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The bulk photovoltaic effect (BPVE) is a nonlinear optical effect that generates photocurrents in
materials with broken inversion symmetry without the presence of an external dc electric field. This
effect has garnered interest due to its potential applications in efficient solar cells. In this paper, I
aim to describe the origins of the shift current photovoltaic effect, and demonstrate the process for
calculating its photoresponsivity for a simple tight binding model of the 2D monochalcogenide GeS.

INTRODUCTION

The photovoltaic effect allows for the direct conversion
of light to electricity is potentially the most reliable and
abundant source for renewable, clean energy that exists.
Traditional solar cells make us of the built in electric
field within p-n junctions to separate electron/hole
charge carriers and thus generate a usable photo-current.
Unfortunately, the efficiency of conventional solar cells is
constrained by the Shockley-Queisser limit, so exploring
other processes for photo-current generation that may
be able to achieve higher photo conversion efficiencies
is warranted.[1] One alternative source for photo-current
is the bulk photovoltaic effect (BPVE), which has
been shown capable of producing an above band-gap
photovoltage, may allow the Shockley-Queisser limit
to be surpassed. The bulk photovoltaic effect, first
discovered in the late 1960s, has several contributing
components, ballistic photocurrent and shift current
being the most significant. While not the focus of this
paper, ballistic current is related to the violation of the
”principle of detailed balancing” for photo excited non
thermal carriers. Essentially, if the probability of electron
transition Wkk′ from a state with moment k’ to a state
with momentum k’ does not equal the reverse transition
probability Wk′k, then there arises an asymmetry of
momentum distributions. This asymmetry results in
a photocurrent, but this is outside of the scope this
report. Shift current arises because the real-space center
of charge for valence bands differ from the center of
charge for conduction bands. Thus during light-induced
transitions electrons/holes shift spatially resulting in a
photocurrent.[2] Most of the papers I’ve read claim that
the dominant DC current response of the BPVE is shift
current, although this is still a topic of active research,
so there are some disputes about this. I will be focusing
this paper on the mechanisms that lead to a shift current
in materials with broken inversion symmetry.

SHIFT CURRENT

Figure 1 is very helpful for developing a qualitative
sense of how shift currents arise. It shows the electron
densities of GaAs for Γ electrons in the valence (a) and
conduction (b) bands. Notice that these densities are

FIG. 1. A plot of the electron density in the [110] plane of
GaAs. Panel (a) shows the electron density of the highest Γ
valence electron, and panel (b) shows the electron density of
the lowest Γ point conduction band. Source [3]

spatially different. One can view this figure as a ”before
and after” snapshot of the positions of electrons exposed
to a photoexcitation.[3] As electrons in the valence band
centered around Arzenic atoms are excited, they ’shift’
to be centered around a nearby Gallium atom, resulting
in a current. This is complicated by different responses
to different polarizations of light, and it is not clear
from this analysis why the relaxation of electrons from
the excited states does not simply shift them back and
undo this effect. However, this suffices for a simple
visualization. One paper by Liang Tan provides a simple
description of the shift current from the the perspective
of perturbation theory.[4] Since shift current involves
carriers becoming coherently excited by incoming light
(as opposed to scattering), time-dependent perturbation
theory can be used to describe the electronic behavior.
Thus Liang considers a three level system that is initially
in a state where the n = 0 level is occupied, while the
n = 1, 2 levels are unoccupied. If we expose this system
to an electric field E oscillating at frequency ω, then first
order time dependent perturbation gives:
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Here Vn0 = 〈n|V |0〉 is the dipole matrix element for the
electric potential V (t) and ωn0 is the energy difference
between the n and 0 levels. The current carried by the
state |ψ(t)〉 is given by
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Where P is the momentum operator, Pn′,n = 〈n′|P |n〉,
and gn′,n are phases that could be calculated from 2.
The key points to notice with this result is that the
current is non-linear as it depends quadratically on the
electric potential of the incoming light wave. This
equation can be understood to say that an electron can
be excited by a photon with frequency ω into the state
n, or can get excited by a photon with frequency −ω
into the state n′. If the interference between these two
excitations is asymmetrical, then a d.c. response get be
obtained, which would correspond to a situation where
V ∗n′,0V

∗
n,0Pn′,n does not go to zero due to symmetry.

An asymmetry like this would manifest in the different
spatial character of the valence and conduction bands, as
depicted in figure 1.

A more useful formulation for shift current can be
found using response functions. if we define Eb(ω) as an
electric field with frequency ω this is linearly polarized in
the b direction, the the shift current takes the form

Ja = σabb(ω)Eb(ω)Eb(−ω) (4)

where a, b are Cartesian indices, and σabb is a third rank
tensor, which in a D-dimension is given by

σabb = C

∫
dkD

(2π)D

∑
n,m

fnmI
abb
nm × δ(ωnm − ω) (5)

where C = 2gsπe
3

~2 and gs = 2 accounts for spin
degeneracy.[5] n,m are band indices, fnm = fn − fm is
the difference between Fermi occupations of bands n and
m, and ωnm = ωn − ωm is the band energy difference.
From here onward, I will set ~ = 1. Finally,

Iabbnm = Im(rbmnr
b
nm;a) (6)

where rbnm are the inter-band matrix elements
of the position operator (called inter-band Berry

connections[6]), which are defined as:

ranm =

{
i 〈n|∂kam〉 , if n 6= m

0, otherwise
(7)

and rbnm;a = ∂kar
b
nm − i(ξann − ξamm)rbnm are generalized

derivatives of the berry connections. In the last
expression ξann = i 〈n|∂kan〉 is the diagonal berry
connection for band n. These berry connections are
closely related to berry phases, and can be used to
calculate a variety of magnetic, optical, and electronic
effects (shift current and second harmonic generation
being two examples).[6] In a system with inversion
symmetry, the response function σabb remains the same
under an inversion operation, while the current and
electric field would both pick up a negative sign. Given
these properties, we can see from equation 4 that Ja must
be zero in such a system. Thus only a material with
broken inversion symmetry can exhibit a shift current.
The derivation of expression 5for shift current can be
found here[7][8].

TWO BAND MODEL

In order to calculate the shift current response of a
semiconductor, it is helpful to use a generic model and
write the shift current integrand Iabbnm in terms of model
parameters. Cook writes this Hamiltonian in the form

H = ε0σ0 +
∑
i

σifi (8)

where σ0 is the identity matrix, σi = σx, σy, σz are the
Pauli matrices and ε0, fi = fx, fy, fz are unspecified
functions of momentum.[5] This gives eigenvalues E1 =
ε0 + ε, and E2 = ε0 − ε corresponding to the valence
and conduction bands, where ε =

√∑
i fifi. Evaluating

equation 6 for this model requires calculating the
derivatives of Bloch wave functions in order to compute
the berry connections and their generalized derivatives.
This is very difficult to do in practice, so to simplify
the calculations, one can derive identities known as sum
rules that replace wave function derivatives with sums
over all the states of matrix elements of Hamiltonian
derivatives.[5][8][7] The derivation is beyond the scope
of this paper, but in essence by evaluating the identity

∂kb∂ka 〈n|H|m〉 = δnm∂kb∂kaEn (9)

one can get an expression for ranm;b in terms of derivatives
of the Hamiltonian, which are much easier to compute
than derivatives of Bloch functions. Plugging this
expression into equation 6, with n = 1, m = 2 gives

Iabb12 =
1

wba12
Im

[
−vb221va12(vb11 − vb22)

2ε
+ vb21w

ba
12

]
(10)
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where vbnm = 〈n|∂kbH|m〉 and wbanm = 〈n|∂kb∂kaH|m〉.
To compute this expression, we would find the
eigenfunctions ψn of the two band hamiltonian, and
directly evaluate the terms to get:

Iabb12 = −
∑
ijm

1

4ε3

(
fmfi,bfj,ab − fmfi,bfj,a

ε,b
ε

)
εijm

(11)

where fi,a = ∂kafi, and ε,b = ∂kbε.
In the next section, we will follow the steps that Cook

uses to calculate the shift current for a 2D material.
However, they frame it in terms of the photoresponsivity
tensor κabb, which is defined as the current density per

incident intensity Ja = κabbI0,b, where I0,b = cε0|Eb|2
2 is

the intensity for light polarized in the b direction. This
is related to the σabb response function by

κabb =
2σabb

cε0
(12)

At this point, it is worthwhile to note that we
have been using a fairly condensed notation, following
Cook’s paper since we will be using it in the next
section. However, historically the response function σabb

was often written in terms of the phase of the berry

connections. If we let rbnm = |rbnm|eiφ
b
nm , then Iabbnm =

|rbnm|2Rabnm where

Rabnm = ∂kaφ
b
nm − ξann + ξamm (13)

is called the shift vector. The shift vector has dimensions
of length, is gauge independent, and describes the change
in position that occurs when an electron absorbs a
photon.

All analysis thus far has been valid for thin materials
that do not significantly attenuate the light as it passes
through them. For thicker materials we would need to
take into account an absorption coefficient.

2D TIGHT BINDING MODEL

This section is intended to give an example of the
method used by Cook to compute shift current for a
real material. One can make a 2D material that breaks
inversion and rotational symmetry by combining a group
IV and group V I element into the orthorhombic stucture
of black phosphorus. GeS is predicted to be stable in
such a form, and it’s lattice structure is shown in figure
2[9]. Using ab initio computational techniques that are
beyond the scope of this paper to approximate lattice
parameters. They determined that ~l1 = (l1, 0), ~l2 =
(0, l2) have parameters l1 = 4.53 Å and l2 = 3.63 Å, that
the height difference between each zigzag was h = 2.32 Å,
and the distance between nearest neighbor Ga and S pairs
is x0 = 0.62 Å. Considering only a single pz orbital per

FIG. 2. The lattice structure of GeS. Source [5]

FIG. 3. Frequency dependence of the photo photoresponsivity
tensor κabb for the tight binding model of GeS. The left panel
shows several nonzero components of the responsivity tensor
with parameters t1 = −2.33, t2 = 0.61, t3 = 0.13, δ = 0.41
with units of eV. κ̄x = (κxxx + κxyy)/2 is the polarization
averaged photoresponsivity in the x direction. The right panel
shows κxxx with parameters δ = 0.8eV, t3 = 0 and different

hopping ratios of |t1|
t2

. Source [5]

site, letting δ be the on-site potential difference between
nearest neighber Ge-S pairs, and letting t1, t2, t3, t

′
1, t
′
2

be the five hopping integrals between neighboring Ge-S,
Ge-Ge, and S-S pairs Cook was able to construct a tight
bonding model. Putting into the form 8, they obtain

ε0 = −2t′1(cos(a1 · k) + cos(a2 · k)− 2t′2 cos((a1 − a2) · k)

fx + ify = −e−ix0·k [t1 + t2Φ(k) + t3Φ∗(k)]

fz = δ (14)

Cook then calculates the photoresponsivity tensor for
this Hamiltonian using the sum rules they derived and
the various relations described in the previous section.
The results are plotted as a function of frequency in
figure 3, and the heat map in figure 4 shows how the
photoresponsivity changes as a function of some of its
hopping parameters.

For frequencies in the visible spectrum, ω ≤ 3eV the
total current per intensity in a conventional Si solar cell
exposed to sunlight is ≈ 400mAW .[5] This is comparable to
the largest values seen on the phase diagrams of figure 4.
While GeS in its natural form produces far less current
than this, one can imagine manipulating its properties
(possibly via doping, external fields or addition of other
elements into the lattice) to increase its photocurrent.
Other materials with broken inversion symmetry may
have even larger photoresponsivity tensors. If any
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FIG. 4. Phase diagrams for monochalcogenide layer tight
binding model: (a) Polarization-averaged photoresponsivity
in the x-direction, κ̄x, at the band gap frequency plotted
as a function of hopping parameters |t1| and t2, keeping the
band gap fixed at 1.89 eV by tuning δ accordingly. The Ge-S
distance is x0 = −.52 Å, and t3 = 0. The location of GeS
on the phase diagram is marked by a white circle with blue
outline. Regions for which the gap cannot be kept at 1.89
eV are left white. (i) and (ii) show bond strengths in the
limits where |t1| � t2 and |t1| � t2, respectively, to illustrate
the two extremes of the phase diagram. (b) κ̄x at the band
gap frequency plotted as a function of the Ge-S distancex0
in units of a = (a21 + a22)1/2 and ratio of hopping parameters
|t1|/t2. Here, δ and t2 are set to GeS values of 1.1 eV and 0.61
eV, respectively. The location of GeS on the phase diagram
is marked by a white circle with blue outline. (iii) and (iv)
show two extreme cases of the phase diagram, where x0 is
large and small, respectively. Source [5]

material could be found that surpasses silicon, it could
profoundly change the solar energy industry.

CONCLUSION

This paper provieded an introduction to shift current
as a promising mechanism for generating photo current.
Since it can be generated in a homogeneous crystal

lattice, without the need for a hetero structure junction,
it may be possible to very cheaply produce BPVE solar
cells if a suitable material is found. While we are a long
ways off from developing a photovoltaic cell based on the
shift BPVE that can exceed the efficiency of silicon P-N
junction based photocells, the studies explored in this
paper demonstrate that it is a field worth exploring.
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