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The theoretical predictions of the optical conductivity in graphene have been much debated in
the past decade. When ignoring the Coulomb interaction, the electrons in graphene behave as
free massless fermions. However, the Coulomb interaction is expected to be strong in graphene.
Including this correction can be done through various techniques, but curiously, the resulting values
of the conductivity do not always match. The results of these methods are discussed and compared.
Strangely, none of the experiments that studied the optical conductivity found hints of electron-
electron interaction effects, increasing the confusion surrounding this material property.

I. INTRODUCTION

Graphene is an atomically thin material made of car-
bon atoms arranged in a hexagonal lattice, represented
in Figure 1. Even though it was discovered recently –
in 2004 (see Ref. [1]) – many theoretical, numerical and
experimental studies have been performed to better un-
derstand the properties of this two-dimensional material.

Figure 1. Representation of a single sheet of graphene. The
red and blue balls represents the two carbon atoms of each
unit cell.

One such interesting property is its optical conductiv-
ity. We can distinguish the AC and DC conductivities of
a material by the type of voltage fed into the sample.
However, electronic sources are not able to provide very
large alternating currents. Instead, shining light perpen-
dicularly on the sample naturally creates an alternating
electric field in the plane of the two-dimensional material.
This creates an experiment much simpler to perform than
using a voltage source, and the name optical conductiv-
ity derives its name from the use of optical frequencies of
light.

In general, the conductivity is a complicated function
of the frequency ω, the momentum q, the temperature T ,
the chemical potential µ, the scattering rate Γ and the
gap ∆ (when the system is an insulator). Due to this,
most studies look in one of two limiting cases: the colli-
sionfull (ω � Γ, T ) and collisionless (ω � Γ, T ) regimes

[2]. The first is relevant to the study of the DC limit
(ω → 0), yet it can be hard to account for finite temper-
ature and disorder. On the other hand, the collisionless
limit is simpler to determine and comparable to exper-
imental results obtained by shining visible light on the
material. It assumes that electrons undergo many oscilla-
tions before experiencing a collision, such that the damp-
ing is vanishingly small. The many-body dynamics is dic-
tated by the single particle trajectories. This is the limit
we are going to explore in this paper. For simplicity, in
the collisionless regime we set µ = ∆ = q = Γ = T = 0.

The conductivity is determined by the movement of
electrons in the material, which in turns depends on
the mass and velocity of these electrons. In the non-
relativistic limit, the electronic dispersion relation is
given by E = k2/(2m) and the electron mass can be de-
termined by (∂2E/∂k2)−1. However, graphene is closer
to the relativistic dispersion relation, E = c|k|, in which
the particle is the massless photon. Note that the en-
ergy is now linear, rather than quadratic, in the momen-
tum. Using a tight-binding model for graphene with a,
the shortest distance between two carbon atoms, and t,
the nearest-neighbour hopping, the dispersion relation is
E = vF |k|, where vF = 3ta/2 is the Fermi velocity of
electrons [3]. This is true near the touching points of the
two bands, shown in Figure 2. In graphene, vF ≈ c/300,
such that we find that for a sample at half filling, the
conduction electrons are massless and propagate with ve-
locity vF . These electrons are called 2D Dirac fermions.
It is important to remember that for higher energies,
the approximation does not hold anymore, and the non-
linearity of the band structure must be taken into ac-
count.

With this in mind, at first order we can approxi-
mate the optical conductivity of graphene by that of free
fermions in two dimensions, giving σ0 = e2/(4~), inde-
pendent of the probing frequency ω. This is the expres-
sion for clean graphene at half filling, and in the limit
of zero temperature and no doping [4]. Clean graphene
is free of disorder, impurities, inhomogeneities, rippling,
etc [5].

However, electrons in graphene are not free and inter-
act through the Coulomb potential. In vacuum, it is given
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Figure 2. (left) Energy bands of graphene. (right) Zoom in at
one of the touching points of the two bands. The cone repre-
sents the spectrum E = ±vF |k|, while the curved cone illus-
trates the correction due to the renormalized Fermi velocity
of electrons in graphene ṽF . Inspired by [6].

by V (r) = e2/(4π~cr) = αQED/r, where αQED is the
fine structure constant of QED. In the case of graphene,
the Coulomb potential becomes Vg(r) = αg/r, with its
fine structure constant being αg = e2/(4π~vF ) ≈ 2.21.
Assuming the corrections due to the Coulomb force are
weak compared to 1, we can express the conductivity as
a perturbation expansion of σ0:

σ(ω) = σ0

(
1 + C1αg +O(α2

g)
)
. (1)

The Ci are interaction correction coefficients. Renor-
malization group for 2D Dirac fermions predicts that
the Fermi velocity of graphene is a running constant, i.e.
vF → ṽF (ω) which depends on the frequency ω. Its effect
is apparent in the shape of the energy bands of graphene
near the touching points (see Fig. 2). The renormalized
fine structure constant is then α̃g(ω) and given by

α̃g(ω) =
αg

1 + 1
4αg ln(vFΛ/ω)

, (2)

where Λ is the momentum cutoff [7].
Various methods have been developed to compute

the conductivity and take into account the Coulomb
interaction, namely the density-density response, the
current-current response, the Boltzmann kinetic equa-
tion, tight-binding calculations, quantum Monte-Carlo
simulations, and the Hartree-Fock approximation. All
these approaches should yield the same result for each
of the Ci, but despite the apparent simplicity of the task,
it is not the case.

1 Physically, we should use αg/ε̄, where ε̄ = 1
2
(ε1+ε2) is the average

dielectric constant of the materials above and below the graphene
sheet. This constant must be taken into account to compare the
value of σ(ω) between experiments and theory.

The remainder of the paper is organized as follows:
first, the linear response framework of the conductivity
will be outlined in Section II. The free-fermion conduc-
tivity σ0 will be discussed in Section III. Then techniques
used to determine the corrections to the free-fermion con-
ductivity for graphene will be elaborated in Section IV.
Finally, the result of experiments will be mentioned in
Section V.

II. LINEAR-RESPONSE THEORY

In electrodynamics, the current relates to the conduc-
tivity tensor and the electric field through

〈j(t)〉A =

∫ ∞
−∞

dt′ ←→σ (t− t′)E(t′), (3)

using ←→σ (t − t′) = 0 for t − t′ < 0. This enforces that
the response of the system is retarded: it can only be
measured after the application of the drive. This also al-
lows to define the Fourier transform of the convoluted
functions. 〈j(t)〉A is the thermal average of the current
operator j(t) evolved in the presence of a perturbing vec-
tor potential A. In the presence of the perturbation, the
total Hamiltonian reads H = H0 + j ·A.

To devise an expression for the conductivity, we need
to apply some interaction picture trick [8]. The current
evolves in time as 〈j(t)〉A =

〈
U−1A j(t)UA

〉
, where

UA(t) = T exp

(
−i

∫ t

−∞
dt′ j(t′) ·A(t′)

)
. (4)

where T indicates time ordering. Expanding the expo-
nential perturbatively and neglecting the zeroth order
term (there is no current without perturbation), one finds

〈
ji(t)

〉
A = −i

∫ ∞
−∞

dt′ θ(t− t′)
〈[
ji(t), jj(t′)

]〉︸ ︷︷ ︸
←→
Π ij(t−t′)

Aj(t′)

(5)

←→
Π ij(t−t′) is the retarded current-current polarization

function. Finally, we want to connect Eqs. (3) and (5)
to arrive at an expression for ←→σ . Making use of E =
−∇ρ−∂tA for an electric field of the form E = E0e

−iωt,
we find

σij = lim
q→0

Πij

iω
= − lim

q→0

iω

|q|2
Π00, (6)

where in the second equality we used the continuity equa-
tion

∇ · j = −∂ρ

∂t
. (7)
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and Π00 is the density-density correlation function.
To understand why we take the limit q→ 0, let’s con-

sider the relationship between frequency and momentum
for light, ω = c|q|. To satisfy the condition of having a
finite ω, we must take q very small, i.e. to 0.

III. FREE-FERMION CONDUCTIVITY

The free-fermion conductivity can be represented as a
one-loop diagram as shown in Figure 3, where the wiggly
lines represent photons carrying momentum q and fre-
quency Ω and the straight lines represent fermions. Pho-
ton interact with two electrons through a vertex (−ieγµ),
here represented as a black dot.

The retarded polarization function can be related to
the time-ordered response through analytic continuation.
Condensing all components in a single expression and
restoring the momentum dependence, we are interested
in computing this object:

Πµν(t,q) = 〈T jµ(t,q)jν(0,−q)〉 , (8)

where j0 = ρ, the charge density, ~j is the charge current.

µ ν
Ω,q

ω +Ω,k + q

ω,k

Ω,q

Figure 3. One-loop diagram with external frequency Ω and
momentum q. The external photon lines represents the elec-
tric field in j = σE.

Mathematically, the diagram reads

Πµν
1 (Ω,q) = iTr

∫
k

∫
ω

(−ieγµ)Gω+Ω,k+q(−ieγν)Gω,k

(9)

where Gω,k is the Green’s function for an electron carry-
ing frequency ω and momentum k. It is given by

Gω,k =
i6 k
k2

= i
γ0ω − vFγ · k
ω2 + v2F k2 . (10)

Here we integrate over all possible four-momenta (ω,k)
that can be carried by the electron-positron pair, using

the abbreviation
∫

k

∫
ω

=

∫
d2k
(2π)2

∫
dω

2π
. The momen-

tum space integral is two-dimensional since we consider
the conductivity for graphene, a two-dimensional mate-
rial.

Performing the integrals requires to perform the trace,
introduce a renormalization scale µ, go to Euclidian space
(ω = iωE), and use the standard rules for integrating
Feynman diagrams.

As a final comment, the current-current correlation
function that we would consider is not that of isolated
components Π11

1 and Π22
1 , but rather

σ(ω) = lim
q→0

1

iω

Π11
1 (ω,q) + Π22

1 (ω,q)
2

. (11)

The reason behind this comes from symmetry consid-
erations. We can express the optical conductivity as a
2× 2 matrix as

σij =

(
σxx σxy

σyx σyy

)
(12)

=
σxx + σyy

2
1 +

σxx − σyy

2
σz (13)

From line (12) to (13), the off-diagonal elements are
removed because there is no magnetic field, so we are
not expecting a response in any direction where we do
not have an electric field. Using rotational symmetry, we
can get rid of the σz term, leaving us with σij = (σxx +
σyy)/2. This is the term that gives rise to (Π11

1 +Π22
1 )/2

in Equation (11).
The density-density (Π00) and current-current (Π11 +

Π22) techniques mentioned above are the diagrammatic
ways that can be used to obtain the free-fermion conduc-
tivity.

Many other methods exist to compute the free-fermion
conductivity, but as they all yield the same result, they
will not be covered here. However, where they differ is
when we introduce interactions.

IV. ELECTRON-ELECTRON INTERACTIONS
IN GRAPHENE

It is worth wondering if the electron interactions either
dominate the physics or are irrelevant. In Equation (1),
we expressed the conductivity as a perturbative expan-
sion of the non-interacting conductivity σ0. For a pertur-
bative series to be convergent, we expect C1 to be very
small, especially since αg ≈ 2.2.

To investigate the strength of electron interactions, lets
focus on long-range Coulomb interaction; it was shown
that there is no short-range (or on-site) interaction [2].
Graphene has a null Fermi surface at the touching points
of the two bands and its Fermi momentum kF is 0. Due to
this, its Thomas-Fermi wavelength λTF diverges while its
Thomas-Fermi momentum kTF goes to 0. Consequently,
Coulomb interactions in graphene are unscreened, and
given by

Vk =
4παg

|k| . (14)

Page 3



Marianne Moore Optical Conductivity in Graphene

In order to get screening, one would need to dope the
system with electrons and get away from the vanishing
Fermi surface. Furthermore, the electron-electron inter-
actions are considered instantaneous because the electron
velocity is much smaller than that of the photons – which
mediate the Coulomb interaction – such that retarded
effects are negligible [3]. From Equation (14), we can de-
fine the Coulomb energy per electron to be EC ≈ e2n

1/2
e ,

where ne = 1/l2 is the average electron density in 2 spa-
tial dimensions.

On the other hand, as mentioned in the introduction,
the kinetic energy in graphene is E = vF |k|, which gives
EK ≈ vFn

1/2
e per electron. Then the ratio of Coulomb

to kinetic energy is EC/EK ∝ e2/vF , independent of the
electronic density [5]. Thus, the strength of the Coulomb
interaction relative to the kinetic energy is determined
by the material properties; it is in fact non-trivial and
important in the study of material properties such as the
optical conductivity.

In order to account for first-order electron interactions,
the current-current and density-density methods require
to sum all two-loop diagrams; these are the terms we
need in order to determine the coefficient C1. There exists
three such diagrams, the vertex correction (Figure 4) and
two self-energy corrections (Figure 5) – the factor of two
coming from the fact that the extra photon can couple
either to the k + q or to the k fermion. As we will be
taking q, the external momentum, to 0, both terms will

give the same contribution and we only need to solve
one self-energy diagram and multiply the answer by two.
Converting the diagrams into equations, this gives the
two expressions:

µ ν
Ω,q

ω +Ω,k + q ω′ +Ω,k’ + q

ω′,k’ω,k

Ω,qω − ω′,

k − k’

Figure 4. Two-loop vertex correction diagram with external
frequency Ω and momentum q.

µ ν
Ω,q

ω +Ω,k + q

ω′,k’

Ω,q
ω − ω′,k − k’

ω,k ω,k

Figure 5. Two-loops self-energy correction diagram with ex-
ternal frequency Ω and momentum q. There are two such
diagrams, as the photon can couple either to the electron or
to the positron (top or bottom branch).

Πµν
2, vertex(Ω,q) = iTr

∫
k,k’

∫
ω,ω′

Vk−k’Gω′,k’Gω,k(−ieγµ)Gω+Ω,k+qGω′+Ω,k’+q(−ieγν) (15)

and

Πµν
2, self(Ω,q) = iTr

∫
k,k’

∫
ω,ω′

Vk−k’Gω,kGω′,k’Gω,k(−ieγµ)Gω+Ω,k+q(−ieγν) (16)

When computing these loops using either the current-
current (µ = ν = {1, 2}) or density-density (µ = ν =
0) method, the integrals diverge logarithmically in the
UV. However, the sum Πµν

2, vertex + 2Πµν
2, self is finite, but

varies depending on the approach taken to evaluate the
diagrams. Values that appear in the literature (see e.g.
Refs. [9] and [10]) for C1 are


C11 = 19−6π

12 ≈ 0.013

C21 = 11−3π
6 ≈ 0.263

C31 = 25−6π
12 ≈ 0.512

(17)

The various methods to regularize the divergent inte-
grals are the usual quantum field theory techniques and
include subtracting the ω = 0 contribution, dimensional

regularization, Wilson momentum shell renormalization
group, and modified minimal subtraction (MS). The is-
sues that give rise to the discrepancy (17) are (i) correctly
implementing the technique used for all the theory, and
not just a part of it (e.g. subtracting all the counterterms
consistently, order by order [11]), (ii) ensuring charge con-
servation through the Ward identity, and (iii) the order
in which we take the dimension d to 2 (i.e. take ε → 0)
and the momentum cutoff Λ to infinity2 [7].

2 In dimensional regularization, diagrams are computed as analytic
functions of the dimensionality of spacetime d. The final expres-
sion is then obtained by setting d → 2, the physical dimension
of the system. In reality, setting d = 2 causes problems; the way
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Correctly regularizing the divergent integrals yield the
value C11 for both current-current and density-density re-
sponse. This value has been corroborated by the Boltz-
mann kinetic equation in the presence of an electric field

∂fp

∂t
+ ivp[σp, fp] + eE · ∂fp

∂p = i
∑
p’

Vp−p’[fp’, fp]

(18)

and using a soft momentum cutoff (small momentum,
to be distinguished from a hard cutoff, normally in the
UV)[9]. fp is the 2×2 matrix distribution function, where
the right-hand side accounts for the lowest order electron-
electron interaction.

Another technique that has been used is quantum
Monte-Carlo simulations, performed by Boyda et al [12].
The benefit of this method is that is allows to account
for interactions in a non-perturbative way. They found
C ≈ 0.01, a similar value to C11 .

Two tight-binding computations have been completed,
one by Link et al. [7] and one by Rosenstein et al.
[13]. While the first group gets C11 , the second finds C21 .
However, Link et al. carefully analyzed the results from
the other group; they noticed that the authors regu-
larized their divergent integrals in a way that violates
charge conservation, and confused the Brillouin zone re-
stricted with the unrestricted momentum integration.
Thus, tight-binding results seem to agree with the value
of C11 .

However, Stauber et al. [14] recently used a self-
consistent Hartree-Fock approach and found C = 1/4,
a value which is more consistent with C21 , adding to the
confusion surrounding the effect of electron-electron in-
teractions in graphene.

V. EXPERIMENTAL DATA

Experimentally, the optical conductivity is determined
by shining light onto a sample of graphene and deter-
mining the absorbance of the monolayer material. So far,
three groups have attempted the measurement, and in-
terestingly, they all published their results the same year:
2008.

The main conclusion from the three groups is that elec-
tron interactions are irrelevant, up to the sensitivity they
achieved experimentally. A sketch of the values they ob-
tained is presented in Figure 6.

Zhiqiang Li et al. [15] investigated the infrared spec-
tral range of the optical conductivity, with photon fre-
quency of ω ∈ [0.01, 0.16] eV, cooled down at a tempera-
ture of 45 K (0.004 eV). Their graphene samples were on

around it is to expand around d = 2− ε by taking ε to 0.

lim
ε→0

[
lim

Λ→∞
C(ε, ω

Λ
)

]
= C2 lim

Λ→∞

[
lim
ε→0

C(ε, ω
Λ
)

]
= C1

a SiO2/Si substrate. They determined that their scatter-
ing rate was Γ(ω) ≈ 0.0006 eV, with Γ(ω) increasing with
ω due to electron-electron and electron-phonon interac-
tions, yet remaining much lower than ω. We notice that
here the collisionless regime is approximately respected,
as ω � T,Γ. They found the optical conductivity to be
σ = (1.00±0.15)σ0 for ω ∈ [0.08, 0.13] eV, and stated that
they could not determine without a doubt the conductiv-
ity outside of this range due to increasing uncertainties.

On the other hand, Kin Fai Mak et al. [16] measured
the optical conductivity in the visible spectral range, with
ω ∈ [0.2, 1.2] eV at room temperature (0.025 eV). Their
graphene samples were deposited on a SiO2 substrate.
They found σ = (1.0 ± 0.1)σ0 for ω ∈ [0.5, 1.2] eV. For
lower values of frequencies, they identified a deviation
from σ0 that they could account for by correcting for the
non-zero chemical potential µ due to spontaneous doping
of the graphene samples, as well as the finite temperature.
Adding this correction term, they determined µ to be 100
meV and 200 meV for the two samples they studied. At
low photon frequencies, T/ω is no longer negligible.

Finally, Rahul Raveendran Nair et al. [17] explored the
optical conductivity in the optical range ω ∈ [1, 5] eV,
probably at room temperature, though this is not stated
in their paper nor in their supplemented material. They
deposited their samples on a SiO2 substrate. They ob-
served σ = (1.01 ± 0.04)σ0 for ω ∈ [1, 2.5] eV. Above
2.5 eV, they find deviations from σ0, which they assume
account for surface contamination by hydrocarbons, and
possibly a long-range tail of the plasmon resonance lo-
cated at 5 eV.

This team also studied multi-layered graphene and
found that the opacity is proportional to the number N of
layers involved; they observed A ≈ Nπα, where α is the
fine structure constant in vacuum. They determined that
this rule holds at least for N ≤ 4, but further theoretical
analysis is required to better understand multi-layered
graphene.

Overall, the three teams determined the optical con-
ductivity of graphene to be consistent with the free
fermion model conductivity σ0, without any noticeable
contribution from electron interactions. The experimen-
talists do not attribute the deviations they find to inter-
actions. It is important to note that the experiments do
not directly probe the optical conductivity, i.e. the con-
ductivity at zero momentum, and with a frequency in
the visible range of the spectrum. Rather, they investi-
gate the optical properties of graphene: its absorbance A,
transmittance T , and reflectance R. The optical conduc-
tivity is determined by σ = Ac/4π. The transmittance
is given by T = (1 + A/2)−2 while the reflectance is
R = 1/4A2T .

A better analysis of the various parameters affect-
ing the conductivity would be required to determine
whether the electron interactions really play a role, such
as the temperature, chemical potential, substrate, scat-
tering rate, etc [2].
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ω(eV)
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7

σ0

Troom

Li et al. Mak et al. Nair et al.

Figure 6. Experimental results of the optical conductivity obtained by three experimental groups. Shaded regions correspond
to the quoted uncertainty in the measurements, and dashed regions represent where measurements have been performed but
were inconclusive (see text for explanations of these null results). For comparison, the room temperature (0.025 eV) is shown.

VI. DISCUSSION

The optical conductivity of graphene has been the sub-
ject of debates in the past decade. Many condensed mat-
ter physicists have attempted understanding the effect of
Coulomb interaction on the electrons of the material, get-
ting various results. Although C11 is the value for which
most theoretical studies agree, one cannot rigorously con-

clude that it is the correct result. On the experimental
side, strangely, no interaction effect is detected, which is
also very puzzling. More detailed analyses are required to
fully comprehend the optical conductivity of graphene.
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