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Polarized neutron scattering is a crucial spectroscopic technique that uses the neutrons’ polar-
ization to uncover valuable information regarding the sample that otherwise remains hidden. The
neutrons interact with the sample via strong nuclear and magnetic forces; thus, the scattering
involves two crucial interactions. This scattering technique allows us to separate the different scat-
tering cross-sections and isolate the magnetic scattering from nuclear. This paper reviews the theory
behind the production of polarized neutrons and the basic working of this spectroscopic technique.

I. INTRODUCTION

The magnetic structure refers to the magnetic spins’
ordered arrangement, typically within a crystal lat-
tice. For example, say a ferromagnetic structure is
where all the magnetic spins (magnetic moments) are
aligned parallel to each other. This structure was first
determined on a MnO sample by Shull and Smart in
the year 1949 [1]. In their result, the neutron pow-
der diffraction data at room temperature, i.e., in the
sample’s paramagnetic state, showed no magnetic peak
intensities. But, below the antiferromagnetic ordering
temperature (TN ), the observed Bragg reflections were
a sum of nuclear and magnetic intensities. The for-
mation of these extra magnetic Bragg peaks below TN
reflected the presence of periodic long-range order in
the moments which in the paramagnetic regime were
disordered. The comparison between these two mea-
surements, one above TN and one below TN , paved the
way for magnetic structure determination (For theory
related to Bragg peaks, see [2]). To date, hundreds
of magnetic structures have been observed and solved [3].

The next big step, which came in 1959, was the use
of polarized neutrons in the scattering experiments [4].
In these experiments, the incoming neutron beam is
either polarized up or down. Thus we have two kinds of
scattered neutron intensities to compare based on the
neutron beam’s initial polarization. Therefore, polarized
neutrons seemingly impart increased information from a
typical unpolarized neutron scattering experiment.

Speaking of the neutron, the properties that make
it unique in scattering experiments and condensed
matter research are hidden in its spin and magnetic
moment. A typical neutron-matter interaction has two
aspects, firstly, the strength of the nuclear interaction of
the neutron and the nucleus depends on the parallel or
anti-parallel alignment of their spins, and secondly, when
magnetic scattering is at play, the magnetic moment of
the neutron interacts with the unfilled electron shells
of the atoms involved in the scattering. The scattering
process will also affect the neutron spin; thus, we can

have a situation where controlling the neutron’s spin
will provide us with more flexibility and information in
our experiment.

This project report revolves around the working of the
polarized neutron scattering technique and its polariza-
tion analysis. While neutrons can scatter both elastically
and in-elastically, we will be focusing only on elastic po-
larized neutron scattering for this report. This powerful
technique has helped separate scattering terms in exper-
imental results based on their magnetic and structural
origins and presented detailed contributions from factors
that remained hidden in the unpolarized scattering ex-
periments.

II. POLARIZED NEUTRONS: WHAT DOES IT
MEAN?

When one says polarized neutron, one implies a po-
larized neutron beam. Despite being electrically neutral,
neutrons carry a spin because they are made up of one
up and two down quarks. For each neutron, the spin S,
which is an intrinsic angular momentum with a quantum
number 1/2. The eigenvalue of the projection of S along
z-axis (i.e., the eigenvalue of the Sz operator) is given
by mS = ±~/2. A polarized neutron beam has all the
neutrons in one of these two eigenstates (↑ or ↓).
S has three components Sx, Sy, Sz, and these operators
can be expressed in terms of the three Pauli matrices for
the spin 1/2 particle. Let’s define the operator σ = 2S/~.
Thus, one can now write:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1)

For a neutron j which is a part of the beam, the polar-
ization pj is a vector with 3 components and is given by
the equation (2) below:

pj = 〈σ〉 =

 〈σx〉〈σy〉
〈σz〉

 (2)
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Thus, the neutron beam’s polarization is written as
an average over all the individual neutron polarization,
where N is the total number of neutrons in the beam and
the summation is over each individual neutron j. This is
given by equation (3).

P =
1

N

∑
j

pj (3)

We see that the polarization vector P is a 3 compo-
nent vector which can be measured. If we consider any
particular direction α, the component of Pα is given as:

Pα =
n+ − n−

n+ + n−
(4)

Here, n+ is the number of neutrons in the ↑ state, and
n− is the number of neutrons in the ↓ state [5]. Clearly,

0 ≤ |P| ≤ 1 (5)

Because it has spin, the neutron also carries a magnetic
moment.The relation between the spin and the magnetic
moment is given by:

µn = gnSµN ' ∓1.913µN = ±γnµN (6)

where γn = −gnS is the gyromagnetic factor of the
neutron, and the neutron g -factor, gn = −3.8260837(18),
in units of the nuclear magneton µN = e~

2mp
.

For neutron, a feature different from electron and proton,
the magnetic moment is aligned opposite to the spin [6].

A. Interaction with Magnetic field

An exciting result is the effect of an applied magnetic
field on the neutron path. What the field does is that it
exerts a torque on the neutron magnetic moment. This
torque is given by :

Γ = µ×B = γLS ×B (7)

where, the gyromagnetic ratio γL = (2/~)γnµN (not
to be confused with the gyromagnetic factor in equation
6).

Because of this torque, the neutron magnetic moment,
and as a direct consequence, the polarization vector pre-
cesses around the field. Therefore, we can see that mag-
netic fields are excellent tools to control the polarization
of the neutron beam. If the magnetic field is constant,
the neutrons will rotate around the field with a frequency
(Larmor frequency):

ωL = γLB (8)

FIG. 1. Showing the Larmor Precession of the neutron in
presence of a constant magnetic field where [6], where L is
the angular momentum vector for the neutron.

This motion is popularly known as the Larmor preces-
sion (see Figure 1). Another seemingly important ques-
tion is what happens to the neutrons when the field varies
along the neutron path with time. Here, the two ex-
treme cases are of importance. Firstly, if the field is var-
ied slowly compared to the ωL, the neutron faces many
turns before settling with the final field direction. Thus
in a slowly varying field, the neutron has time to adjust
according to the field. During this process, the neutron
doesn’t feel the change, and it slowly follows the field
during the rotation. This is called slow adiabatic field
variation (see Figure 2). Secondly, if the field changes
abruptly w.r.t ωL, the neutron has no time to react to
the field change. Such a process is known as the sudden
field reversal, and it used to reverse the polarization of
the neutron beam w.r.t the guiding field(i.e., create a flip
in the polarization) (see Figure 3).

FIG. 2. Neutron Polarization in case of a slowly varying mag-
netic field, where ωB is the frequency of the time varying
magnetic field and ωL is the Larmor frequency. [6]

III. EXPERIMENTAL DEVICE:
POLARIZATION SPECTROMETER

A typical experimental setup for the polarization
measurements is shown in Figure 4. This is known
as the polarization spectrometer. It has a polarizer, a
magnetic crystal used to monochromatize and polarize
the incident neutron beam using Bragg reflection. The
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FIG. 3. Neutron Polarization in case of a suddenly varying
magnetic field, where ωB is the frequency of the time varying
magnetic field and ωL is the Larmor frequency, and B1 and
B2 are applied magnetic field vectors. [6]

FIG. 4. Schematic diagram of a polarization spectrometer
used by Moon et al., (1969) at the Oak Ridge National Lab-
oratory. [6, 7]

other end of the spectrometer has an analyzer that is a
similar crystal used to measure the spin state and the
scattered neutron beam’s energy. Along the neutron
path, a guide field preserves the neutron beam’s spin
state. This field is present both along the incident and
scattered path of the beam.

A device known as the flipper sits between the po-
larizer and the sample. This flipper works to produce
a radio-frequency field perpendicular to the guide field.
When this flipper is on, it changes the spin state of the
neutrons. A second flipper is also present between the
scattering sample and the analyzer. When made to work
together, both of these flippers give us the different com-
binations possible for the initial and final spin state of
the neutron beam. For example, if both the flippers are
off, we get the scattering cross-section for the spin-state
transition from ↑ to ↑ state; and with the first flipper off
and second flipper on, we get the scattering cross-section
for the ↑ to ↓ transition.
The sample sits between the poles of an electromagnet.
The magnetic field of this electromagnet dictates the po-
larization. In this entire setup, the electromagnet, along
with the guide fields can rotate, so that the polarization
axis can be easily made either parallel or perpendicular

to the scattering vector Q = ki − kf .

IV. SCATTERING AND POLARIZATION

A. Interaction of neutrons with matter

The unpolarized neutron scattering experiments con-
sider the transition of the neutron from one momentum
state to the other. However, when we consider polar-
ized neutron scattering, we consider the change from one
spin-momentum state of the neutron to another.
Most samples that we find in nature contain magnetic
moments, either from the nuclei of the individual atoms
present in the sample or the electrons. Therefore, the
scattered polarization of the neutrons and the scattering
cross-section of the process depends on the relative orien-
tation between the sample’s magnetic moments and the
neutron beam’s polarization. When we analyze this scat-
tered beam, we are awarded more information about the
system. Figure 5 shows the two processes involved in our
experiment. In most cases, the scattered polarization is
measured along the direction of the incident polarization;
this is known as longitudinal polarization analysis [8].

FIG. 5. A schematic showing the two processes involved in
polarized neutron scattering experiments.[9]

The amplitude of neutron scattering FQ for a given
scattering potential VQ is given by (see chapter 11 from
[10]):

FQ = 〈kfSf |VQ|kiSi〉 (9)

This gives a scattering cross section that in general de-
pends on the scattering vector Q = ki − kf and some
known constants (see chapter 11 from [10]), where ki and
kf are the initial and final momentum, and Si and Sf

are the initial and final spin configuration of the neutron
beam. The expression for the scattering cross section is
given (by equation 10) below:

dσ

dΩ
=
( mn

2π~2
)2
|FQ|2 (10)

B. Applications

If we consider the nuclear interaction, the operator
describing this potential is given by ([6, 8]):
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V̂ =
(
2π~2/mn

)
b̂ (11)

The scattering length vector b̂ is a scalar for a nuclei
with zero spin, and hence the interaction is spin inde-
pendent. For the interaction to be spin dependent the
involved nuclei has to have a non-zero spin I. In this sce-

nario, b̂ is given by:

b̂ = A+Bσ̂ · Î (12)

where A = the coherent part that is spin independent
for the nuclei, and Bσ̂·Î is the fluctuating spin-dependent
part. Both A and B are well defined constants.

If we define the z axis as our neutron polarization
axis, P = 2〈Ŝ〉 = 〈σ̂〉 with the eigen states given by

| ↑〉 = |+〉 =

(
1
0

)
and | ↓〉 = |−〉 =

(
0
1

)
. The tran-

sition matrix elements are given by equation 13, for the
two spin-flip and two non-spin-flip scattering amplitudes
respectively.

〈+|σ̂ · Î|+〉 = Iz

〈−|σ̂ · Î|+〉 = Ix + iIy

〈+|σ̂ · Î|−〉 = Ix − iIy

〈−|σ̂ · Î|−〉 = −Iz

(13)

If we consider the total scattering to be the sum of
scattering in all three directions. From the above results,
it can be noted that 2/3rd of the spin-incoherent scatter-
ing (the part of scattering that is spin dependent)is spin
flipped, and Pf = −1/3 (see [6, 8] for explicit calcula-
tions).
To summarize, there are three contributions to the nu-
clear scattering; the average of the coherent scatter-
ing, the isotopic i.e. the spin independent part of the in-
coherent scattering (isotopic-incoherent scattering),
and the spin dependent part of the incoherent scatter-
ing (spin-incoherent scattering), and when magnetic
scattering is absent, the sum of the coherent and isotopic-
incoherent scattering can be separated from the spin-
incoherent scattering by measuring the spin-flip and non-
spin-flip scattering (Please see [8] for explicit calcula-
tions).

dσN

dΩQ,coh
+

dσN

dΩisotop−inc
=
dσNSF

dΩ
− 1

2

dσSF

dΩ

dσ

dΩspin−inc
=

3

2

dσSF

dΩ

(14)

It should be noted that whatever we got here is inde-
pendent of the direction of P or Q (see Figure 6 for an
example of nuclear scattering).

FIG. 6.

Left: Nuclear isotopic-incoherent scattering from a Nickel.
Right: Showing the independence of the nuclear scattering
(from Vanadium)from the relative direction between P and

Q [6, 7].

Similar to nuclear scattering potential, the magnetic
interaction potential is given by (for all calculation, see
[8]):

Vm = − (γnr0/2) σ̂ · M̂⊥
Q (15)

Here M̂⊥
Q is the operator of the magnetic interaction vec-

tor, eQ is the unit vector for polarization, and

M⊥
Q = eQ ×MQ × eQ (16)

MQ is the Fourier transform of the total magnetization
density present in the sample. The only part of MQ

which contributes to the interaction is the one perpen-
dicular to Q. This happens because of the dipolar inter-
action between the neutron spin and the sample’s mag-
netic moments. The components of magnetic moment
parallel to Q tend to interfere destructively and cancel
out. Therefore, magnetic scattering has a directional de-
pendence on Q. Similar to what was discussed for nuclear
scattering, the transition matrix elements in this case are
given by: 〈

+
∣∣∣σ̂ · M̂⊥Q∣∣∣+〉 = M⊥z,Q〈
−
∣∣∣σ̂ · M̂⊥Q∣∣∣+〉 = iM⊥y,Q〈

+
∣∣∣σ̂ · M̂⊥Q∣∣∣−〉 = −iM⊥y,Q〈
−
∣∣∣σ̂ · M̂⊥Q∣∣∣−〉 = −M⊥z,Q

(17)

Here, we have chosen z as the polarization axis, and
Q‖x, M⊥

x,Q = 0. It can be seen that the component

of P parallel to M⊥
Q remains unchanged, whereas the

perpendicular component reverses its sign.
In sum, we can say that if P is parallel to Q, the magnetic
scattering is represented by spin-flip scattering. Thus,
if we demonstrate our experiment, such that P‖Q, the
spin-flip scattering will correspond to magnetic scattering
and the non-spin-flip scattering corresponds to nuclear
scattering (see Figure 7 for reference).
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FIG. 7.

This figure shows the separation of magnetic and nuclear
Bragg peaks, for an Iron Oxide sample, by doing spin-flip

and non-spin-flip scattering when P‖Q [6, 7].

V. CONCLUSION

Polarized neutron scattering is a fast developing ex-
perimental technique that finds its application in many
condensed matter physics research fields. It has helped

to determine magnetic structures by separating the nu-
clear scattering contributions from the magnetic ones,
identifying magnetic fluctuations, and separating coher-
ent and incoherent processes from each other. In this
report, we reviewed the basics of elastic neutron scatter-
ing. We saw how it helps separate the magnetic peaks
from the nuclear ones, which helps us understand the
material’s underlying magnetic properties.
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thématique de la Société Française de la Neutronique 13,
02002 (2014).

[6] W. Schweika, Polarized neutron scattering and polariza-
tion analysis, .

[7] R. M. Moon, T. Riste, and W. C. Koehler, Polarization
analysis of thermal-neutron scattering, Phys. Rev. 181,
920 (1969).

[8] G. L. Squires, Introduction to the Theory of Thermal
Neutron Scattering , 3rd ed. (Cambridge University Press,
2012).

[9] G. Nilsen, Polarized neutron scattering, OSNS17 (2017).
[10] D. J. Griffiths and D. F. Schroeter, Introduction to Quan-

tum Mechanics, 3rd ed. (Cambridge University Press,
2018).


