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We study second-order phase transitions, otherwise known as critical phenomena, by comput-
ing their critical exponents — six numbers which quantitatively describe the physics of the phase
transition. After discussing the classical thermodynamics derivation of the critical exponents and
discussing its shortcomings, we introduce a powerful technique known as the renormalization group,
which allows for a more accurate prediction of critical exponents. We illustrate this technique using
an example system — the 2D Ising model.

Critical Phenomena— Phase transitions are one of
the most interesting phenomena in thermodynamic sys-
tems. A prototypical example of a phase transition is the
liquid-vapor transition in water. To visualize this transi-
tion, it is useful to consider the phase diagram of water,
as shown in Fig. 1. In this diagram, the liquid-vapor
transition occurs on the liquid-vapor coexistence curve,
which begins at the triple-point of water (273 K, 612
Pa), and terminates at the critical point : Tc = 647.29 K
and Pc = 22.09 MPa. The transition between liquid and
vapor that occurs on the bulk of this coexistence curve
(e.g. the transition A→ B in Fig. 1) is called a first-order
phase transition, and a characteristic feature of such a
transition is a finite latent heat. Meanwhile, the transi-
tion C → D in Fig. 1, occurring precisely at the critical
point, is called a second-order phase transition. Beyond
the critical point there is no distinction between the liq-
uid and vapor phases, and so a second-order transition is
more subtle than the first-order kind. In this paper we
will study the physics of second-order phase transitions,
which, because they occur at the critical point, are also
known as a form of critical phenomena.
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FIG. 1. Phase diagram of water, showing the first-order
liquid-vapor phase transition A → B, and the second-order
phase transition C → D. The latter passes through the criti-
cal point (Tc, Pc), at which the liquid-vapor coexistence curve
terminates.

Besides the liquid-vapor transition in water, there are
many other examples of critical phenomena, all of which
occur at the endpoints of coexistence curves. These in-
clude the ferromagnetic-paramagnetic phase transition in

Fe, the superconductivity transition in Pb and other su-
perconductors, the order-disorder transition in Cu-Zn,
and many others [1].

In each of these critical systems, there is an extensive
quantity M , called the order parameter, which charac-
terizes the phase that the system is in. For instance, in
the liquid-vapor transition we can define M to be the
molar volume, such that M is larger in the vapor state
and smaller in the liquid state. Another example is the
magnetic system Fe, where we take M to be the mag-
netization: M is zero in the paramagnetic phase, and
nonzero in the ferromagnetic phase. Furthermore, we de-
note the variable conjugate to M by h, which, as usual in
thermodynamics, plays the role of a “generalized force”.
For example, in the liquid-vapor transition h is the pres-
sure difference between the phases, while in the magnetic
transition h is the applied magnetic field.

Although the critical phenomena we described above
occur in very different physical systems, they share many
features in common. For example, experiments show
that in any critical system near the critical tempera-
ture Tc, the heat capacity C ≡ (dQ/dT )M , the order
parameter M , and the generalized susceptibility χ ≡
−[(∂M/∂h)T ]/M behave as

C ∼ 1

(T − Tc)α
, (1)

M ∼ (Tc − T )β , (2)

χ ∼ 1

(T − Tc)γ
, (3)

as we move up the coexistence curve towards the critical
point. Meanwhile, at T = Tc, as a function of h the order
parameter M behaves as

M ∼ h1/δ. (4)

The values α, β, γ, δ are known as critical exponents, and
understanding the physics of critical phenomena requires
their computation. In particular, we might naively ex-
pect that different critical systems possess different crit-
ical exponents — after all, a metal becoming supercon-
ducting is clearly very different from a liquid evaporating.
However, we will discuss how this naive expectation is
often incorrect, and that very different physical systems
often possess the same critical exponents.



2

Landau Theory— Landau described the physics
of critical phenomena by using classical thermodynam-
ics [1, 2]. The starting point of his calculation is to recall
that the equilibrium state of a thermodynamic system
with order parameter M occurs at the point where the
appropriate free energy F (M) is minimized. For exam-
ple, in a fluid at constant temperature T and pressure P ,
we take F to be the Gibbs free energy, and recall that
M is the molar volume. Then F (M) will have two local
minima; one at a smaller value of M corresponding to the
liquid phase, and one at larger M corresponding to the
vapor phase. The system will then randomly fluctuate
between these local minima, but, in the thermodynamic
limit, it will spend an overwhelming majority of its time
in the phase corresponding to the global minimum of F ,
i.e. the lower of the two local minima. If we adjust the
conditions (such as T and P ) so that the two local min-
ima of F are equal, as in Fig. 2-a, then the system is
equally likely to be in both phases — this corresponds
to being on the coexistence curve in a phase diagram, on
which two phases are in equilibrium.
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FIG. 2. Plots showing the free energy F as a function of or-
der parameter M for a system located (in phase space) on the
coexistence curve separating two phases. Plot (a) is represen-
tative of a system on the coexistence curve, but away from
the critical point. Plot (b), with a characteristically flat bot-
tom to the free energy surface, is representative of a system
precisely at the critical point.

As we move up along the coexistence curve towards the
critical point, the barrier separating the two local minima
decreases, and precisely at the critical point the barrier
vanishes and F develops a flat bottom (Fig. 2-b). Here,
the system is able to fluctuate along the flat bottom at
no free energy cost. We thus expect that a system at
criticality undergoes large-scale fluctuations of its order
parameter. This prediction is strongly corroborated by
experiments.

With this perspective, Landau was able to compute the
critical exponents α, β, γ, δ. He noted that the qualitative
form of the free energy F shown in Fig. 2 leads to a Taylor
expansion F = a+bM2 +cM4 + . . . with c > 0, where we
have assumed that there is a symmetry which makes F
even (e.g. in the magnetic system, F is invariant under a

simultaneous flip of all the spins). The flat bottom which
develops as we move towards the critical point means that
b goes from a negative value on the coexistence curve
to zero at the critical point. Hence at criticality, F is
of the form a + cM4, i.e. it has a quartic minimum.
As always, it is possible to compute all thermodynamic
quantities of interest by taking derivatives of F , and in
this way compute the critical exponents. In this way
Landau found [1]:

Landau: α = 0, β = 1/2, γ = 1, δ = 3. (5)

Thus we obtain the prediction that the critical expo-
nents of all second-order phase transitions — from super-
conductors to magnetic systems to binary alloys, etc. —
are identical. Unfortunately however, experiments show
that this is generally not the case. However, Landau’s
argument was based on very general thermodynamic rea-
soning, with very few assumptions. This raises the ques-
tion: where does this argument fail?

The place where Landau’s argument fails is in the as-
sumption that the equilibrium state is precisely the state
which minimizes the free energy F . In actuality, there
are always random fluctuations that allow a system to
briefly occupy states with a higher free energy, before
decaying back to the stable minimum, and the true equi-
librium state is a time average over all occupied states.
At a temperature β−1 these fluctuations are suppressed
by a factor of exp(−β∆F ), with ∆F the increase in free
energy during the fluctuation. Thus in the case of a very
deep and narrow potential well — as is almost always the
case in the thermodynamic limit — these fluctuations are
highly suppressed, and the equilibrium state is, to a very
good approximation, the state which minimizes F . How-
ever, we saw that at criticality F develops a very wide
minimum. In this case, the fluctuation-averaged equi-
librium state could deviate significantly from the state
with minimum F . Thus, in order to improve upon Lan-
dau’s calculation of the critical exponents, we must take
fluctuations into account.
Fluctuations and Scaling— We can quantify the

fluctuations present in a system through a correlation
function. As an example, we consider the Ising model of
classical spins σi ∈ {±1} on a lattice, with Hamiltonian

H(k, h; {σ}) = −h
∑
i

σi − k
∑
〈i,j〉

σiσj , (6)

where h is an external field and k is a spin-spin coupling.
This system undergoes a paramagnetic-ferromagnetic
second-order phase transition at a critical temperature
Tc. The connected two-point correlation function is

Γc(i, j) = 〈σiσj〉 − 〈σi〉〈σj〉, (7)

where the angle brackets correspond to a thermal aver-
age, and it quantifies the correlated fluctuations between
spins i and j. Away from Tc, it can be shown that the cor-
relation function decays exponentially with the distance
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|i− j| between sites i and j, namely [3],

Γc(i, j) ∼ exp

(
−|i− j|
ξ(T )

)
for T 6= Tc, (8)

where ξ(T ) is a temperature dependent correlation
length. On the other hand, we expect that at Tc the
fluctuations are large, i.e. sub-exponential in |i− j|,

Γc(i, j) ∼
1

|i− j|d−2+η
for T = Tc. (9)

Here we have written the exponent in a conventional
form, where d is the dimension of the system and η is an
unknown parameter. In order to have Eq. (8) approach
Eq. (9) as T → Tc we must have [3]

ξ(T ) ∼ 1

|T − Tc|ν
for T near Tc. (10)

Thus, in order to quantify the fluctuations we intro-
duced two additional unknown exponents, ν and η. To
see why this is beneficial, we first define the free energy
per unit volume, f ≡ F/V . For the Ising model (6) we
can write f in terms of h and k, or equivalently in terms
of δk ≡ k − kc and δh ≡ h− hc, where kc and hc are the
values of k and h at the critical point. Then, it can be
shown that in order for f to give the required forms of
the correlators in Eqs. (8) and (9), near T = Tc it must
satisfy the scaling relation [3]

f(λadδk, λbdδh)
!
= λdf(δk, δh), for any λ > 0, (11)

where a and b are some unknown constants. Then, by
differentiating this expression, we can compute the heat
capacity, the generalized susceptibility, etc., and thus ob-
tain all the critical exponents in terms of a and b. The
result is [3]:

α = 2− 1
a , β = 1−b

a , γ = 2b−1
a ,

δ = b
1−b , ν = 1

ad , η = 2 + d(1− 2b),
(12)

Hence all six critical exponents can be written in terms
of only a and b. All that is left is to find a and b.

Renormalization Group— Before computing a
and b, let us first, somewhat arbitrarily, consider what
happens to the correlation length ξ(T ) as we “zoom out”
of the system, i.e. as we look at the system from fur-
ther away. For T 6= Tc, ξ(T ) is finite, and if we zoom
out by a factor of two, ξ(T ) will effectively decrease by
a factor of two. However at T = Tc, Eq. (10) says that
ξ(T ) is infinite, and zooming out by a finite amount does
not change that fact. In other words, at criticality the
correlation length is invariant under a “zooming out” pro-
cedure. (For a visual representation of a “zooming out”
procedure, see Fig. 3 below.)

Let us now make the bold conjecture that, at criti-
cality, all properties of the system are invariant under
a “zooming out” procedure. More precisely, suppose
our system is described by a Hamiltonian H(t1, t2, . . . ),

which is a function of some coupling constants ti. Then,
under a general “zooming out” procedure, the Hamilto-
nian will change to H(t′1, t

′
2, . . . ), where t′i are generally

different from the ti. (In order to write the “zoomed out”
Hamiltonian in the same functional form as the original
Hamiltonian, we must include couplings ti for all terms
permitted by symmetries — see Sec. 12.3 in [4] for more
discussion.) For reasons that come from quantum field
theory, we call such a “zooming out” procedure a renor-
malization group (RG) flow. (For more on how our dis-
cussion here fits into the context of quantum field theory,
see the early works by Wilson [5, 6].) Our conjecture is
thus that, at criticality, the coupling constants are in-
variant under RG flow. If we view a continuous RG flow
(i.e. continuous “zooming out”) as continuously moving
us around the space of couplings ti, then our conjecture
is that critical points are fixed points of the RG flow, i.e.
points which are invariant under RG flow.

Before we show how this can be used to compute the
values a and b, and thus all the critical exponents, let
us mention that this conjecture is strongly supported by
experimental evidence: real critical systems are indeed
found to be scale invariant, i.e. invariant under RG flow.
Furthermore, we note that the RG process of “zooming
out”, i.e. of ignoring the small-scale structure of the sys-
tem, is equivalent to integrating out the high-energy de-
grees of freedom of the system (since high energy ∼ high
momenta ∼ small wavelength). Hence the Hamiltonian
which we obtain after RG flow, H(t′i), is analogous to the
effective Hamiltonian Heff = H0 + V +P0V

1−P0

E0−H0
V P0 +

. . . , which we computed in class when we were interested
in the dynamics of a degenerate low energy subspace of
the Hilbert space. The only difference between what we
do here and what we did in class, is that there we in-
tegrated all degrees of freedom above some degenerate
ground state subspace, while here we integrate everything
above some energy cutoff scale Ecutoff.
Example: 2D Ising Model— Let us now illustrate,

using the 2D Ising model in Eq. (6), how the RG proce-
dure can be used to compute the exponents a and b in
Eq. (11). For concreteness we consider the spins σi to
be on a triangular lattice [3], as shown in Fig. 3-a. Now,
let us group the spins into blocks of three, as shown in
Fig. 3-b, and define the block spin ΣI at block site I by

ΣI = sgn(σI1 + σI2 + σI3), (13)

where σI1 , σ
I
2 and σI3 are the original spins making up the

block I. In other words, ΣI takes on the majority value
of its constituent spins, and so in a sense it represents
the effective spin that we would see if we “zoomed out”
a bit, i.e. if we performed an RG flow. More precisely,
we are zooming out by a factor of λ =

√
3, since a unit

cell increases in size by a factor of 3. Now, the original
three spins σIi making up block I lead to 23 = 8 different
states, but the block spin ΣI by itself can only be in two
states, ±1. To represent the additional degrees of free-
dom, which we are “integrating out” when we perform
the RG flow, we introduce the internal variable ξI , which



4

is a vector that can take on four possible values

ξI : (+,+,+), (+,+,−), (+,−,+), (−,+,+). (14)

Then, the 8 possible states of the σIi are obtained by mul-
tiplying the 2 possible states of ΣI by the 4 possible states
of ξI , namely σIi = ΣIξ

i
I , where ξiI is the ith component

of ξI . For example the state σI1 = +1, σI2 = −1, σI3 = −1
is obtained by taking ΣI = −1 and ξI = (−,+,+).

(a) (b)

𝜎𝑖 Σ𝐼

FIG. 3. (a) Triangular lattice with spin σi ∈ {±1} at site i.
(b) Triangular lattice with block spin ΣI ∈ {±1} at site I. If
we are only interested in what happens on scales larger than
the block spin spacing, then we can “zoom out”, and study the
effective dynamics of the ΣI , without worrying about what
happens to individual σi. This form of renormalization group
argument was pioneered by Kadanoff [7].

To perform the RG flow, we would like to write the
Hamiltonian in the same form as before, Eq. (6), only
now in terms of the block spins ΣI , i.e.

H(k′, h′; {Σ}) = −h′
∑
I

ΣI − k′
∑
〈I,J〉

ΣIΣJ , (15)

where h′ and k′ are the RG flowed couplings. On scales
larger than the spacing between blocks, this block Hamil-
tonian should describe the same physics as the orig-
inal Hamiltonian; from the effective Hamiltonian pic-
ture we are simply integrating out the degrees of free-
dom on length scales smaller than the block size. To
enforce this requirement, we recall that all thermody-
namic information is encoded in the partition function,
Z =

∑
exp(−βH), where the sum is over all possible

states of the system. Hence we require that the partition
functions, written in the block picture and the original
picture, are equal:∑

{Σ}

e−H(k′,h′;{Σ}) =
∑
{Σ},{ξ}

e−H(k,h;{Σ},{ξ}), (16)

where we have written the states {σ} in terms of the
block states {Σ} and the internal degrees of freedom {ξ}.
(We are also absorbing the inverse temperature β into a
redefinition of the couplings h and k.) This equation is

satisfied if, for all block configurations {Σ},

e−H(k′,h′;{Σ}) =
∑
{ξ}

e−H(k,h;{Σ},{ξ})

=⇒ H(k′, h′; {Σ}) = − ln

∑
{ξ}

e−H(k,h;{Σ},{ξ})

. (17)

Thus, to compute the renormalized couplings h′ and k′,
we simply need to compute the right hand side of Eq. (17)
and compare the result to Eq. (15). We perform this
calculation in Appendix A, and find

k′ = 2k

(
e3k + e−k

e3k + 3e−k

)2

, h′ = 3h

(
e3k + e−k

e3k + 3e−k

)
. (18)

Recall that we would like to identify critical points
with RG fixed points, i.e. values of (h, k) which remain
unchanged by the transformation (18). The only non-

trivial fixed point is (hc, kc) = (0, ln(1+2
√

2)/4). Letting
δh = h−hc and δk = k−kc, the RG transformation near
the fixed point has the linearization(

δk′

δh′

)
=

(
1.62 0

0 2.12

)(
δk
δh

)
. (19)

Recall that in this example we have zoomed out by a
factor λ =

√
3, and so the volume per unit cell increased

by a factor of λ2 = 3. Hence the free energy per unit
volume also increases by a factor of λ2, i.e.

f(δk′, δh′) = λ2f(δk, δh). (20)

Comparing Eqs. (19) and (20) to Eq. (11) we find a =
0.44 and b = 0.68. Finally, from Eq. (12) we obtain the
critical exponents of the Ising model, as calculated by
RG techniques:

RG: α = −0.27, β = 0.72, γ = 0.84,

δ = 2.17, ν = 1.13, η = 1.26. (21)

Conclusions— To summarize, in this paper we
have discussed second-order phase transitions, otherwise
known as critical phenomena, which occur at the end-
points of coexistence curves in thermodynamic phase di-
agrams. Critical phenomena are characterized by a set of
critical exponents, which dictate how physical quantities
behave near the critical point. After discussing Landau’s
calculation of the critical exponents, which predicts the
same exponents for all systems at criticality, we went on
to compute the critical exponents for the 2D Ising model
using a different method — the renormalization group.
This latter approach is based on the assumption that
critical points are fixed points in coupling space under
the process of renormalization group flow, which we can
think of as the integrating out of high energy degrees of
freedom, or as “zooming out” of our system.
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It turns out that the 2D Ising model has been solved
exactly [8], so we can compare the Landau and RG pre-
dictions to the exact values, which are

Exact: α = 0, β = 1/8, γ = 7/4,

δ = 15, ν = 1, η = 1/4. (22)

We see that both the Landau and RG predictions de-
viate significantly from the exact values. We already
explained that Landau’s predictions are inaccurate be-
cause of his failure to account for fluctuations, which are
particularly important at criticality. In fact, our RG cal-
culation are inaccurate for the same reason: as detailed
in Appendix A, for simplicity we only kept leading order
terms in our perturbative RG calculation, which amounts
to neglecting fluctuations within blocks. Keeping higher
order terms in this expansion would result in a more ac-
curate RG prediction.

While we have focused on the 2D Ising model, for
which the exact solution is known, RG calculations are
extremely powerful because they allow us to compute
critical exponents for systems which we cannot solve ex-
actly. For example, more sophisticated RG calculations,
formulated in the framework of conformal field theory [3],
have resulted in the most precise calculation to date of
the critical exponents for the 3D Ising model [9], finding,
e.g., η = 0.0362978(20). Notice that these more sophis-
ticated methods are also able to give an error bound (in
the sixth decimal digit!) to the precision RG calculation.

As a final remark, we note that unlike the Landau pre-
diction, RG calculations show that not all critical systems
have the same critical exponents. However, Landau was
closer to the truth than we might naively expect: critical
systems fall into broad families, known as universality
classes, such that members of the same universality class
share the same critical exponents [10]. The universality
class to which a system belongs depends only on the di-
mension of the system, and the symmetry group of its or-
der parameter. Hence, for example, the liquid-vapor crit-
ical phase transition in a fluid is in the same universality
class as a ferromagnetic-paramagnetic phase transition
in a uniaxial spin system [10]. Hence, the renormaliza-
tion group allows us to simultaneously study the quan-
titative behaviour of these systems at criticality, even
though naively we might expect the different systems to
have little in common with one another. This exemplifies
one reason for why the renormalization group is a very
valuable tool to keep in one’s theoretical physics toolbox.

Appendix A: RG Calculation for 2D Ising Model

For the interested reader, in this Appendix we will
explicitly compute the Hamiltonian H(k′, h′; {Σ}) in
Eq. (17). The calculation is based on Section 3.3.2 of
Ref. [3], with some alterations made to clarify the pre-
sentation. We start by writing the original Hamiltonian
H(k, h, {σ}), given by Eq. (6), as the sum of a free part

H0 (containing only interactions within blocks I), and
an interaction part V (containing interactions between
different blocks I and J , and also interactions with the
external field):

H0 = −k
∑
I

∑
〈ij〉

σIi σ
I
j , (A1)

V = −k
∑
〈IJ〉

∑
〈ij〉

σIi σ
J
j − h

∑
I

∑
i

σIi . (A2)

We can then write Eq. (17) as

H(k′, h′, {Σ}) = − ln
(
Zf 〈e−V 〉

)
, (A3)

where we introduce the notation

〈(. . . )〉 =
1

Zf

∑
{ξ}

(. . . )e−H0({Σ},{ξ}), (A4)

for the statistical average of any quantity (. . . ) with re-
spect to the free Hamiltonian H0, and where Zf is the
free Hamiltonian partition function,

Zf =
∑
{ξ}

e−H0({Σ},{ξ}). (A5)

Let us first compute Zf . If we let N denote the number
of sites of the initial triangular lattice, then the lattice of
block spins has N/3 sites, and hence the first sum in the
expression (A1) for H0 contains N/3 terms. Substituting
this expression for H0 into the definition (A5) for Zf , we
see that Zf factorizes into a product of N/3 terms:

Zf ({Σ}) =
∏
I

Z0(ΣI), (A6)

where Z0(ΣI) is the partition function of block I, without
any interactions with other blocks, i.e.

Z0(ΣI) =
∑
ξI

ek(σI
1σ

I
2+σI

1σ
I
3+σI

2σ
I
3). (A7)

We recall that we can write σIi = ΣIξ
i
I , where ξiI is the ith

component of the three component vector ξI describing
the internal degrees of freedom of block I, which are being
integrated out. Hence Z0(ΣI) reads

Z0(ΣI) =
∑
ξI

ek(ξ1Iξ
2
I+ξ1Iξ

3
I+ξ2Iξ

3
I ). (A8)

Recalling from (14) that ξI can only take on 4 possible
values, the above sum explicitly evaluates to

Z0(ΣI) = 3e−k + e3k, (A9)

which, in particular, is independent of ΣI . Therefore by
Eq. (A6), Zf is given by

Zf = (e3k + 3e−k)N/3. (A10)
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Thus to obtain H(k′, h′, {Σ}) from Eq. (A3) all that
remains is to compute 〈e−V 〉. This can be expressed as
a cumulant expansion [3]:

〈e−V 〉 = exp

(
−〈V 〉+

1

2

(
〈V 2〉 − 〈V 〉2

)
+ . . .

)
. (A11)

We will only keep the lowest order term in this expansion.
This should work well if we expect that the fluctuations
within each block are small, such that 〈V 2〉 ≈ 〈V 〉2, and
similar for higher order terms. Of course, near the critical
point we expect large fluctuations at all scales, including
within each block, so this approximation is not ideal. It
is because of this rather crude approximation that our
results for the critical exponents will vary so significantly
from the exact values (see the Conclusions section). By
keeping more terms in the cumulant expansion, we can
get much more accurate results, but for simplicity here
we will just keep the lowest order term. To that end,

〈e−V 〉 ≈ e−〈V 〉, (A12)

and all that is left is to compute 〈V 〉.
From Eq. (A2) we find that

〈V 〉 = −k
∑
〈IJ〉

〈VIJ〉 − h
∑
I

∑
i

〈σIi 〉

= −k
∑
〈IJ〉

〈VIJ〉 − 3h
∑
I

〈σI3〉 (A13)

where in the second line we have used the fact that,
since all spins are equivalent, 〈σI1〉 = 〈σI2〉 = 〈σI3〉, and
so
∑
i〈σIi 〉 = 3〈σI3〉. Also, for nearest neighbour block

sites I and J we have defined VIJ as

VIJ =
∑
〈ij〉

σIi σ
J
j , (A14)

where the sum over i and j is over nearest neighbour el-
ementary sites i and j. As shown in Fig. 4, each pair
of nearest neighbour sites I and J has exactly two ele-
mentary nearest neighbour links. Thus we can write VIJ
as

VIJ = σI3(σJ1 + σJ2 ), (A15)

and because the expectation value 〈(. . . )〉 factorizes over
blocks, we obtain

VIJ = 2〈σI3〉〈σJ3 〉, (A16)

and hence 〈V 〉 is given by

〈V 〉 = −2k
∑
〈IJ〉

〈σI3〉〈σJ3 〉 − 3h
∑
I

〈σI3〉. (A17)

3

2

1

3

2

1

𝐽 𝐼

FIG. 4. Nearest neighbour block spins at sites I and J
have two elementary nearest neighbour links, shown in dashed
lines.

By again using σIi = ΣIξ
i
I , we can easily compute 〈σI3〉:

〈σI3〉 =
1

Z0

∑
ξI

ΣIξ
3
I e
k(ξ1Iξ

2
I+ξ1Iξ

3
I+ξ2Iξ

3
I )

=
1

Z0

(
e3k − e−k + e−k + e−k

)
ΣI

=

(
e3k + e−k

e3k + 3e−k

)
ΣI . (A18)

Finally, combining Eqs. (A3), (A10), (A17) and (A18),
we find the block Hamiltonian

H(k′, h′, {Σ}) =− 3h

(
e3k + e−k

e3k + 3e−k

)∑
I

ΣI

− 2k

(
e3k + e−k

e3k + 3e−k

)2 ∑
〈I,J〉

ΣIΣJ .

(A19)

Comparing this to the expected form (15), we find the
values in Eq. (18) for the renormalized couplings h′ and
k′.
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