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In 2004, A. Geim and K. Novoselov successfully isolated monolayer graphene via mechanical
exfoliation of graphite, marking a milestone in the field of condensed matter physics. Since then,
immense effort has been devoted to investigate the novel phenomena in graphene and graphene-
related structures, such as superconductivity in magic-angle twisted bilayer graphene. In this report,
we will focus on the intriguing transport properties of twisted double bilayer graphene. In the first
part, we will introduce preliminary concepts and terminologies for transport-related effects. Then,
we will review the bandstructure of monolayer graphene and bilayer graphene to provide motivations
for studying twisted double bilayer graphene in a multi-gated setup. In the last part, we will closely
follow the work by de Vries et al., in which they demonstrated the ability to fully control the
minivalley and layer degrees of freedom of intermediate twist angle double bilayer graphene. It is
expected that this report can deliver a succinct qualitative introduction to transport measurements,
and demonstrate the potential of twisted double bilayer graphene in future electronics.

1. PRELIMINARIES

1.1. Hall Effect

When we pass a current through a two-dimensional
electron gas in a uniform perpendicular-to-plane mag-
netic field, the current is deflected to the side of the
sample, which is known as the Hall effect. In a two-
dimensional Hall bar geometry, we can measure the lon-
gitudinal resistivity ρxx along the Hall bar, i.e. parallel
to the unperturbed current flow; or the transverse resis-
tivity ρxy across the Hall bar, i.e. perpendicular to the
unperturbed current flow. The resistivity matrix is hence
given by

ρ =

(
ρxx ρxy
−ρxy ρxx

)
, (1)

and the conductivity matrix is the inverse of the
resistivity matrix, σ = ρ−1 [1]. As most transport
measurements will be conducted in a Hall bar sample
geometry, the Hall effect is the central element of
transport-related phenomena.

Note that the 2D samples are usually gated at the top
and bottom for manipulation purposes. If we change the
potential of the gates, we can draw charge carriers from
the electrodes into the sample, or vice versa, thus tuning
the Fermi level of the system.

1.2. Landau Level Broadening

It is well-known that when a two-dimensional electron
gas is placed in a uniform perpendicular-to-plane mag-
netic field, the Hamiltonian can be rewritten in an analo-
gous form to a simple harmonic oscillator, and the energy
spectrum is discretized into Landau levels. If we consider

Zeeman splitting of spins at the same time, we can get

E±
n = ℏωc

(
n+

1

2

)
± 1

2
g∗µBBz, (2)

where ωc = |e|B/m∗ is the cyclotron frequency, g∗ is
the effective g-factor of electrons, and µB is the Bohr
magneton [1]. Notice that the larger the magnetic field
is, the larger the Landau level splitting is. If we plot the
density of states against the energy, we should get a sum
of Dirac delta functions:

D0(E,B) ∝
∑

n,σ=±
δ(E − E(σ)

n ). (3)

However, no materials are perfect in reality. The
presence of impurities or unevenly distributed charged
dopants introduces scattering to the Landau electrons,
causing them to possess a finite lifetime τq. This causes
the density of states to broaden into a sum of Lorentzian
distributions:

D(E,B) ∝ 2
∑
n

Ln

(
E − ℏωc

(
n+

1

2

))
, (4)

where Ln(xn) is the Lorentzian function centered at xn

with a full-width-half-maximum (FWHM) of ℏ/τq [1].
Note that in Eq. 4, we are working in a tricky limit of
the magnetic field: we assumed the magnetic field to be
small enough, such that many Landau levels are occu-
pied at the ground state, i.e. Fermi level EF ≫ ℏωc,
and the Zeeman splitting is too small to be resolved;
but at the same time, we assumed the magnetic field to
be large enough, such that the Landau level splitting is
wider than the Lorentzian broadening [1]. After mathe-
matical complications, the resulting density of states are
shown in Fig. 1. We can see that the summed Lorentzian
curves at finite magnetic field makes the density of states
oscillatory. This provides a hint to understanding the
Shubnikov-de Haas effect.
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FIG. 1. Density of states of a practical 2D electron gas as
a function of energy at finite magnetic fields (solid line) and
zero magnetic fields (dashed line). Figure obtained from [1].

1.3. Shubnikov-de Haas effect

The Shubnikov-de Haas (SdH) effect refers to the os-
cillatory magneto-resistance in a 2D electron gas. When
a perpendicular-to-plane magnetic field is applied to the
sample in a gated Hall bar geometry, the longitudinal
conductance σxx oscillates and increases as a function of
the voltage applied at the top gate, as shown in Fig. 2.
The complete descriptive formula of the SdH effect, also
known as Ando formula, can be derived from Eq. 4 af-
ter intricate calculations (which will be omitted here)
[1, 2]. Qualitatively, one can understand that the oscil-
lating conductance in SdH effect originates from the os-
cillatory density of states after finite Landau level broad-
ening. Since the SdH oscillation depends on the effec-
tive mass m∗ of mobile charge carriers (electrons/holes)
in the sample, experimentalists frequently determine the
effective mass with this method [1]. This fact will help
us with understanding the subsequently shown results of
transportation measurements in twisted double bilayer
graphene (TDBG).

2. ENERGY SPECTRUM OF MONOLAYER
GRAPHENE AND BILAYER GRAPHENE

2.1. Monolayer Graphene

For monolayer graphene, we know that there are two
inequivalent corners (also known as valleys) at the first
Brillouin zone, namely K and K’. For a small crystal
momentum q⃗ near the K (or K’) point, we can write the
Hamiltonian as [4]:

H(K⃗ + q⃗) =

(
0 γ0π

†

γ0π 0

)
, (5)

FIG. 2. SdH oscillation in longitudinal conductance for silicon
surface, measured in a magnetic field of 3.3T and at a tem-
perature of 1.34K. Figure obtained from [1] and reproduced
from [3].

where γ0 is the nearest neighbour hopping parameter,
and π = qx + iqy. The fact that it is a 2 × 2 matrix
comes from the two distinct Bloch states of different
valleys. Since the above Hamiltonian is very similar to
a Zeeman Hamiltonian, we will sometimes call the basis
as ”pseudospins” [4]. Calculating the energy spectrum,
we can easily get linear dispersion (also know as Dirac
cones) near the K and K’ points.

To proceed, we need a brief introduction to the charge
neutrality point (CNP). The CNP is defined as some spe-
cific energy level in the band structure, such that when
the Fermi level resides at the CNP, the entire system be-
comes charge neutral [5]. For monolayer graphene, the
CNP is at the tip of the Dirac cone, i.e. the Dirac point,
at which the system is gapless. For insulators, the CNP
is at the middle of the band gap. If a system has a wide
band gap, the conduction band and valence band will be
far from the CNP, causing the system to have a high peak
resistance when the Fermi level is at the CNP [4].

2.2. Bilayer Graphene

By doubling the number of layers, bilayer graphene
is more than doubly interesting as monolayer graphene.
We assume a Bernal (AB) stacking of bilayer graphene
as shown in Fig. 3. We define u as the interlayer po-
tential difference, γ1 as the nearest interlayer hopping,
while γ3 and γ4 are the next-nearest neighbour inter-
layer hoppings. Then, approximating small γ3 and γ4,
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FIG. 3. Structure of bilayer graphene in Bernal stacking. γ0
is the nearest neighbour hopping on the same layer. γ1 is the
nearest interlayer hopping. γ3 and γ4 are the next-nearest
neighbour interlayer hoppings. Figure obtained from [6].

the Hamiltonian near K-point is [4]

HK =


u/2 γ0π

† 0 0
γ0π u/2 γ1 0
0 γ1 −u/2 γ0π

†

0 0 γ0π −u/2

 . (6)

By solving the Hamiltonian, we get the results as
shown in Fig. 4. The spectrum now depends on the
displacement field u, hence controllable by gating across
the layers. At finite u > 0, the band gap opens and
widens with increasing u. In Fig. 5, the (relatively
small) variation of top-gate voltage Vtg for each curve
corresponds to varying the Fermi level across the energy
spectrum, while the (relatively large) change of bottom-
gate voltage Vbg corresponds to significantly changing
the band gap width. For a larger difference in top-gate
and bottom-gate voltages, the band gap becomes larger,
such that the CNP becomes further from the valence and
conduction bands, leading to a higher peak resistance
[7]. This is why for bilayer graphene, we need a top gate
and a bottom gate to control the carrier density and
displacement field separately.

Nevertheless, we are not satisfied yet. We would like
a system that allows us to extract electronic states oc-
cupying different valleys upon request, such that we can
exploit the pseudospin degree of freedom and make quan-
tum devices. Again, it is time to stack up our system
again – but with a little twist.

FIG. 4. (a) Energy spectrum around K point along kx when
u = 0. (b) Energy spectrum around K point along kx when
u > 0. Dashed (dotted) line represents the calculation with-
out (with) γ3 and γ4. We shall only consider the dashed line
in our discussion to avoid complication. Figure obtained from
[1].

FIG. 5. Resistance against top-gate voltage Vtg for different
values of bottom-gate voltage Vbg in a bilayer graphene sam-
ple. Figure obtained from [7].

3. TRANSPORT MEASUREMENTS OF
INTERMEDIATE TWIST ANGLE DOUBLE

BILAYER GRAPHENE

This section will closely follow the discovery of de Vries
et al. in 2020 [8].

3.1. Moiré Superlattice and the Twist Angle

When two bilayers of graphene (four monolayers in
total) are stacked together with a rotational mismatch,
a twisted double bilayer graphene (TDBG) is obtained.
The lattice mismatch gives rise to a large-scale interfer-
ence pattern known as the moiré pattern. As the system
respects a discrete translational symmetry of the moiré
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pattern, a moiré superlattice is effectively introduced
to the system, with an enlarged unit cell in real space.
Hence, in the reciprocal space, the system will possess a
mini-Brillouin zone (mini-BZ) as shown in Fig. 6 [8].

FIG. 6. (a) Moiré pattern of TDBG in real space. The Moiré
unit cell is marked in green. (b) Mini-BZ constructed from
the BZ of individual bilayers. Figure obtained from [8].

At small twist angles (< 1◦), the two layers in TBG or
TDBG becomes highly coupled [9]. Near the magic angle
(∼ 1◦), the spectrum possesses flat bands and strongly
correlated states dominate the behaviour, leading to insu-
lating or superconducting phases [10, 11]. At large twist
angles (> 10◦), the two layers becomes decoupled, that
states from individual layers do not interact and can be
tuned separately [12]. However, the behaviour of TDBG
at intermediate twist angles (∼ 2◦) remained a mystery,
thus motivating de Vries et al. to investigate the limit.
Using the tear-and-stack method [13], they fabricated a
TDBG sample with a twist angle of 2.37◦, and with top
and bottom gates [8].

3.2. Theoretical Calculation at Zero Displacement
Field

The group first calculated the energy spectrum and
the wavefunction probability distribution of the TBDG
as shown in Fig. 7 [8]. From Fig. 7(a), we can first see
that the energy spectrum has interesting Fermiology. If
the Fermi level is at the lower region of the conduction
band, it is populated by κ and κ′ states at the mini-BZ
corners with a positive band curvature, i.e. electron-like
behaviour. However, if the Fermi level is at the higher
region of the conduction band, it is dominated by γ states
at the mini-BZ center with a negative band curvature,
i.e. hole-like behaviour [8]. Such a change between the
two contrasting behaviours of carriers is called a Lifshitz
transition [4]. Then, from Fig. 7(b), we notice that the
γ states are widespread throughout the four layers, but
the κ and κ′ states are relatively localized in separate
bilayers. The minivalley degree of freedom is coupled to
the layer degree of freedom. This implies if we can make
the states only occupy the κ sites but not the κ′ sites,
we can control the mobile states to be mainly localized

at the upper bilayer [8]. In other words, we can make
only one layer conducting, and another layer insulating
by gapping out the states there.

3.3. Experimental Results

By applying a perpendicular-to-plane magnetic field
and varying the top and bottom gates potential, de Vries
et al. measured the conductance G of the sample[8].
They plotted the numerical derivative of conductance
as a function of top-gate and bottom-gate voltages in
Fig. 8(a). For the phase diagram in Fig. 8(b), they
used the capacitor model for calculation: with Ctg and
Cbg as the capacitance of top-gate-TDBG interface
and bottom-gate-TDBG interface respectively, they set
the total carrier density n ∝ CbgVbg + CtgVtg, and the
displacement field D ∝ CbgVbg−CtgVtg [8]. They further
calculated the band structures of the system in zero
displacement field (Fig. 8(c)) and non-zero displacement
field (Fig. 8(d)) [8].

First of all, the fringe-like pattern in Fig. 8(a) is
exactly the long-awaited SdH effect, as one can compare
with Fig. 2. Immediately, we can identify type 1 regions
as those with crossed stripes, implying there are two sets
of SdH oscillations with different coupling strengths to
the top-gate and the bottom-gate. If we compare with
Fig. 8(c), we know that type 1 regions are just the phase
containing two decoupled carrier gases at κ and κ′, i.e.
at the upper and lower bilayers [8]. For the κ states in
the upper bilayer, the effect of Vbg is screened by the κ′

states, so the κ states are more strongly affected by Vtg

[8]. Similarly, the κ′ states in the lower bilayer are more
strongly affected by Vbg. This accounts for the different
slopes of SdH pattern of the two gases.

As we move the Fermi level past the van-Hove sin-
gularity in Fig. 8(c), the system undergoes a Lifshitz
transition and becomes dominated by γ states. Since γ
states spread across all layers (as seen in Fig. 7(b)) and
does not distinguish between minivalleys, we can say
that the γ states form a collective, coupled carrier gas
[8]. This corresponds to type 2 regions in Fig. 8(a), with
only one set of SdH pattern.

The truly fascinating part only exists for non-zero dis-
placement field D, labelled as type 3 regions in Fig. 8(a).
Again, from the uniform SdH stripes, we can infer that
there is only one type of carrier gas in type 3 regions.
However, when comparing to Fig. 8(d), due to the mini-
valley asymmetry of the band structure, each type 3 re-
gion only contains one decoupled κ (or κ′) gas, with the
other species gapped out [8]. This means the states in
type 3 regions are mainly localized in the uppermost (or
lowermost) layer. Therefore, by tuning the displacement
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FIG. 7. (a) Calculated energy spectrum of the TBDG system with respect to the mini-BZ at zero displacement field. (b)
Calculated wavefunction probability distributions at different layers at zero displacement field. Red colour stands for electrons
and blue colour stands for holes. Darker colour means a higher probability density. Figure obtained from [8].

FIG. 8. (a) Plot of the numerical derivative of measured conductance G as a function of the top-gate voltage Vtg and bottom-
gate voltage Vbg at B = 2T . The axis of increasing carrier density n and increasing displacement field D are shown. The
graph is divided into three types of region for analysis. (b) Theoretical calculation of phase diagram of the system. Red colour
stands for electrons and blue colour stands for holes. (c,d) Energy spectrum calculations at displacement fields D = 0V/nm
and D 0.4V/nm. The shaded colours correspond to those in (b). The energy for van Hove singularity EV HS is marked in
orange. Figure obtained from [8].



6

field using Vtg and Vbg, the minivalley (and hence the
layer) of the carrier gas can be freely chosen [8]. The
group has successfully realized a complete minivalley and
layer polarization in TDBG. By treating the minival-
ley degree of freedom as pseudospins, it is promising to
utilize TDBG in future valleytronic devices, where the
”pseudo-spin-up” and ”pseudo-spin-down” states can be
used as qubit basis states [14]. The diverse landscape of
phases in TBDG is also attractive for further investiga-
tion and manipulation.

4. CONCLUSION

Throughout this report, we qualitatively reviewed
some basic concepts in electronic transport of 2D ma-
terials, including Hall effect, Landau level broadening,
and Shubnikov-de Haas effect, in order to aid our com-
prehension of the transport phenomena in twisted dou-
ble bilayer graphene. We also reviewed the energy spec-
trum of monolayer and bilayer graphene to understand
the motivation to investigate TBDG systems. Finally,
we appreciated how de Vries et al. successfully achieved
a full minivalley and layer control of states in TBDG,
proving the potential of the material to be employed in
next-generation quantum devices. With relentless efforts,
scientists will continue to discover and fabricate more fas-
cinating materials, perhaps just with a slight twist.
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