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This paper presents the basis through which we define topological insulators. First, we provide a
brief overview of the justification and history of classifying material phases as topological, followed
by a streamlined examination of what defines a topologically insulating phase, with a focus on
2D systems. Herein, we discuss that a topological insulator has strong spin-orbit coupling and
preserves time reversal symmetry. The combination of these traits results in conductive edge states
that are protected by their band structure topology and ordered by spin. This makes topological
insulators an attractive material for the development of spintronic devices. Finally, we present the
first experimental evidence of a 2D topological insulator.

INTRODUCTION

Since topological insulators (TIs) were theoretically
predicted in 2005, there has been a growing effort to dis-
cover and understand materials with a TI phase.[1][2]

TIs present a potential avenue to spintronics, the field
of designing electronics based on the control of spin de-
grees of freedom.[3] Making use of spin degrees of free-
dom in electronic data storage allows for more informa-
tion to be stored per electron, theoretically resulting in
a significant reduction in power consumption relative to
traditional electronics. The field of spintronics is still pre-
dominantly in its conceptual phase, so the ways in which
TI materials would be utilized in these applications are
still in development.[4]

When the TI phase was first introduced, it was
suggested that graphene may display it.[1][2] However,
this has yet to be experimentally confirmed due to
challenges in maintaining strong spin-orbit coupling
at experimental temperatures.[5] Subsequently, it was
suggested that the TI phase could be observed in
CdTe/HgTe/CdTe quantum wells, which was indeed ex-
perimentally confirmed.[6][7] Since that first confirma-
tion, the TI state has been observed in Bi1−xSbx, Sb,
Bi2Se3, Bi2Te3, and Sb2Te3, using ARPES, STM, and
STS measurements.[5][8]

As a result of this growing search for new materials
with a TI phase, examining materials and suggesting they
may have a TI phase has become a trend in experimental
condensed matter research.[5][9] However, without pro-
ceeding with a firm grasp of what defines a TI phase,
these claims could go unchecked. This paper hopes to
act as a brief review of what defines a TI phase, to assist
the reader in understanding those claims.

CLASSIFICATION OF STATES BY TOPOLOGY

Historically, the phase of a material has been defined
using Landau theory, which requires the breaking of an
underlying symmetry for a process to constitute a phase

change. However, a new phase classification method was
introduced during the 80’s and 90’s.[10][11] It was sug-
gested that phases could also be defined by their ’topo-
logical order’. The topological order of band structures
is analogous to the topology of a 2D surface, which is
traditionally classified by its genus. Similar to symmetry
in Landau theory, the topological order is a fundamen-
tal property of a material’s band structure that remains
constant under continuous changes in the Hamiltonian.
The measurable invariant property of the material can
be different for different topological orders. Then, if the
specified fundamental property of a topological phase was
observed to change, it must be accompanied by a topo-
logical phase change.[9]

When we consider the electronic properties of a ma-
terial, one might imagine labelling any material state,
ranging from a semiconductor with a Dirac point, to the
vacuum as an insulator. However this sort of classifi-
cation, based on a finite band gap, is not necessarily
productive - not all materials classified as an insulator
by this definition are topologically equivalent.[12] Herein
lies another benefit of the topological classification sys-
tem: it explains unexpected electronic behaviour from
band structures that otherwise look similar.

The Integer Quantum Hall Phase

The idea of classifying material phases by their topo-
logical order was motivated by the introduction of the
integer quantum Hall (QH) phase.[12] While the integer
QH phase is not equivalent to a TI phase, the TI phase is
often described in relation to the QH phase, which makes
it a logical starting point for this discussion.

When electrons bound in two dimensions are placed in
a strong external magnetic field, the electrons will orbit
in a circular pattern with a cyclotron frequency, ωC , as
is illustrated in Fig.1. The system is then analogous to a
harmonic oscillator with energy levels dependent on the
cyclotron frequency, called Landau levels.[13] The lev-
els are degenerate for a large range of allowed momenta,
made finite only by the physical bounds of the material.
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The resulting electronic behaviour of the material is then
related to the filling fraction of the highest occupied Lan-
dau level.

FIG. 1: Illustration of the difference between a common insu-
lator and a QH insulator. (a) Diagram of electron behaviour
in a common insulator. (b) Band structure of a common insu-
lator. (c) Example of a geometric shape with the genus = 0.
(d) Diagram of electron behaviour in a QH state. (e) Landau
level structure for a QH state. (f) Example of a geometric
shape with the genus = 1 as a result of its hole. Figure taken
from [9].

As with the classical Hall effect, a Hall voltage results
from this current of orbiting electrons, creating a uniform
electric field. For a system with periodic boundaries, this
would lift the degeneracy of the Landau levels. However,
without periodic boundaries, the behaviour at the edges
of the material must be treated carefully. As one might
predict from the classical Lorentz force, this electric field
generates a one-way current along the edge of the mate-
rial. The unilateral direction of this current is referred to
as a ’chiral’ state. We can then measure the conductivity
of this chiral state, which can be described by equation
(1).

σxy =
n · e2

2π~
(1)

where n is the number of filled Landau levels.[9] The sig-
nificant finding here is the quantized nature of σxy, some-
thing that would not be found in a normal insulator. In
fact, the quantum nature of the QH state’s conductivity
was found to be exceptionally robust to smooth changes
in the electron density.[14] The explanation for this stable
quantum nature of the Hall conductivity was provided by
Thouless, Kohmoto, Nightingale, and den Nijs.[10] They
stated that the integer n in equation (1), referred to as a
’Chern invariant’, is defined by the topology of the band
structure. Specifically, we are interested in how the edge
states’ bands connect the bulk valence and bulk conduc-
tion bands. Further discussion on what is meant here
by topology will be continued in our discussion of the
TI phase.. Because it is determined by topology, the

Chern invariant is analogous to the genus of a 2D surface
in mathematics.[15] This invariant parameter of the QH
state is what defines a topological state as different from
a normal insulator under the same external conditions.

Another way the Chern invariant can be understood is
by the Berry phase.[16] Generally, the Berry phase is a
phase factor applied to eigenstates when they experience
a cyclical variation in the Hamiltonian. For example, if
we take a closed line integral of an eigenstate in reciprocal
space, the eigenstate would obtain a Berry phase. From
the Berry phase we can define the Berry flux, which is
analogous to magnetic flux.[17] Then, if you take a sur-
face integral over the Brillouin zone of the Berry flux,
you get the Chern number of a Landau level as shown in
equation (2).

nL =
1

2π

∮
BZ

dS · FL(k) (2)

Where FL(k) is the Berry flux. Note here that nL is
only the Chern number for an individual Landau level -
generally when the Chern invariant is discussed, we are
considering the sum of Chern numbers from all occupied
Landau levels.

At the interface of two different topological states, such
as the edge of a topological material and a vacuum, the
band gap must go to zero so that the topological variant
can change across the boundary. This forced conductive
state is precisely the same as the one-way current induced
by the QH effect mentioned earlier.

Now that we have discussed the integer QH state, we
will examine the TI phase and what makes it unique
topologically.

THE TOPOLOGICAL INSULATOR PHASE

Unusually, the TI phase was described theoretically
before being observed experimentally. Its existence was
predicted based off the concept of the quantized conduc-
tance of the QH state.[1][2] In fact, one can think of a
2D TI state as the superposition of two QH states with
opposing Hall conductance values, leading to a net van-
ishing Hall conductance. As a result of the similarities,
the 2D TI phase is also often referred to as the quantum
spin Hall phase (QSH). For the following discussion, we
will examine only the TI phase in 2D for brevity, however
it may be scaled up to 3D, where it exhibits additional
properties.

The TI phase shares many similarities to a QH phase,
with the exception that it need not be under the influ-
ence of an external magnetic field. Instead, a TI phase
arises from strong spin-orbit coupling, also called Rashba
coupling.[18] This results in spin-momentum locking,
where the magnetic field generated from the momentum
of the electron’s cyclical orbit ’locks’ the electron’s spin
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axis. Spin-orbit coupling is itself a relativistic effect, re-
lying on the interaction of a particle’s spin with the ap-
parent magnetic field seen from an electron’s reference
frame. The consequence of this locking is the generation
of spin currents along the edge of the material, as drawn
in Fig. (2). Again, this can be tangibly thought of as
two opposing QH edge states, referred to as a singular
’helical state’. These edge spin currents are what make
TI materials potentially useful in spintronics, which aims
to control spin degrees of freedom.

FIG. 2: Diagram of the intrinsic edge states of QH phase
and TI phase. (a) 2D QH phase surrounded by a common
insulator with a drawing of the chiral conductive edge state.
(b) 2D TI phase surrounded by a common insulator. Drawing
of paired conductive edge states with locked spins, analogous
to a superposition of two QH states. This pair of conductive
edge states is also referred to as ’helical state’. Figure taken
from [19].

Most notably, since the TI phase isn’t under an ex-
ternal magnetic field, time-reversal symmetry (TRS) is
maintained. In other words, the TI state is even in TRS,
while the QH state is odd. The implications of preserv-

ing TRS will help to explain the differences between QH
and TI phases. First, keeping TRS means that the band
structure must be symmetric about ~k = 0. Another thing
we quickly notice is that the Hall conductance is odd
under TRS, so although it was a convenient quantized
measurable property of a QH phase, it vanishes in a TI
phase.[9]

TRS symmetry is an antiunitary operator as per equa-
tion (3):

T̂ = K · exp

(
iπŜy
~

)
(3)

where Ŝy is the spin operator along the y-axis, and K
denotes complex conjugation. Its antiunitary property
means that T̂ 2 = −1. As a result, in order for a state to
be an eigenstate of T̂ , it must be at least doubly degen-
erate. This assertion is called Kramers theorem.[20] For
a system without spin-orbit coupling, Kramers theorem
trivially amounts to enforcing the degeneracy of spin up
and spin down electrons. However, spin-orbit coupling
lifts this degeneracy. Consequently, in order for Kramers
theorem to hold in a system with spin-orbit coupling,
we must enforce double degeneracy at the points where
momentum preserves TRS. These ’Kramers degenerate’
points in the Brillouin zone are ~k = 0,±π

a . Outside of
these special points, the spin-orbit coupling lifts the de-
generacy of the states with opposing spins, as expected.
This is shown diagrammatically in Fig. 3.

FIG. 3: Band structure over half of the Brillouin zone of an
insulating material with conductive edge states. Here, the
black lines between the valence and conduction bands show
the conductive edge states. The points Γa, Γb are the Kramers
degenerate points at momenta 0 and π

a
respectively. In panel

(a), there are an even number of intersections with the Fermi
energy, EF . In panel (b), there are an odd number of inter-
sections with EF , and thus the conductive states are topolog-
ically protected. Figure taken from [9].

The important feature to examine in the band struc-
ture is thus the number of boundary states that cross the
Fermi energy, EF . If an even number of states cross EF ,
then one could imagine smoothly changing the Hamilto-
nian in order to have a EF that is crossed by no edge
states. However, if an odd number of states cross EF ,
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then no matter what smooth changes are made to the
Hamiltonian, there will always be at least one state cross-
ing EF . Herein lies arguably the most significant feature
of a TI state - it has an odd number of crossings of EF ,
and so nothing short of altering the topology of the band
structure can eliminate its conductive edge states.

This feature is characterized using the ’Z2 invariant’,
ν, as opposed to the Chern invariant used for the QH
phase. Equation (4) is a way to express the change in ν
across an interface:

∆ν mod 2 = NK (4)

where NK is the number of Kramer degenerate states
that cross EF .[21] Following from our preceding discus-
sion, a material with ν = 1 is a TI state, while ν = 0
denotes a topologically trivial state.[22] In addition to
equation (4), there are numerous additional ways to de-
fine the Z2 invariant that utilize tools from the mathe-
matics of topology.

At this point, the reader may be wondering: if the Hall
conductance used for the QH phase is vanishing in the
TI phase, by what measurable value can we detect a TI
phase? The simplest measurement that shows a 2D TI
state is by measuring its ’longitudinal conductance’, G.
We will not derive it here for brevity, but we use the result

that every quantum channel has G = e2

2π~ .[23] A 2D TI
state has one helical state on either edge, leading to the

theoretical longitudinal conductance of G = 2 · e2

2π~ . The
first 2D TI phase to be experimentally measured was in
CdTe/HgTe/CdTe quantum wells. As shown in Fig. (4),
König et al. measured G of the quantum wells in their
TI state to match this theoretical value.[7]

In summary, a topological insulator is a material that
exhibits a TI phase. The TI phase is a result of strong
spin-orbit coupling and time reversal symmetry. It is
characterized by a Z2 invariant which relates to the topol-
ogy of its edge state band structure. As a result, the
spin-conductive nature of its edge states is protected un-
der smooth modulations to the Hamiltonian. These pro-
tected intrinsic spin currents make the TI state ideal for
the development of exotic spintronic devices.
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