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We present an introductory review of the invariants which distinguish topological insulators,
and their origins. To this end, we present the theory of Berry phase and curvature, leading to
the definition of the first Chern number, the topological invariant of two-dimensional insulators
with nondegenerate bands. We follow it up with summary of how to find the number and type of
topological invariants in the more general case and quickly introduce the idea of symmetry-protected
topological invariants.

I. INTRODUCTION

Topological insulators are distinguished by two ex-
traordinary properties: Robustness against perturba-
tions and the existence of gapless boundary states. Reg-
ular perturbations, no matter how strong, cannot change
them into topologically trivial systems without closing
their band gap. This directly leads to the second prop-
erty, that a boundary between a topological insulator
and a topologically trivial material always exhibits gap-
less states at the phase boundary [1]. These modes exist
independently of the structure of this boundary and re-
gardless of disorder or arbitrarily strong local potentials
[2].

A topological material is mathematically characterized
by a nonzero topological invariant. The simplest and
most instructive case is the first Chern number for a two-
dimensional system, which can be constructed through
the theory of Berry phase and curvature. We will lay out
this construction in detail, and follow it up with a sum-
mary of how to find the number and type of topological
invariants in the more general case.

II. BERRY PHASE

Consider a system with its Hamiltonian H(k)
smoothly dependent on some parameter k. In our con-
text of topological insulators, this parameter is momen-
tum, although the Berry phase can also be defined with
other parameters like external fields [11].

When the parameter is changed slowly over time, the
adiabatic theorem [3] implies that eigenstates of H(k(t))
stay eigenstates. In fact, this can be seen with the ansatz

H(k) =
∑
n

En(k) |n(k)⟩ ⟨n(k)| (1)

|ψ(t)⟩ =
∑
n

cn(k(t)) e
∫
Endt |n(k(t))⟩ (2)

where En and |n⟩ are the eigenvectors of the Hamiltonian
at a specific k, and cn are the components of |ψ⟩ in the
given basis. Applying the Schrödinger equation for the

time evolution of |ψ⟩ yields

i
d

dt
|ψ(t)⟩ = H(k(t)) |ψ(t)⟩ (3)

d

dt
cn = −⟨n| d

dt
|n⟩ cn +O

(
d
dtH

|Em − En|

)
(4)

Adiabaticity means that the change of the Hamiltonian
is very slow compared to the smallest gap between eigen-
values (which requires non-degeneracy at all k(t)). If this
is satisfied, we get the solution

cn(t) = e−
∫
⟨n| d

dt |n⟩dtcn(0) (5)

Note that ⟨n| d
dt |n⟩ is imaginary since

2Re ⟨n| d
dt

|n⟩ = d

dt
⟨n|n⟩ = 0 (6)

so the exponential term describes a complex phase.
The definition of |n(k)⟩ and consequently the values of

cn(k) and ϕB contain an ambiguity: You can “regauge”
the phases as

|ñ(k)⟩ = eiχ(k) |n(k)⟩ (7)

c̃n(k) = e−iχ(k)cn(k) (8)

with no change to H or |ψ⟩. This means that the phases
are not physical properties of the Hamiltonian, but can
be arbitrarily chosen; this is called a gauge freedom. How-
ever, a change in gauge cannot always absorb phases in
cn(t): If the path k(t) returns to a previous value, as
e.g. k(T ) = k(0), a phase change in |n(k(0)⟩ affects both
cn(0) and cn(T ) equally. In this case, a phase change
cannot modify the value of

ϕB = arg

(
cn(t)

cn(0)

)
(9)

=

∫ t

0

⟨n| i d
dt

|n⟩dt mod 2π (10)

This is called the Berry phase [4] along the curve C :
t 7→ k(t) and energy level n. A nonzero Berry phase
means that if the parameter is slowly changed to describe
the closed curve C, the time evolution brings an initial
state |n(k)⟩ to a final state proportional to the initial
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one (as required by the adiabatic theorem), but with its
phase changed by ϕB In fact, this phase only depends on
the curve and not on its parameterization by t:

ϕB =

∫ t

0

⟨n| i∇k |n⟩ ·
dk

dt
dt mod 2π (11)

=

∮
C
⟨n| i∇k |n⟩ · dk mod 2π (12)

Due to this property, the Berry phase is called a geomet-
ric phase.

III. BERRY CURVATURE

The Berry phase has the form

ϕB =

∮
C
A(k) · dk mod 2π (13)

A(k) = ⟨n| i∇k |n⟩ (14)

where A is called the Berry connection. This form sug-
gests that we can apply the generalized Stokes’ theorem
to express ϕB as a surface integral:

ϕB =

∫
S

∑
ij

Fij(k) dki ∧ dkj mod 2π (15)

Fij(k) = ∂iAj(k)− ∂jAi(k) (16)

where S is a surface such that C is its boundary. The
tensor F is called the Berry curvature [4]. For the case
of 3-dimensional reciprocal space, its definition reduces
to

F(k) = ∇k ×A(k) (17)

The Berry curvature describes the behavior of the
Berry phase for very small curves: If C encloses an in-
finitesimal area dS, the Berry phase is dϕB = F · dS

Analyzing the behavior of A and F under gauge trans-
formations (changes in phase convention), we get

|ñ(k)⟩ = eiχ(k) |n(k)⟩ (18)

Ã(k) = A(k) +∇k χ(k) (19)

F̃(k) = F(k) (20)

This means that the expression for ϕB in terms of F no
longer needs to be taken modulo 2π to be independent
of the phase convention.

IV. CHERN NUMBERS

Consider the expression

2πC1 =

∫
S

∑
ij

Fij(k) dki ∧ dkj (21)

for a closed surface S in k-space. When taken modulo
2π, it gives the Berry phase (eq. 16) along the boundary
curve of S - but S has no boundary, so we know that this
integral gives a multiple of 2π. In other words, the first
Chern number C1 is an integer - but it is not necessarily
zero. [5]

For a two-dimensional system, the Brillouin zone it-
self forms a closed surface, specifically a two-dimensional
torus. Setting S to the full Brillouin zone thus gives a
Chern number for the system itself.

Here we have defined the first Chern number. The
same kind of construction can be applied to 2n-
dimensional systems, by integrating higher polynomials
in the curvature F over the parameter space, to get the
nth Chern number [6].

The first Chern number as defined by the surface in-
tegral (eq. 21) is a continuous function of F , which in
turn depends continuously on the eigenstates |n⟩. How-
ever, any continuous function which always gives integer
values must be constant - so no regular perturbation to
the Hamiltonian can change the Chern number. Due to
this property, the Chern number is called a topological
invariant.

V. TOPOLOGICALLY PROTECTED STATES

The significance of the Chern number comes precisely
from the fact that a change in Chern number requires a
discontinuous transition between band structures.

This is also true for a boundary between materials
with different topological invariants: Any crossover from
a material with nonzero Chern number to a topologically
trivial state (with C1 = 0) requires breaking one of our
earliest assumptions, namely that the bands are nonde-
generate everywhere. At some point along the transition,
the Chern number must jump from one value to another.
This can only happen if the bands become degenerate
there.

For a topological insulator (with a Fermi energy be-
tween two of the bands in question) this forces gapless
edge states to exist [2]. This argument does not depend
in any way on the structure of the boundary, so the edge
states cannot be suppressed/“localized” by disorder or
strong potentials, which is very unusual.

We will not go into the details of the edge states here,
since that is not the focus of this project.

VI. DEGENERATE CASE

It is not very often the case that valence and conduc-
tion bands in a topological insulator are non-degenerate
everywhere, as required for the preceding discussion.
However, as long as the system is an insulator and thus
has a band gap at the Fermi level, we can separate all
bands into occupied and unoccupied states, with no adi-
abatic cross-over between them. In the remainder of this



3

section, we will trace the steps needed to calculate the
group of topological invariants in this case.

The band structure of a n× n Hamiltonian with band
gap at E = 0 can be specified as a smooth map from the
Brillouin zone BZ (with periodic boundary) to a set of
n nonzero eigenvalues and n orthonormal eigenvectors.
From a topological viewpoint, the energy levels can be
continuously deformed to any value, as long as they do
not cross the band gap, so they only divide the states into
two distinct sets of k occupied eigenvectors with an asso-
ciated eigenvalue ϵ < 0 and (n−k) unoccupied ones with
ϵ > 0. Similarly, a continuous change can replace the
eigenvectors by (orthonormality-preserving) linear com-
binations of vectors within the same set.

An ordered collection of n eigenvalues can be repre-
sented as the columns of an unitary n × n-matrix, and
the allowed transformations on the occupied and unoc-
cupied subsets are unitary k×k or (n−k)×(n−k) group
actions. The resulting quotient space is the Grassman-
nian Gr(k, n) = U(n)/(U(k)×U(n−k)). A way to think
about elements of the Grassmannian is the k-dimensional
subspace of Cn spanned by the occupied states.

This shows that the space of all gapped Hamiltonians
with d-dimensional Brillouin zone BZ and k occupied,
(n− k) unoccupied bands is homotopy equivalent[12] to
the space of maps BZ → Gr(k, n). If k and (n − k) are
sufficiently high, the set of such maps, up to homotopy,
can be calculated as the homotopy groups

πd(Gr(k, n)) =

{
Z, d even
{e}, d odd

(22)

Topological invariants can discriminate only between
Hamiltonians which are not homotopic, so the set of pos-
sible values for a topological invariant is equivalent to the
set of band structures up to homotopy.

The previous calculation thus shows that in an even
number of dimensions, there is one integer-valued topo-
logical invariant which classifies band-gapped Hamiltoni-
ans, and in odd dimensions there is no such invariant.
The invariant in even dimensions is the Chern number
discussed in section IV. [2]

VII. SYMMETRY-PROTECTED TOPOLOGY

Many physical systems have discrete symmetries such
as time-reversal. Such a symmetry reduces the space of

possible Hamiltonians and band structures, which can
completely change its topology. It can both disallow
topologically nontrivial systems that were previously pos-
sible, but also remove systems which could normally in-
terpolate between remaining Hamiltonians to create new
topological invariants. If a material has a nonzero value
for such a new invariant, it is a symmetry-protected topo-
logical material.

Symmetry-protected topological insulators show gap-
less boundary states just like in the symmetry-less case.
However, the symmetry-protected topological phase dif-
fers in that it is robust against perturbations only if the
perturbation respects the original symmetry of the sys-
tem.

There are three discrete symmetries relevant for this
discussion: time-reversal, particle-hole and chiral sym-
metry, the latter of which is the composition of time re-
versal and particle-hole symmetry operations.

Through the same procedure as presented in the previ-
ous section, one can find the groups of topological invari-
ants for all the different restrictions on the band struc-
ture. They were first tabulated by Zirnbauer and Altland
[9] [10], a review for the case of up to 3 dimensions can
be found in [2].

VIII. CONCLUSION

Starting from the adiabatic evolution of a state, we
have defined the Berry phase, which describes the phase
change along a closed loop in momentum space. Writing
this phase as an integral over the enclosed surface and
integrating over the whole Brillouin zone, we arrived at
the first Chern number, which can only take integer val-
ues. As a topological invariant, it is unaffected by any
regular perturbations and it can only change values at a
boundary by producing gapless states.

We have derived the structure of possible topologi-
cal invariants, showing that in the absence of symmetry,
topological insulators only exist in even dimensions and
there is one integer as an invariant to discern between
topologically distinct states. Taking into account discrete
symmetries, we ended with a discussion of symmetry-
protected topological insulators, which only retain their
topological properties as long as the symmetry is pre-
served.
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