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In this article, the effect of an isolated magnetic impurity on a 2D s-wave superconductor is
studied using zero temperature Bogoluibov De Gennes mean field theory. The impurity is assumed
to be a classical spin interacting with conduction electrons in the lattice. The Local Density of
States(LDOS) plot showed the presence of Yu-Shiba-Rusinov(YSR) states within the superconduct-
ing gap at nearest neighbours to the impurity. Superconducting pairing amplitude is suppressed at
the impurity site, thus pointing towards the pair-breaking effect of the magnetic impurity. In the
fourth section, results of an experiment[1] that first observed YSR states in a 2D s-wave supercon-
ductor was discussed.

I. INTRODUCTION

Impurities plays an important role in the study of
solid state systems. In real materials, these could arise
from impurity atoms, dislocations and other forms of im-
perfections. The study of impurities is rather interest-
ing in the sense that it breaks translational invariance
and leads to localized electronic states. The first break-
through in the field of disordered systems was the cel-
ebrated Anderson’s theorem[2]. It states that random
impurity in a one dimensional or two dimensional non
interacting systems cause electronic states to become lo-
calized. In the case of three dimensional systems, there
exists a critical disorder under which the system is ex-
tended, and localized for the strength of disorder above
the critical value.

In similar ways, there had been lot of discussions on
the effect of impurities in superconductors, by assuming
the impurities to be classical spins. Another pioneering
work again by Anderson found that, superconducting or-
der is insensitive to disorder, given that the impurity does
not break Time Reversal Symmetry[3]. Hence this the-
orem does not apply for magnetic impurities since they
break Time Reversal Symmetry.

A decade later, three independent pioneering theo-
retical papers[4][5][6] discussed the effect of an isolated
magnetic impurity in s-wave superconductors. They pre-
dicted the existence of a pair of mid-gap bound states
with the energy depending on the exchange coupling
strength between classical spin and conduction electrons.
These bound states are now called ’Yu Shiba Rusinov
States’(YSR). It should be noted that the bound states
appear in pairs only because of the particle hole symme-
try of Bogoluibov De Gennes Hamiltonian[7]. Qualita-
tively, this effect can be explained as follows: a magnetic
impurity creates a local magnetic field which interacts
with the spin of conduction electrons. The cooper pairs
in BCS condensate are broken by this local magnetic im-
purity. Afterwards, one of the electrons forming the pair
couples with the impurity while the other forms a subgap
bound state.

Eventhough theoretically predicted long ago, it was
only recently that researchers could detect the midgap

bound states at impurity site, first for 3D isotropic case[8]
and latter for a 2D s-wave superconductor[1]. The detec-
tion of the bound states were possible due to the develop-
ment of a novel experimental technique called Scanning
Tunnelling Microscopy(STM). The main idea behind this
method is to move a conducting tip applied over the sur-
face of a studied material, and to measure the tunnelling
conductance that is proportional to the local density of
states. In-gap YSR states have now been observed in a
variety of systems that could couple superconductivity
with magnetic moments in the form of molecules[9], self-
assembled[10] and artificial atomic chains[11], magnetic
islands[12] [13] and also in proximity induced supercon-
ducting molecular break junctions[14].

In this paper, I investigate the physics of Yu Shiba
Rusinov physics of a 2D s-wave superconductor in the
presence of an isolated magnetic impurity. Here I treat
the magnetic impurity as a localised classical spin, which
is equivalent to a magnetic field interacting with the con-
duction electrons in the lattice. The system is stud-
ied using zero temperature Bogolyubov de Gennes(BdG)
mean field theory on an attractive Hubbard model lat-
tice. The benefit of using BdG method is that we could
let pairing amplitude to have spatial variation through-
out the lattice, since it is found self-consistently using
BdG equations. This is in contrast to the original paper
where they assumed the pairing amplitude to be spa-
tially homogeneous[5]. Allowing pairing amplitude to be
decided self-consistently has the advantage that it allows
us to go to coupling regime where perturbation theory
fails. But the mean field approximation off course ig-
nores fluctuations.

In the next section, we discuss the model Hamilto-
nian which takes into account the necessary interactions
required for our problem.

II. MODEL AND METHODOLOGY

Since the presence of impurity breaks the discrete
translational symmetry of the 2D material, we chose to
work on a real space lattice, with the impurity atom lo-
cated at the centre. Then we apply periodic boundary
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conditions at the edges. In effect, we are investigating
the bulk properties of the 2D square lattice since edge
effects are not taken into account.

1. Attractive Hubbard Model

We now employ attractive Hubbard model[15],
which is a minimal Hamiltonian that takes into account
the effects of attractive interaction that leads to super-
conductivity,

H0 = −t
∑
<ij>σ

c†iσcjσ − µ
∑
i

c†iσciσ − U
∑
i

n̂i↑n̂i↓ (1)

Here c†iσ(ciσ) are fermion creation(annihilation) operator
which creates(annihilates) an electron of spin σ(σ =↑, ↓)
at site ’i’. ’t’ is the hopping strength. The symbol 〈ij〉
emphasizes that hopping is allowed only between sites

that are adjacent. n̂iσ = c†iσciσ is the number operator.
Its eigenvalue is either one or zero depending on whether
electron of spin σ is present at site i or not. Since a
Superconducting system does not conserve the particle
number, we consider the system to be a Grand canoni-
cal ensemble. Hence we have chemical potential as one
of macroscopic parameters of the system. The chemical
potential is a free parameter adjusted to produce any de-
sired electron filling. Increasing (decreasing) µ results in
a corresponding increase (decrease) in the total number
of electrons in the system.

The third term describes effective attractive interac-
tion between electrons which lead to superconductivity.
Since the attraction is strongest between electrons at the
same site, it is a good approximation to consider only the
on-site attraction and ignore the interaction with elec-
trons in the nearest neighbours.

2. Modelling Impurity

As mentioned in the previous section, we assume the
magnetic impurity to be a localised classical spin inter-
acting with conduction electrons in the lattice. In the
classical limit, this is equivalent to a local magnetic field.
Thus a magnetic impurity located at site ’j’ results in an
energy contribution,

Himp = ψ†j~σ · ~Bψj

where ψ†j =
[
c†j↑ c†j↓

]
From here, we do the calculations

assuming that the classical spin is pointing in z-direction
Therefore,

Himp = Bz

(
c†j↑cj↑ − c

†
j↓cj↓

)
(2)

3. Mean Field Treatment

Interaction term is a four fermion operator. Inorder
to diagonalise the Hamiltonian, individual terms must be
quadratic in creation and annihilation operators. To re-
alise this, we use mean field approximation to decouple
the interaction term to an effective single particle Hamil-
tonian. This is done by ignoring higher order terms in
the fluctuation. Since -U < 0, the expectation value of

pair creation operator
〈
c†i↑c

†
i↓

〉
will be non-zero[16]. This

results in,

−Un̂i↑n̂i↓ ≈ −U 〈n̂i↑〉 n̂i↓ − U 〈n̂i↓〉 n̂i↑ + U
〈
c†i↑c

†
i↓

〉
ci↑ci↓

+ U 〈ci↑ci↓〉 c†i↑c
†
i↓ +

|4i|2

U
(3)

Let us define the superconducting order parameter at site
i as 4i = U 〈ci↑ci↓〉. Thus the interaction Hamiltonian
can be approximated as,

HI =
∑
i

(−U 〈n̂i↑〉 n̂i↓ − U 〈n̂i↓〉 n̂i↑ +4∗i ci↑ci↓

+ 4ic†i↑c
†
i↓ +

|4i|2

U

(5)

Here U 〈n̂i↑〉 n̂i↓ + U 〈n̂i↓〉 n̂i↑ is the Hartree correction
term.

Putting all these together, we get the model Hamil-
tonian for the 2D lattice as,

H = −t
∑
<ij>σ

c†iσcjσ −
∑
i

µ̃iσc
†
iσciσ

+
∑
i

[
4∗i ci↑ci↓ +4ic†i↑c

†
i↓

]
+Himp (6)

where µ̃iσ is the effective chemical potential given by,
µ̃iσ = µ+ U 〈ni−σ〉, which includes the Hartree shift.

4. Bogoluibov De Gennes Transformation

The Hamiltonian is now diagonalized using the Bo-
goluibov De Gennes transformation,

ci↑ =
∑
n

uni↑γn − vn∗i↑ γ†n

ci↓ =
∑
n

uni↓γn + vn∗i↓ γ
†
n (7)

where uiσ and viσ signifies particle and hole amplitudes
respectively. γ† and γ are creation and annihilation oper-
ators for non - interacting fermionic quasiparticles. They
diagonalise the Hamiltonian, so that

H = Eg +
∑
n

Enγ
†
nγn (8)
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where Eg is the ground state energy. En represents pos-
itive energies of corresponding quasiparticle states. The
detailed derivation of the BdG equation is given in the
Appendix. It is evident that the mean field parameters
4i, 〈ni↑〉, 〈ni↓〉 given by,

〈ni↑〉 =
∑
n

|uni↑|2f(En) + |vni↑|2f(−En)

〈ni↓〉 =
∑
n

|uni↓|2f(En) + |vni↓|2f(−En)

4i = U
∑
n

uni↑v
n∗
i↓ f(−En)− uni↓vn∗i↑ f(En) (9)

have to be found self-consistently. That is some initial
guess for the parameters 4i, 〈ni↑〉 and 〈ni↓〉 are chosen
at each site. The guess is inserted into the Hamiltonian
matrix and then diagonalized to find the BdG eigenval-
ues En and corresponding eigenvectors {unσ, vnσ} which
is then plugged back to the BdG matrix. This process is
continued until self-consistency is achieved upto a toler-
ance limit. In this paper, I set the tolerance limit to be
10−3. We will also use the lattice averaged order param-
eter given by 4 = 1

N2

∑
i4i in our calculations.

5. Calculating Local Density of States(LDOS)

The Local Density of States as a function of energy
and site index i at zero temperature can be calculated
using the formula :

ρ(E, i) =
∑
σ,n

|uniσ|2δ (E − En) + |vniσ|2δ (E + En) (10)

where Dirac Delta function can be approximated numer-
ically as,

δ (x) =
1

π

Γ

Γ2 + x2

with Γ as a lifetime broadening parameter. LDOS gives
the normalised density of states with energy E at site
i. It is a very useful quantity to compute because it
contains information about spatial distribution of energy
states and can be probed very accurately using Scanning
Tunnelling Microscopy. For an N×N lattice, the Hamil-
tonian would have 4N2 discrete energy levels and this
spectral resolution is not enough to produce a smooth
LDOS. Hence we use a technique known as ’supercell
method’. Here we consider identical copies of our 20×20
lattice to be embedded within a bigger M ×M supercell.
Effectively, we consider the lattice to be just a unit cell in
this giant supercell. Hence the periodic boundary condi-
tions of the BdG eigenvectors changes to Bloch boundary
conditions. That is,

uni±Nσ = uniσe
±ikN

vni±Nσ = vniσe
±ikN

where kx = 2πnx

MxNx
and ky =

2πny

MyNy
. here

nx = −Mx/2,−Mx/2 + 1....Mx/2 − 1 and ny =
−My/2,−My/2 + 1....My/2− 1 The results are averaged
over all k values in the first Brillouin zone to get a smooth
energy spectrum.

III. RESULTS AND DISCUSSION

For numerical calculation, we choose a lattice of size
20 × 20, with impurity atom at the centre(10, 10). The
electron density is fixed at 〈n〉 = 1 and the hopping
strength t is also set to 1 throughout. All the relevant pa-
rameters, 4, U, Bz are all scaled to the hopping strength
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FIG. 1. Plot showing variation of EY SR
4 as a function of

impurity strength Bz
t

Here 4 is the lattice averaged order
parameter. We see that the subgap YSR state moves towards
the Fermi energy as impurity strength is increased. At a crit-
ical value of Impurity strength, it crosses the Fermi energy .
Here we set t = 1, U = 4t, 〈n〉 = 1.00

Figure 1 shows the variation of subgap YSR state
energy scaled to lattice averaged pairing amplitude as
a function of impurity strength Bz

t . Here I set interac-
tion strength U = 4t and the electron filling 〈n〉 = 1.00.
We observe here that the energy of subgap YSR state
moves towards the Fermi energy as impurity strength is
increased. At a critical value of the Impurity strength,
it crosses the Fermi energy. Due to particle hole symme-
try of the BdG Hamiltonian, we see another bound state
crossing the Fermi energy from below. The crossing of
the Fermi energy by the YSR state is accompanied by a
change in ground state parity. The formula connecting
subgap YSR state with impurity strength derived in the
original paper by Shiba[6] using perturbation theory is,

EY SR = ±40
1− ((J/2)Sπρ)

2

1 + ((J/2)Sπρ)
2 (11)

Here J is the coupling strength and S is the spin of the
impurity. In the classical limit J → 0 and S → ∞, JS
= finite, which is the impurity strength in our case. ρ is
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the density of states at the Fermi level. We could observe
that upto a scaling factor, EY SR evolves with impurity
strength in a similar manner as the data plot shown in
fig. 1 obtained from self-consistent BdG equations.
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FIG. 2. Plot showing Local Density of States at the impu-
rity site(Blue), nearest neighbour to the impurity(Red) and
far away from impurity(Black). Sub-gap quasiparticle state
exists as revealed by the resonance peak inside the gap for the
nearest neighbours to the impurity. The strength of impurity
is kept at Bz = 3t. Also we set U = 4t and 〈n〉 = 1.0. I
choose Γ = 0.054, where 4 = 1.38 is the lattice averaged
order parameter

In figure 2, we plot the Local Density of States
at three different areas of interest, at the impurity
site(Blue), nearest neighbour to the impurity(Red) and
far from impurity(Black). All three are plotted for the
impurity strength Bz/t = 3. The existance of supercon-
ducting gap is evident if we look at the LDOS far from im-
purity(Black), which is followed by a so called ’coherence
peak’ at the point E ≈ ±4i. The coherence peak ap-
pears since the superconducting pairing pushes the states
that are near the Fermi level to the gap edge. Also evi-
dent is the sub-gap quasiparticle state, as revealed by the
peak in the LDOS inside the gap. This sub-gap peak is
not seen in the LDOS far away from impurity site imply-
ing that the Shiba state is localised around the impurity.

It is also interesting to look at the spatial depen-
dence of the sub-gap bound state. It is shown in the
figure 3 for the impurity strength Bz = 5t. We could
observe that the density of states spreads in space like
a circular wave with centre at the impurity. This os-
cillatory behaviour of the density of states is observed
even when superconducting states interact with a non-
magnetic impurity which is commonly known as Friedel
oscillations([17]).

As we saw in the previous section, pairing amplitude
on each site is a self-consistent parameter in Bogoluibov
De Gennes(BdG) theory[eq. 9]. Hence we could know
how the Cooper pairing strength is affected by the pres-
ence of magnetic impurity. Fig. 4 plots the pairing am-
plitude 4i as a function of lattice site index ’i’. Here
we see that superconducting order is suppressed at the

FIG. 3. Density plot showing the spatial dependence of the
sub-gap bound state. The impurity strength is kept at Bz =
5t.

impurity site. This result go well with our qualitative
description(discussed in the ’Introduction’ section) that
magnetic impurity breaks the Cooper pair resulting in
formation of bound states that are localised at the impu-
rity site.

FIG. 4. 3D plot showing spatial variation of pairing ampli-
tude 4i at impurity strength Bz = 3. We could see that
the superconducting order is suppressed at the impurity site.
Here too, we set U = 4t and 〈n〉 = 1.00

IV. EXPERIMENTAL EVIDENCE

Yu Shiba Rusinov states were first observed ex-
perimentally for a 2D isotropic superconductor only in
2015[1] even though they were observed for a 3D isotropic
one, nearly two decades before[8]. The results of the
experiment[1] are shown in fig. 5. In this experi-
ment, they studied single crystals of 2H-NbSe2 contain-
ing a few tens of ppm of magnetic impurities. The
scanning tunnelling spectroscopy studies performed at
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FIG. 5. a. Spatial dependence of Sub-gap bound state measured around the Fe impurity. The a and b lines indicate
crystollagraphic axes of 2H-NbSe2.bLocal Density of States on the impurity site(red), nearest neighbour to the impurity(green),
and far from the impurity (blue).c. Spatial and energy evolution of the Local Density of States, (dI/dV) along one direction
from the impurity site. d Density of States profiles of the electron- and hole-like YSR states as a function of the distance to
the impurity along the same line as for c. Image taken from ref [1]

320mK, well below the critical temperature of 7.2K, re-
veal YSR bound states around the randomly dispersed
magnetic iron impurities in 2H–NbSe2. The tunnelling
spectra acquired over a chosen Fe impurity(see spectro-
scopic map in fig.5a) show a YSR bound state which
takes the form of two peaks at positive and negative en-
ergies (Eshiba ≈ ±0.24) inside the superconducting gap
of 2H–NbSe2 (red curve in Fig.5b). Apart from the YSR
state, the characteristic superconducting spectrum is per-
fectly preserved.

We could see that our theoretical calculations using
Bogoluibov De Gennes method on an attractive Hubbard
lattice matches well with the experimental data. This is
apparent if we compare the figures 2 and 3 with their ex-
perimental counterparts 5b and 5a respectively. It should
be noted that the lattice geometry of 2H-NbSe2 is rad-
ically different from a square geometry. Hence the re-
sults won’t be exact. But we could capture the essential
physics of Yu-Shiba-Rusinov states. That is, the forma-
tion of bound states inside the superconducting gap.

V. CONCLUSION

In this paper, I studied the Yu-Shiba-Rusinov
physics of an s-wave superconductor with isolated mag-
netic impurity using the Bogolyubov de Gennes mean
field theory on an attractive Hubbard model lattice. Us-
ing the self-consistent solutions to the BdG equations,
I found the evolution of YSR bound state energy as a
function of impurity strength. It is also seen that my
results match well with the formula derived by Shiba in
his paper[6] using Perturbation theory. The LDOS calcu-
lated at various distances from the impurity site (see fig.
2) showed the peak inside the superconducting gap at
nearest neighbours to the impurity but at the same time,
without altering the shape superconducting energy spec-
trum much. No peak is seen for the LDOS far from the

impurity, which implies that the YSR state is localised at
the impurity state. This is evident from the spatial distri-
bution of Shiba states as shown in fig. 3. We could also
observe the suppression of the superconducting pairing
amplitude at the impurity site(see fig. 4) which verifies
our qualitative description that the presence of magnetic
impurity could result in pair breaking.

In the last section, a brief review of an experiment
that first observed YSR state in a 2D isotropic supercon-
ductor is conducted. Using STM techniques, they could
probe the localised state inside the superconducting gap.
The results of the experiment verified the theoretical pre-
dictions on the impurity physics put forward by Yu[5],
Shiba[6] and Rusinov[4]

Appendix A: Bogolyubov de Gennes Method

The Bogolyubov de Gennes Transormations are de-
fined as

ci↑ =
∑
n

uni↑γn − vn∗i↑ γ†n (A1)

ci↓ =
∑
n

uni↓γn + vn∗i↓ γ
†
n (A2)

The operators γ†n(γn) describes creation(annihilation)
operators of Bogoluibov quasiparticles at state n. Now
we demand the quasiparticles to be Fermions which im-
plies that the quasiparticle operators must follow the
anti-commutation rules:

{γn, γ†m} = δnm

{γn, γm} = 0

with these canonical transformations, the Hamiltonian is
diagonalized as,

H =
∑
n

Enγ
†
nγn +GS (A3)
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Following the well established technique used by De
Gennes[7], we work out the commutation of electron cre-
ation and annihilation operators with the Hamiltonian
given in eqn 6. After computation, we get,

[H, ci↑] = t
∑
〈k〉

ck↑ + (µ− εi↑ − δi,mBz + U 〈ni↓〉)ci↑

− 4ic†i↓ (A4)

[H, ci↓] = t
∑
〈k〉

ck↓ + (µ− εi↓ + δi,mBz + U 〈ni↑〉)ci↓

+ 4ic†i↑ (A5)

where m = (N/2, N/2), that is, we demand impurity
atom to be at the centre of the lattice. Here 〈k〉 represent
summing over nearest neighbours to the site i. Now we
replace the electron creation and annihilation operators
with corresponding Bogolyubov transformation relations
given in eq. A2. In the LHS of equations A4 and A5 we
use the expression of Hamiltonian in terms of quasipar-
ticle operators to get,

[H, ci↑] = [H,
∑
n

uni↑γn − vn∗i↑ γ†n]

=
∑
n

uni↑[H, γn]− vn∗i↑ [H, γ†n]

=
∑
n

−uni↑Enγn − vn∗i↑ Enγ†n (A6)

[H, ci↓] = [H,
∑
n

uni↓γn + vn∗i↓ γ
†
n]

=
∑
n

uni↓[H, γn] + vn∗i↓ [H, γ†n]

=
∑
n

−uni↓Enγn + vn∗i↓ Enγ
†
n (A7)

Thereafter, by comparing the coefficients of the quasipar-
ticle operators we arrive at the Bogolyubov de Gennes

equations,

Enu
n
i↑ = −t

∑
〈k〉

unk↑ − (µ− εi↑ − δi,mBz + U 〈ni↓〉)uni↑

+ 4ivni↓
Enu

n
i↓ = −t

∑
〈k〉

unk↓ − (µ− εi↓ + δi,mBz + U 〈ni↑〉)uni↓

+ 4ivni↑
Env

n
i↑ = t

∑
〈k〉

vnk↑ + (µ− εi↑ − δi,mBz + U 〈ni↓〉)vni↑

+ 4iuni↓
Env

n
i↓ = t

∑
〈k〉

vnk↓ + (µ− εi↓ + δi,mBz + U 〈ni↑〉)vni↓

+ 4iuni↑ (A8)
where 〈k〉 denotes nearest neighbours of the site i. Now
let us derive the expressions for the self-consistent pa-
rameters 〈niσ〉, 〈4i〉

〈ni↑〉 =
〈
c†i↑ci↑

〉
=
∑
n,m

〈(
un∗i↑ γ

†
n − vni↑γn

) (
uni↑γn − vn∗i↑ γ†n

)〉
(A9)

Since the quasiparticles are non-interacting, we have
〈γnγn〉 = 0,

〈
γ†nγ

†
n

〉
= 0,〈
γ†nγm

〉
= f(En)δnm

and 〈
γnγ

†
m

〉
= δnmf(−En)

Using the above relations we get,

〈ni↑〉 =
∑
n

|uni↑|2f(En) + |vni↑|2f(−En) (A10)

Following similar steps for 〈ni↓〉, we get,

〈ni↓〉 =
∑
n

|uni↓|2f(En) + |vni↓|2f(−En) (A11)

The expression for order parameter is,

4i = U 〈ci↑ci↓〉

=
∑
n,m

〈
(uni↑γn − vn∗i↑ γ†n)(umi↓γm + vm∗i↓ γ

†
m)
〉

Using the properties of quasiparticle operators as dis-
cussed above, we arrive at,

4i = U
∑
n

uni↑v
n∗
i↓ f(−En)− uni↓vn∗i↑ f(En) (A12)
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