similar vein, we can describe the edge of a
2+1D fermionic SPT using the bosonized fields
θθθ(x, t) = (θ1, θ2) with the corresponding Lagrangian and
commutation relations:

Lθ = ∂xθθθ
Tσz∂tθθθ − ∂xθθθ

TVθ∂xθθθ (8)

[∂xθi(x), ∂yθj(y)] = 2πi(σz)ij∂xδ(x− y) (9)

Our full theory is described by the sum of the two La-
grangians L0 = Lϕ + Lθ. We endow the system with a
Z4 symmetry by requiring invariance under the transfor-
mation:

ϕϕϕ → ϕϕϕ+ π, θθθ → θθθ + π/2 (10)

Note that the ϕϕϕ fields transform trivially under a Z2

subgroup of the full symmetry - this will be important
later. L0 trivially satisfies the symmetry requirements
since only derivative terms appear in it. However, our
system right now isn’t particularly interesting - it’s two
SPT edges stacked on top of each other. We proceed to
couple them together as follows - (i) First, we obtain
just the boson SPT edge for x ≥ 0 by gapping out the θθθ
fields (ii) Then, we trivialize the entirety of the system
for x ≤ 0 by gapping out all fields (iii) We examine
the interface at x = 0 to determine the edge mode and
diagnose the topological character of the phase.

In order to gap out degrees of freedom, we need to
add additional terms to the Lagrangian that are symme-
try allowed. Consider the term M1cos(θ1 − θ2) (referred
to in the literature as a Higgs term). It is invariant under
the Z4 symmetry and corresponds to back-scattering
between the θ1 and θ2 fields. Adding this term pins
the θθθ fields, thereby gapping them out and leaving just
the gapless boson SPT edge. We can see this by taking
the coupling constant M1 to be very large. In order to
minimize the action, the cosine value is pinned to −M1.
This pins the ground state expectation value of the θθθ
fields to 0, effectively killing those degrees of freedom at
low energy.

Now consider the Higgs terms L1cos(ϕ1 + θ1 + θ2)

FIG. 3: A pictorial representation of the system in consider-
ation. The Higgs terms are chosen for x < 0 and x > 0 such
that we have a trivial and topological phase respectively. The
edge mode is found at the interface of the two.

and L2cos(ϕ1 − θ1 − θ2). Both of them are symmetry
allowed and it can be verified from the commutation
relations that they are mutually commuting. Thus, we
can simultaneously pin both the combination of fields
that appear in the arguments of the cosines. This gaps
out all the fields, trivializing the system.

The Lagragian for our model is now given by:

L = L0 + Lint (11)

Lint =M1Θ(x)cos(θ1 − θ2)

+ Θ(−x)L1cos(ϕ1 + θ1 + θ2)

+ Θ(−x)L2cos(ϕ1 − θ1 − θ2)

(12)
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IV. EDGE MODES AND PARITY STRINGS

We can construct the edge modes by looking at the
fields pinned by the Higgs term. For x ≤ 0, note that we
can add together the two pinned fields to obtain:

2⟨ϕ1⟩ = 0 =⇒ ⟨ϕ1⟩ = nπ (13)

Thus we can construct an operator eiϕ1(0) that is local-
ized to the edge, commutes with the topological phase
of the wire (x ≥ 0) and has charge ±1. This operator
measures the Z2 symmetry charge of the edge mode
(corresponds to the σz operator of a spin-1/2 system).
To further investigate the edge, we need to obtain the
action of the on-site symmetry on the edge.

We do this by finding an operator that is conju-
gate to eiϕ1 . Naively, we might take this to be eiϕ2 .
However, this does not commute with the Higgs terms
for x ≤ 0. Thus, the conjugate must include θθθ fields

to compensate and is given by e
i
2 [ϕ2+(θ1−θ2)/2]. This

operator at x = 0 corresponds to the σx operators and
flips the edge between the two ±1 charges. Observe that,
unlike the topological phase (x ≥ 0), the edge appears
to transform non-trivially under the full Z4 symmetry.
This demonstrates the intrinsically gapless topologi-
cal character, as seen in the Ising-Hubbard model as well.

Finally, we construct the parity string operator to
probe the long range order of the system. Parity acts
trivially on bosonic operators and with a minus sign on
fermionic operators. Knowing that these operators are
obtained by exponetiating the ϕϕϕ and θθθ fields, we can
construct parity operators by translating them by 2π
and π. As an analogy, consider the canonical commu-
tation relations for position and momentum operators

[x̂, p̂] = i. The momentum operator is said to generate
translations in position, which reads |x+ a⟩ = eip̂a |x⟩
Thus, we have for the parity string:∏

[x,y]

P̂ = ei
∫ y
x

dx′[∂x′ (ϕ1+ϕ2)+(θ1−θ2)/2] (14)

= ei[(ϕ1+ϕ2)+(θ1−θ2)/2]
y
x (15)

Within the topological phase (x ≥ 0), we can see that
the combination of θθθ fields is pinned to 0, collapsing the
parity string to ei[(ϕ1+ϕ2)]

y
x . By attaching the Z2 charged

operator to either end of the string, we recover the string
order of the Ising-Hubbard model.

V. CONCLUSION

In this paper, we introduced the concept of an
intrinsically gapless topological phase and studied the
Ising-Hubbard model as a candidate. We showed that
the model exhibits a topological phase under doping
away from half-filling, characterized by a gapless bulk
with long-range string order. A feature of this phase was
that the edge transforms under the full Z4 symmetry of
the system, whereas the bulk transforms only under a
Z2 subgroup. Thus, the edge modes are protected by
the Z4 on-site rotational symmetry of the system.

We then provided an effective field theory descrip-
tion of a 1+1D IGSPT by looking at the surface of a
“failed” 2+1D SPT. We used the standard K-marix
formulation to describe the edge theory and tuned the
phases by coupling to Higgs terms. This allowed us to
construct the edge modes and explicitly obtain their
symmetry properties.
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