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Bethe Ansatz for the one dimensional Heisenberg
Model

Andreas Karle

In this short article we have a look at the Bethe ansatz and how it was first used to solve the one
dimensional Heisenberg model. Today variants of the Bethe ansatz are used to solve other many body
problems, for example a modified Bethe ansatz can be used to solve the Kondo model. We will see
how dividing the Hilbert space of the Heisenberg model into subspaces helps to first solve the simpler
cases and from these the general case can then be derived.
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1 Introduction

The Heisenberg model named after Werner Heisen-
berg is a mathematical model for describing mag-
netic systems in condensed matter, and can be used
to study critical points and phase transitions. It was
proposed by Heisenberg in 1928 [1]. The model can
give qualitative results for insulators but fails at the
description of most metals, where the Hubbard model
often is better suited. In 1931 Hans Bethe proposed
the correct ansatz to solve the Heisenberg model in
the one dimensional case [2].

2 Heisenberg Model

Heisenberg and Dirac discovered that the ferromag-
netic properties in a solid can be described by inter-
acting, localized electron spins on the lattice [1, 3]:

H = −
∑
i,j

Jij ~Si~Si (1)

The exchange integrals Jij usually decrease very fast
with distance, which is why one usually focuses on
nearest neighbor interaction:

H = −J
∑
〈i,j〉

~Si~Si (2)

For positive J > 0 the energy is minimized for paral-
lel neighbor spins, so the system prefers ferromagnetic
(FM) order. For J < 0 it prefers anti ferromagnetic
order (AFM). In the one dimensional case, this sys-
tem can be solved exactly with the Bethe ansatz.

3 Bethe Ansatz

The one dimensional Heisenberg Hamiltonian with
nearest neighbor interaction and periodic boundary
conditions (PBC) looks as follows:

H = −J
N∑
n=1

~Sn~Sn+1 (3)

= −J
N∑
n=1

[
SznS

z
n+1 +

1

2

(
S+
n S
−
n+1 + S−n S

+
n+1

)]
(4)

where S±n = Sxn ± iSyn are the spin ladder operators.
This Hamiltonian acts on a Hilbert space with di-
mension 2N built by the orthogonal basis functions
|σ1, . . . , σN 〉. The σn = {↑, ↓} represent up and down
spin at site n along the arbitrarily chosen z-axis.
Choosing the z-axis as quantization axis implies that
the z-component of the total spin Sz =

∑N
n=1 S

z
n is

conserved, which can be easily checked with the spin
commutation relations:[

Szn, S
±
m

]
= ±S±n δnm , (5)[

S+
n , S

−
m

]
= 2Sznδnm , (6)

[H,Sz] = 0 . (7)

This allows us to separate the Hilbert space into N+1
independent subspaces distinguished by the number
of down spins r [2, 4].

3.1 The Case r = 0

The subspace with r = 0 down spins contains only
the state with all spins up |GS〉 = |↑, . . . , ↑〉. This
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state has the eigenenergy:

H |GS〉 = −JN
4
|GS〉 , (8)

and forms the ground state with energy E0 = −JN/4
[3].

3.2 The Case r = 1

The basis states in the r = 1 subspace are labeled by
the position of the down spin:

|n〉 = S−n |GS〉 . (9)

It can be seen that these aren’t eigenvectors of the
Hamiltonian:

H |n〉 = −J
N∑
m=1

SzmS
z
m+1S

−
n |GS〉

+
1

2

(
S+
mS
−
m+1 + S−mS

+
m+1

)
S−n |GS〉

= −J
(
N

4
− 2

2

)
|n〉

− J

2
(+ |n+ 1〉+ |n− 1〉) (10)

Therefore we consider superpositions of these states:

|ψ〉 =

N∑
n=1

a(n) |n〉 , (11)

which satisfy the eigenvalue equation H |ψ〉 = E |ψ〉
if a(n) satisfy the following N equations:

(E − E0)a(n) =
J

2
(2a(n)− a(n− 1)− a(n+ 1)) .

(12)

The solutions are plane waves:

a(n) = eikn with k =
2π

N
λ , (13)

for λ = 0, . . . , N−1. From this follows the normalized
eigenvectors:

|ψ〉 =
1√
N

N∑
n=1

eikn |n〉 , (14)

with energies:

E = E0 +
J

2

(
2− e−ik − eik

)
,

E = E0 + J (1− cos(k)) . (15)

3.3 The Case r = 2

For r = 2 we consider the following eigenvectors and
assume without loss of generality n1 < n2:

|ψ〉 =

N∑
n1<n2

a(n1, n2) |n1, n2〉 , (16)

with the states

|n1, n2〉 = S−n1
S−n2
|GS〉 . (17)

When inserting (16) into the eigenvalue equation
H |ψ〉 = E |ψ〉 we have to consider two cases [2]. Ei-
ther the down spins are separated from another:

(E − E0) a(n1, n2) =
J

2
(4a(n1, n2)− a(n1 − 1, n2)

− a(n1 + 1, n2)− a(n1, n2 − 1)

−a(n1, n2 + 1)) , (18)

or they are on neighboring sites:

(E − E0) a(n1, n2) =
J

2
(2a(n1, n2)− a(n1 − 1, n2)

− a(n1, n2 + 1) ) . (19)

The Bethe ansatz for a(n1, n2) are plane waves with-
still unknowen amplitudes [2]:

a(n1, n2) = C1e
i(k1n1+k2n2) + C2e

i(k2n1+k1n2) , (20)

This solves the equation (18) for arbitrary
C1, C2, k1, k2 with the energy:

E = E0 + J
∑
i=1,2

(1− cos(ki)) (21)

Equation (19) is not automatically satisfied. By sub-
tracting (19) from (18) for n2 = n1 + 1 one gets N
conditions:

a(n1, n1) + a(n1 + 1, n1 + 1) = 2a(n1, n1 + 1) . (22)

The term a(n1, n1) doesn’t have a concrete physical
interpretation but is defined through (20). Inserting
the Bethe ansatz (20) into equation (22) one gets a
ratio for the amplitudes:

eiφ ≡ C1

C2
= −e

i(k1+k2) + 1− 2eik1

ei(k1+k2) + 1− 2eik2
. (23)

This is embedded in the ansatz by setting the ampli-
tudes to

C1 = ei
φ
2 , C2 = e−i

φ
2 , (24)

where the phase depends on the k1, k2 as follows:

2 cot

(
φ

2

)
= cot

(
k1
2

)
− cot

(
k2
2

)
, (25)

giving the ansatz:

a(n1, n2) = ei(k1n1+k2n2+
1
2φ) + ei(k2n1+k1n2− 1

2φ) .
(26)

Now we have to consider the PBC:

a(n1, n2) = a(n2, n1 +N) , (27)
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where the notation a(n2, n1 +N) comes from the fact
that we always list the ni in the order of size. Insert-
ing (26) into (27) gives the following equation:

ei(k1n1+k2n2+
1
2φ) + ei(k2n1+k1n2− 1

2φ)

= ei(k1n2+k2(n1+N)+ 1
2φ) + ei(k2n2+k1(n1+N)− 1

2φ)

(28)

This must be true for all n1 and n2 and therefore
leads to the conditions:

Nk1 = 2πλ1 + φ , (29)

Nk2 = 2πλ2 − φ , (30)

λ1, λ2 = 0, . . . , N − 1 . (31)

The k1 and k2 individually do not have the usual form
2πλ/N , but their sum does

k = k1 + k2 =
2π

N
(λ1 + λ2) (32)

While k1 and k2 specify the Bethe ansatz wave func-
tion, the wave number k is the quantum number con-
nected to translation of both down spins. Now we
want to discuss the phase φ as a function of k1 and
k2. For k1 = k2 we can distinguish into two cases:

φ = +π , λ1 = λ2 − 1 =
Nk1
2N
− 1

2
, (33)

φ = −π , λ1 = λ2 + 1 =
Nk1
2N

+
1

2
. (34)

In both cases the amplitudes (26) are zero for all
n1, n2:

a(n1, n2) = eik1(n1+n2) cos
(π

2

)
= 0 . (35)

Therefore k1 = k2 does not lead to a sensible solution
and we find for a given λ2:

λ1 6= λ2, λ2 + 1, λ2 − 1 . (36)

Since we have the permutation symmetry (k1, k2) =
(k2, k1) we can assume without loss of generality that
k1 < k2. From this follows, that for a given λ2 we get
λ2 − 1 solutions λ1 = 0, 1, . . . , λ2 − 2. With λ2 going
from 2 to N − 1 we get the total amount of solutions:

N−1∑
k2=2

λ2 − 1 =

(
N − 1

2

)
. (37)

It’s no surprise that there should be as many solutions

as spin distributions

(
N
2

)
, so we are missing N − 1

solutions. We can find these solutions if we consider
k1, k2 as a complex conjugate pair:

k1 = u+ iv , k2 = u− iv . (38)

This is further elaborated in the original paper [2].
We see that all eigenstates can be specified by a set
of quantum number with which they can be distin-
guished according to their physical properties.

3.4 The Case for arbitrary r

We now proceed to the general case of r down spins.
Generalizing the eigenstates (16):

|ψ〉 =

N∑
n1<...<nr

a(n1, . . . , nr) |n1, . . . , nr〉 . (39)

The conditional equations of the eigenvalue equations
again decompose into different types. For no neigh-
boring down spins we get:

(E − E0) a(n1, . . . , nr) =
J

2

r∑
i=1

(a(n1, . . . , nr)

− a(n1, . . . , ni + 1, . . . , nr)

−a(n1, . . . , ni − 1, . . . , nr)) .
(40)

and for neighboring down spins we get:

(E − E0) a(n1, . . . , nr) =

J

2

r∑
i6=jν ,jν+1

∑
σ

(a(n1, . . . , nr)− a(n1, . . . , ni + σ, nr))

+
J

2

∑
α

(2a(n1, . . . , nr) (41)

− a(n1, . . . , njν − 1, njν+1, . . . , nr)

−a(n1, . . . , njν , njν+1 + 1, . . . , nr)) , (42)

We consider the ansatz:

a(n1, . . . , nr) =

r!∑
P

exp

i r∑
j=1

kPjnj +
i

2

∑
j<l

φPjPl

 ,

(43)

where P is any permutation of the r numbers and
Pi is the number that is placed at position i in this
permutation. This gives the energy:

E = E0 + J

r∑
i=1

(1− cos(ki)) . (44)

The ansatz satisfies the first equation type (40). The
other equations are satisfied by requiring:

2a(n1, . . . , njν , njν + 1, . . . , nr) =

a(n1, . . . , njν , njν , . . . , nr)+

a(n1, . . . , njν + 1, njν + 1, . . . , nr) , (45)

analogously to section 3.3, for ν = 1, . . . , r. These
equations again leed to a phase factor:

eiφij ≡ − e
i(ki+kj) + 1− 2eiki

ei(ki+kj) + 1− 2eikj
, (46)

that relates the phase φij to the ki. We use again the
periodic boundary conditions:

a(n1, . . . , nr) = a(n2, . . . , nr, n1 +N) (47)
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giving the following N equations:

r∑
j=1

kPjnj +
1

2

∑
j<l

φPjPl =

r∑
j=2

kP′j−1nj + kP′r (n1 +N)

+
1

2

∑
j<l

φP′jP′l − 2πλP′r , (48)

where the permutations have the relation P ′j+1 = Pj
and P ′r = P1. Considering that all terms that do not
have the index P ′r = P1 cancel out, we get r relations
between k and φ:

Nki = 2πλi +
∑
j 6=i

φij , (49)

with λi = 0, . . . , N − 1, which is similar to the case
r = 2. The sum of the ki give again the wave number:

k =
2π

N

r∑
i=1

λi . (50)

Analogously to section 3.3, one can show that no
two ki can be the same because the coefficients
a(n1, . . . , nr) would vanish. And for real valued ki
two successive λi have to have a difference of two.
Therefore the amount of real valued solutions is:(

N − r + 1
r

)
, (51)

which is much smaller than

(
N
r

)
. So one can con-

sider again the complex ki which give the missing
solutions. This is further elaborated in the original
paper [2].

4 Summary

The Bethe ansatz is shown to be the correct ansatz to
solve the one dimensional Heisenberg model. We saw
that the Hilbert space of the Heisenberg model can be
separated into subspaces that can be distinguished by
the number of down spins relative to the quantization
axis. The ground state |GS〉 = |↑, . . . , ↑〉 is a state
with all spins up respective to a chosen axis. Looking
at subspaces of one and two down spins helped to
derive the general case for arbitrary down spins.
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