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Abstract

Majorana paricles are a special type of fermion as they are their own antiparticle. In this article, we
provide a first introduction to the theory of Majorana fermions before we discuss the emergent phenomenon
of their non-abelian exchange statistics. Finally we delineate how Majoranas could in theory be used to
execute quantum computations.

1 Introduction

In the wake of his research on neutrino masses,
in his final article the Italian particle physicist
Ettore Majorana1 presented an alternative rep-
resentation of the relativistic Dirac equation in
terms of real wave functions. In his representa-
tion, the wave function describes particles that
are their own antiparticle, and therefore carry no
charge [2]. These solutions have later been called
Majorana fermions, owing the name to their dis-
coverer.

Recently, Majoranas got a lot of scientific atten-
tion when several research groups published the-
ories on how Majoranas or particles that behave
likewise can be created in solid state systems. Ex-
ploiting the feature that certain zero energy exci-
tations called Majorana zero modes (MZMs) are
topologically protected from noise and decoher-
ence and obey non-abelian statistics [3], Majo-
ranas are in the spotlight for potential candidates
for topological quantum computing because this
enables them to be used to encode quantum bits

1After that, E. Majorana disappeared while on a
cruise from Palermo to Naples in 1938. His fate has never
been fully resolved and several articles have been writ-
ten that explore the mystery itself. For more on this, we
recommend Reference [1].

that can assume values between 0 and 1.

2 Majorana fermions

Although invented as a theory for the electron,
the Dirac equation (DE)

(iγµ∂µ −M)ψ(x) = 0, (1)

where γ0...3 are four 4× 4 matrices that obey the
Dirac algebra given by the anticommutator2

{γµ, γν} = −2ηµν14, (2)

does per se not ’know’ anything about electrody-
namics or electric charges [4]. In fact, there exists
an infinitely large set of bases for γµ for which the
Dirac equation is entirely real-valued. The most
famous example is the Majorana representation3,
in which

γ0 =

(
0 −iσ1
iσ1 0

)
, γ1 =

(
0 iσ0

iσ0 0

)
, (3)

γ2 =

(
iσ0 0
0 −iσ0

)
, γ3 =

(
0 σ2

−σ2 0

)
.

2The minus sign on the right hand sign is caused by
the ’mostly plus’-convention we use in this article.

3The Majorana representation can be mapped to any
other entirely real-valued representation by orthogonal
transformations. Therefore, various different definitions
can be found in literature.
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Inserting these into Eq. (1) and carrying out the
sum yields a linear system of partial differential
equations of purely real coefficients, telling us that
the particle the Dirac equation describes is electri-
cally neutral. This is contrasted to the assump-
tion coming from the Schrödinger equation that
the wave function should be complex-valued4 [4].

In order to gain further insight, we now decom-
pose the field operator for the Dirac fermion into
the eigenstate e∓iEtϕ±E of the stationary Dirac
equation at energy E,

ψ̂(x) =
∑
E>0

aEe
−iEtϕE(x)+∑

E<0

b†−Ee
−iEtϕE(x). (4)

Here a†E and b†E are the creation operators for the
particle and antiparticle with energy E, respec-
tively. They obey the canonical fermionic anti-
commutation rules

{c†α, c
†
β} = {cα, cβ} = 0, {c†α, cβ} = δβα. (5)

Using the fact that for every solution of the DE
ϕ(x) with energy E there exists another solution
of opposite charge

ψ̂c(x) = Cψ̂∗(x) (6)

with energy −E, where C is the charge conjuga-
tion matrix5 and ∗ denotes complex conjugation,
we can recast Eq. (4) into a sum over only positive
energies

ψ̂(x) =
∑
E>0

aEe
−iEtϕE(x) + b†Ee

iEtϕc(x). (7)

This relation predicts the most general particle-
antiparticle pair of Dirac fermions, in which the
particle is distinguishable from the antiparticle as
it is oppositely charged [5]. If we now require the
field operator to be real-valued as in Eq. (6), we

4From a physical point of view a complex wave func-
tion becomes necessary when coupling the electron to an
electromagnetic field, though.

5For the Majorana representation, C = 14.

Figure 1. Kitaev’s model of a p-wave supercon-
ducting tight-binding chain. Each rectangle rep-
resents an electron and the dashed circles con-
tain two Majoranas representing a fermionic
state [3].

straightforwardly find a†E = b†E , indicating we ob-
tain a pair of chargeless particles that are their
own antiparticle, called Majorana fermions.

In operator language, we call every particle a Ma-
jorana fermion if its corresponding creation and
annihilation operators γ are fermionic and square
to 1 (i.e. they are self-adjoint).6 If they also com-
mute with the Hamiltonian7

[H, γ] = 0, (8)

we call the particle aMajorana zero mode (MZM).
Eq. (8) indicates that MZMs lead to ground state
degeneracies, because clearly the ground state
|GS⟩ and the excited states γi |GS⟩ have the same
energy [6, 7].

After they have been predicted by Kitaev [8], the
first potential experimental evidence for MZMs
has been achieved in semiconductor quantum
wires [9] whose ends are connected to a supercon-
ductor. For a 1D-system with vanishing chem-

6We trust the reader to distinguish between Dirac
matrices and Majorana operators albeit both are called γ.
From here onward, γ refers to the operator.

7This is an idealization. For real physical systems,
[H, γ] ∼ e−x/ξ, where x can be construed to be the sep-
aration between two MZMs and ξ is a correlation length
associated with H. For further limitations, we refer to
Reference [6].
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ical potential µ = 0, starting from the non-
interacting tight-binding Hamiltonian with real
superconducting gap ∆ = t > 0

H =
∑
n

[
−t a†nan+1 +∆ anan+1 + h.c.

]
, (9)

where a†n and an denote the usual electron cre-
ation and annihilation operators, Kitaev was able
to show that this Hamiltonian can be expressed
in terms of the Majorana operators as

H = it

N−1∑
n=1

γj,2γj+1,1. (10)

Here γi,j represents the j-th Majorana operator
(j = 1 or 2) associated with the i-th electron. This
transition to Majorana operators can intuitively
understood by appealing to Fig. 1.

Now, in order to find the ground state, we re-
cast this Hamiltonian in terms of the new set of
fermionic operators

ãn =
1

2
(γ2j,2 + i γ2j+1,1), (11a)

ã†n =
1

2
(γ2j,2 − i γ2j+1,1) (11b)

yielding

H = 2t
N−1∑
j=1

(
ã†nãn − 1

2

)
. (12)

The remarkable thing is that here γ1,1 and γN,2 do
not appear, representing zero-energy MZMs local-
ized at the end of the chain. The pair encodes one
Dirac fermion that is highly delocalized between
the ends of the wire [3, 10, 11].

3 Non-abelian braiding

The primary significance of MZMs is that they,
arising from their ground-state degeneracy, obey
non-commutative exchange statistics, in this con-
text often referred to as non-abelian braiding
statistics. The existence of such non-trivial be-
havior has been theoretically proposed for the first
time in References [12] and [13]. The origin of the

term braiding becomes clear when considering the
trajectories through time of two Majoranas that
are being exchanged. The following derivation is
oriented towards Reference [11].

For our purposes, imagine a 2D system in which
a Majorana zero mode γ2 encircles a vortex sup-
porting another Majorana γ1 as shown in Fig. 2.
Fu and Kane envisioned this system to be real-
izable on a thin layer of superconducting film on
the surface of a 3D topological insulator [14].8

Now it can be shown that there exists a normal-
izable zero mode with the associated Majorana
wave function

χ(r) =
1√
2

(
e−i(α/2−π/4)

ei(α/2−π/4)

)
f0(r), (13)

where f0(r) is a real-valued function irrelevant for
our purposes and will henceforth be ignored.

How does this wave function change when γ2 cir-
cles around γ1? Assume the correlation length ξ of
the Hamiltonian H is negligible compared to the
separation of the vortices such that [H, γi] = 0
is fulfilled and the orbiting process is adiabatic9.
Then the only effect will be the change of the su-
perconducting phase near the origin due to the
phase field produced by the distant vortex. Upon
inspection of Fig. 2, we express the phase change
as

α(R) = α0 +Ω(R) + π. (14)

α0 denotes a constant phase offset we may tune
at will to be α0 = −π/2 without changing the
physics. For this choice the wave function of the
Majorana mode at the origin is

χ(r) =
1√
2

(
e−iΩ(r)/2

eiΩ(r)/2

)
f0(r). (15)

Note that since χ(R) is dependent on the time
parameter it acquires a Berry phase which can be

8In their model MZMs are supported by Abrikosov
vortices which can be moved about the plane through an
array of Josephson junctions by tuning fluxes [6, 14].

9The braiding operation has to be sufficiently slow
(’adiabatic’) compared with the topological gap energy
but at the same time fast enough (so that one is in the
topologically protected regime) compared with the Majo-
rana splitting energy [6].
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Figure 2. Top: A vortex with Majorana zero
mode γ2 encircles a vortex placed at the origin
with Majorana γ1 [11]. Bottom: The exchange
of two Majoranas γ1 and γ2 [11].

shown to be equal to π for one full orbit, i.e. the
sign of the MZM wave functions changes. Likewise
the sign of the wave function of the orbiting Ma-
jorana changes because its local superconducting
phase advances by 2π, so we can write the effect
of one encircling run as

γ1 → −γ1, (16a)

γ2 → −γ2. (16b)

Likewise, in a system of 2N MZMs the adiabatic
exchange of two Majoranas is governed by the fol-
lowing rule

γi → γi+1 (17a)

γi+1 → −γi (17b)

γk → γk for k /∈ {i, i+ 1}, (17c)

because an exchange is equivalent to one-half of
the encircling operation, as can be seen in Fig. 2
[11, 15].

Following References [10], [11], and [16], we now
turn to an explicit example illustrating the action

of exchange transformations for a system of four
MZMs.

Imagine we exchange two Majoranas γi and γj .
The laws of quantum mechanics dictate that the
initial and final state have to be connected by a
unitary operator U , such that

|ψ⟩ → U |ψ⟩ . (18)

If this process happens sufficiently slow, i.e. if we
are in the adiabatic limit, our state never leaves
the ground state manifold of 2N = 4 states.
Therefore we may write U as a 4× 4 unitary ma-
trix.

What does U look like? Since the parity of the
number of electrons and the fermion parity is con-
served under adiabatic exchanges, we infer U can
only depend on the product of the hermitian oper-
ator −i γ1γ2. Moreover, the exponential of i times
a hermitian operator is unitary, and we therefore
conclude that, up to a global phase

U = eβγiγj = cosβ + γiγj sinβ (19)

where β is a yet unknown real coefficient and we
used (γiγj)

2 = −1 = i2. In order to determine
β, we investigate the evolution of the Majorana
operators

γk → UγkU
† ∀k ∈ {1, 2, 3, 4} (20)

and into this equation plug in our guess for U from
Eq. (19), yielding(

γi
γj

)
→

(
cos 2β − sin 2β
sin 2β cos 2β

)(
γi
γj

)
. (21)

By comparison of coefficients with Eq. (17a) and
(17b) we conclude β = ±π

4 and arrive at10

U = e±
β
4
γiγj =

1√
2
(1± γiγj) . (22)

Considering the four Majoranas come from two
electrons, the ground state is 4-fold degenerate
with basis states

|00⟩ , |10⟩ , |01⟩ , |11⟩ (23)

10Finding two solutions for β can be explained by the
possibility of exchanging the particles clock- or counter-
clockwise. Henceforth, we pick to positive solution.
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as a complete basis set for the 4D Hilbert space
where the first and second quantum number is
the occupation number of the fermionic mode
c†1 =

1
2(γ1+iγ2) and c

†
2 =

1
2(γ3+iγ4), respectively.

With this we can compute the action of a product
of the γi’s on the basis states of Eq. (23) to find
explicit representations11 of Ui,i+1 = e

π
4
γiγi+1 that

exchange the Majorana i with i+1 which we omit
for brevity and instead just present some interest-
ing results. When exchanging particle 2 and 3 for
example, we obtain a superposition of states

|00⟩ → U23 |00⟩ =
1√
2
(|00⟩ − i |11⟩). (24)

Recall that for ordinary bosons or fermions this
operation would leave the wave function invariant
up to a trivial phase ±1, respectively. Further-
more, since the U ’s are not diagonal in general,
they do not commute, i.e. the order of the prod-
uct matters.

We conclude this section by briefly addressing the
permutation of Majoranas [15], which is of great
significance for the next section, where we delin-
eate how this non-trivial behavior of Majoranas
can be utilized for quantum computing. For ease
of notation, let us introduce the exchange operator
Ti ≡ Ui,i+1. The set of all neighboring particle-
interchanges form a braid group Bn generated by
the Ti’s, where the index n denotes the number of
Majoranas. Bn is defined by

TiTj = TjTi, |i− j| > 1 (25a)

TiTjTi = TjTiTj , |i− j| = 1. (25b)

The second relation is illustrated in Fig. 3.

4 Majoranas in quantum computing

In this section we delineate how Majorana modes
can be used to execute quantum computations,
which differ from classical computations by the
virtue of the register that can be a superposition
of different states.

A network of nanowires with 2N MZMs can be
though of as a small processing unit. Because of

11For these, see Reference [16].

Figure 3. Defining relation for the braid group
Bn: TiTjTi = TjTiTj [15].

the 2N degeneracy of the ground state we can en-
code a string of N bits, just like a register but
non-locally. Now we can let this quantum reg-
ister execute an algorithm simply by exchanging
MZMs, yielding different outcomes depending on
the exchange sequence, as shown in Section 3. The
stand alone feature herein is the topological pro-
tection of both the state of the register and the
algorithm [16].

What does this mean? The fermion parity de-
grees of freedom encode the state of the register
and are shared non-locally by the Majoranas, im-
plying that no local perturbation can change the
state. In order to understand this non-locality,
recall the semiconductor nanowire connected to a
p-wave superconductor as reviewed in Section 2:
The unpaired Majoranas at the ends of the wire
are spread out over the whole wire and thus de-
localized. Topologically protected simply means
that the environment can not access the informa-
tion as long as the Majoranas are separated by a
great enough distance, enabling immediate appli-
cations for long-lived topological quantum memory
[10, 16].

For a more technical description and a discourse
about current problems and limitations, we refer
the interested reader to Reference [2] and [17].

5 Conclusion

The Dirac equation allows for allows for two fun-
damentally different types of solutions describing
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a massive spin-1/2 particle. Dirac fermions such
as electrons on the one hand are charged and have
a distinct antiparticle, which is related to it via
the charge conjugation symmetry C. These are
obtained from the ”unconstrained” solution of the
DE. The Majorana solution on the other hand can
be obtained by demanding the time-dependent
wave function to be real. Majorana fermions are
thus truly neutral spin-1/2 particles that can not
be distinguished from their antiparticles, named
after the Italian physicist Ettore Majorana, who
was the first to predict them in 1937.

From an experimental point of view, however,
there is still a dispute whether Majoranas have
been detected at all [18]. On both sides there is
a plethora of proposals on where to find, how to
detect, and how to use Majoranas. The blueprints
for a Majorana-based quantum computers are
therefore already in place; we simply need to begin
assembling the hardware [10].
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