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Majorana fermions are a special type of fermion predicted by the Dirac’s equation that are their
own antiparticles. Currently they have rapidly gained interest in condensed matter physics as
emergent quasiparticles in certain systems like topological superconductors. In this article, we
review the theory of Majorana fermions starting from the Dirac equation. Then we discuss using
Bogoliubov-deGennes formalism how Superconductors form ideal hunting grounds for Majorana
particles and introduce the notion of Majorana zero modes. Finally we discuss the Kitaev model- a
paradigmatic model to look for unpaired Majorana zero modes.

I. INTRODUCTION

In 1928 developed the wave equation that describes
relativistic spin 1/2 particles. The solutions of this
equation are complex valued four component spinors
which can be interpreted as a spin 1/2 particle-
antiparticle pair. It was Etorre Majorana’s insight to
look for a completely real set of solutions for the Dirac
equation in order to create a symmetric theory of par-
ticles and anti-particles. As a result in the year 1937
he introduced the notion of fermions which are their
own anti-particles; known today as Majorana fermions
[1]. As Majorana fermions are their anti-particles, they
must be chargeless.

While many elementary particles are well-described
as Dirac fermions, but so far there seem to be no ex-
amples of those that could be thought of as Majo-
rana fermions. Although there are strong theoretical
reasons to believe that neutrinos could be Majorana
fermions[2] (they seem to have a small mass and are
chargeless), convincing experimental evidence is yet to
be found.

On the other hand, there is considerable interest in
the field of condensed matter physics about emergent
quasi-particles that behave as Majorana fermions[3].
It so happens that excitations in superconducting sys-
tems carry signatures of Majoranas. What is more in-
teresting is that certain zero energy excitations called
Majorana zero modes(MZM) often have the additional
feature of being topologically protected; which means
that any continuous deformation of the Hamiltonian
does not destroy the state. Because of the topologi-
cal properties and interesting exchange statistics that
MZMs follow, they have also been thought of as candi-
dates for storing quantum information[4]. Thus obser-
vation of Majorana quasi-particles in solid-state sys-
tems is of great interest.

The aim of this article is to review the emergence of
Majorana particles in superconducting systems. We
begin by briefly reviewing solutions of Dirac equa-
tions and howMajorana fermions can be obtained from
them. Subsequently we shall find physical motivation
for systems that might show emergent Majoranas and
then provide theoretical justification for the same. Fi-
nally, we discuss the Kitaev model which shows how
unpaired MZMs can arise in a one dimensional system.

II. WHAT ARE MAJORANA FERMIONS?

In this section, we briefly review how Majorana
fermions come about from Dirac’s equations. The
Dirac equation for a free particle 1is

(iγµ∂µ −m)Ψ(x) = 0 (1)

Where Ψ(x) = (ψ1, ψ2, ψ3, ψ4)T is a four-component
spinor field and γµ are 4 × 4 matrices satisfying the
following algebra:

{γµ, γν} = 2ηµν , γ0γµγ0 = γ†µ. (2)

the choice of the γ matrices is not unique. Any set
of matrices satisfying (2) can be chosen to solve the
Dirac equation and the solutions Ψ(x) for a particular
choice of γµ is related to solutions for other choices of
γ through a unitary transformation Majorana himself
used a basis known today as the Majorana basis (see
[2]), where all the γ matrices are purely imaginary and
hence in this basis, the complex conjugate of a solution
Ψ(x) is a also a solution. Another convenient set that
is often used is the Weyl basis:

γµ =

(
0 σµ

σ̂µ 0

)
(3)

where we have denoted σµ = (I,−σi) and σ̂µ = (I, σi).
σi are the usual Pauli matrices. In the following dis-
cussions we shall use the Weyl basis everywhere.

Let us now consider the stationary solutions for the
Dirac equation with energy E(which can be both pos-
itive and negative), which are nothing but Ψ(x) =
e−iEtΦE(x). Here, ΦE(x) satisfies the Dirac equation
(1) with i∂0 replaced with E everywhere. The station-
ary states provide a complete basis, and any general so-
lution Ψ(x) can be expanded in terms of it. Moreover,
they help us see an important internal symmetry of
the Dirac equation called the Charge conjugation sym-
metry. It happens that if Φ(x) is a state associated
with energy E, we can find a corresponding charge-
conjugated state defined as

Φc(x) = CΦ∗(x) (4)

1 Through out the article we use Einstein summation conven-
tion; the same raised and lowered index in an expression such
as µ here, are considered to be summed over.
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with energy −E. In the above equation, C is a 4 × 4
matrix called the charge conjugation matrix, and in
the Weyl basis C = iγ2.

A standard approach to obtain particle interpreta-
tion from Dirac equation is to quantise (1) by elevating
Ψ(x) to the status of an operator field and imposing
the following anti-commutation relations:

{Ψ̂a(x), Ψ̂†b(x
′)} = δabδ

4(x− x′), {Ψ̂a(x), Ψ̂b(x
′)} = 0

(5)

Then we can expand a general field operator Ψ̂(x) in
terms of the stationary state solutions as

Ψ̂(x) =
∑
E>0

aEe
−iEtΦE(x)+

∑
E<0

b†−Ee
−iEtΦE(x) (6)

Note that we have separated the positive and negative
energy part of the expansions. Here aE and bE are op-
erators that play the role of arbitrary coefficients in the
expansion. Using the anti-commutation relations (5)
we can show that aE and bE also follow the canonical
anti-commutation rules. Thus a†E and b†E are inter-
preted as the creation operators for a particle and an
antiparticle with energy E, as they correspond to the
positive energy and negative energy parts of the expan-
sion respectively. By reversing the sign of the dummy
summation variable in the second term and using the
charge conjugation property (4), we may write (6) as
a sum over positive energy states only:

Ψ̂(x) =
∑
E>0

[
aEe

−iEtΦE(x) + b†Ee
iEtCΦ∗E(x)

]
. (7)

Equation (7) predicts the most general particle-
antiparticle pair of Dirac fermions. The particle is dis-
tinguishable from the anti-particle as it has an opposite
charge2. We find an interesting special case when we
impose the so-called Majorana condition on Ψ̂(x):

Ψ̂c(x) = CΨ̂∗(x) = Ψ̂(x). (8)

The significance of this constraint can be more clearly
seen in the Majorana basis in which C turns out to be
just the identity matrix. Hence in this basis the Majo-
rana condition simply says that Ψ̂(x) is real. Moreover,
it can be shown that a solution satisfying the Majo-
rana constraint always exists. Consider any Ψ̂(x) that
solves the Dirac equation. It can be shown that Ψ̂c(x)
is also a solution and since the Dirac equation is linear
the superposition: Ψ̂Maj(x) = 1

√
2(Ψ̂(x)+Ψ̂c(x)) also

is a solution. It is obvious that Ψ̂Maj(x) satisfies the
Majorana condition.

Using (7) and the Majorana condition, we straight-
forwardly get a†E = b†E . Moreover, the Noether cur-
rent that gives meaning to charge identically vanishes
in this case. This indicates that under the constraint
(8) we get a pair of particles which are charge-less and

2 In field theoretic language, the conserved Noether current cor-
responding to global phase symmetry has an opposite sign[5]

are the same as their anti-particle. We call them Majo-
rana fermions. For more information about properties
of Majorana fermions the reader may refer to [2]3.

III. EMERGENCE OF MAJORANA
FERMIONS IN SOLIDS

A. Ideal hunting grounds

As we saw in our course, condensed matter physics
has plenty of examples where the system as a whole
behaves very differently compared to the constituent
particles. The idea that ’more is different’ has been
beautifully expressed in the article [6] Under certain
approximations, the collective excitations of a given
condensed matter system is best described in terms
of quasiparticles - particles that do not exist at the
microscopic level but seem to emerge from the micro-
scopic description of the system and explain the phys-
ical observations obtained in experiments. Examples
of such particles include phonons, polarons, magnons
and plasmons, which we are familiar with. In solid-
state physics the most important fermionic particles-
electrons, are Dirac fermions. However it turns out
Majorana fermions can occur in certain solids as emer-
gent quasiparticles.

To see how that comes about we recall that in the
second quantisation formalism, electrons are repre-
sented by a set of creation and annihilation operators
where c†j creates an electron with quantum numbers
denoted by index j while cj annihilates it. The index
j includes the quantum degrees of freedom appropriate
for the set up we are describing, typically spin, position
or crystal momentum etc. These operators satisfy the
canonical commutation relations. Without any loss of
generality, we can perform a canonical transformation
of any other operator of interest to the Majorana Basis
defined as:

cj =
1

2
(γj1 + iγj2) c†j =

1

2
(γj1 − iγj2) (9)

{γiα, γjβ} = 2δijδαβ , δ†iα = δiα (10)

The hermiticity condition of γiα implies that the par-
ticle created the gamma operator is the same as its
anti-particle, and hence corresponds to a Majorana
fermion. While mathematically equivalent, the above
description in terms of Majorana fermion operators
does not give any benefit in understanding the physics
of the system. The primary reason for this is that in
most cases the two Majoranas corresponding to a single
electron-positron pair, occur paired and intertwined in
space (recall that the Dirac equation predicts a pair of
Majorana fermions) and thus it makes little sense to
describe the Majoranas as individual particles. How-
ever in some special systems such as topological su-
perconductors it is possible to spatially separate the

3 If you found the prediction of Majorana fermions from Dirac
theory weird or magical in some way I encourage you to take
a look at this article, describing your state of mind using an
’Alice in the wonderland’ example
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Majoranas corresponding to a single electron. A hint
regarding why this might be so is seen by inverting (9)
to obtain:

γj1 = c†j + cj , γj2 = i(c†j − cj) (11)

At this point we recall that the superpositions of elec-
tron and hole degrees of freedom such as above nat-
urally arise in s-wave superconductors described by
BCS theory as the condensation of Cooper-pairs vi-
olates conservation of number of particles. Though
one might try to find Majorana excitations here, typ-
ical s-wave superconductors have a shortcoming too.
Recall that the quasiparticle modes in such supercon-
ductors combine particles and holes of opposite spin,
i.e. the quasiparticle operators take a typical form like
γ = uc†↑ + vc↓. This cannot describe a Majorana par-
ticle as it is physically different from the its conjugate,
γ† = u∗c↑ + v∗c†↓. The impediment in this situation is
the existence of two different fermionic species (a spin
up and a spin down). Thus to look for unpaired Majo-
rana fermions it would be beneficial to design systems
where a) superconducting order exists, allowing mix-
ing of particle and hole states, and b) a single kind of
fermionic species exists at the microscopic level, such
as a ’spinless’ electron. While the spinless assumption
might seem unphysical, models exist that allow ap-
proximating electrons as spinless, as we shall see later.

B. Emergence in superconductors

Before we dive into particular models and physical
realisations, let us see the mathematical basis behind
why Majorana states are supported in a superconduc-
tor.

To do so we use the Bogoliubov-deGennes(BdG) for-
malism which is a self-consistent formalism like we
used in class but generalised to the case of spatially
non-uniform situations. We start out with a minimal
Hamiltonian for superconducting systems[3]:

H =

∫
ddr

[
hσσ

′

0 (r)c†σrcσ′r − V n↑rn↓r
]
. (12)

c†σr creates a particle at the position r in d dimen-
sional space with spin σ. hσσ

′

0 (r) includes the kinetic
energy of the electrons and any spatially varying single-
electron potential and V > 0 represents the attrac-
tive interaction between electrons4. Next, we consider
a mean field factorisation5 of the quartic interaction
term:

− n↑rn↓r = c†↑rc
†
↓rc↑rc↓r

'
〈
c†↑rc

†
↓r

〉
c↑rc↓r+c†↑rc

†
↓r
〈
c↑rc↓r

〉
−
〈
c†↑rc

†
↓r

〉 〈
c↑rc↓r

〉
(13)

4 While V has been considered a constant here, we could more
generally consider V as a function of the positions of 2 elec-
trons r and r′. We refer the reader to [7] for such a discussion

5 sorry Mona!

and introduce the superconducting order parameter

∆(r) = V
〈
c↑rc↓r

〉
. (14)

We can now write down the mean field approximated
BdG Hamiltonian as:

HBdG =

∫
ddr

[
hσσ

′

0 (r)c†σrcσ′r

+
(

∆(r)c†↑rc
†
↓r + h.c.

)
− 1

V
|∆(r)|2

]
(15)

The idea is to find the eigenstates of the above approx-
imated Hamiltonian in terms of the parameter ∆(r)
and check for self consistency of equation (14). In or-
der to write the Hamiltonian in a matrix form we define
the Nambu spinor

Ψ̂r =


c↑r
c↓r
c†↓r
−c†↑r

 ≡
(

ψ̂r
iσyψ̂∗r

)
(16)

using which we can write

HBdG =

∫
ddr

[
Ψ̂†rHBdG(r)Ψ̂r −

1

V
|∆(r)|2

]
(17)

where

HBdG(r) =

(
h0(r) ∆(r)
∆∗(r) −σyh∗0(r)σy

)
. (18)

Here h0(r) and ∆(r) are to be treated as 2 × 2 ma-
trices. We can effectively diagonalise (17) by finding
a eigenspinor Φn(r) = [un↑(r), un↓(r), vn↑(r), vn↓(r)]
that satisfies

HBdG(r) = EnΦn(r) (19)

and an annihilator operator

γn =

∫
ddrΦ†n(r)Ψ̂r (20)

Using equations (19) and (20) we can write equation
(17) as

HBdG =
∑

n|En>0

Enγ
†
nγn + Eg (21)

where Eg is the ground state energy. At this point we
must note that by using the Nambu spinor to write
(17) we expanded the Hilbert space to accommodate
the ∆ term. Thus only half of its independent solu-
tions are actually physical, as they have to respect
the constraint that the last two components of the
Nambu spinor are related to the first two. Thus we sum
only over the positive energy states to avoid double-
counting.

The structure of the Nambu spinor makes the con-
nection to Majorana fermions clear. It can be seen
from (16) that Ψ̂r satisfies the Majorana condition,

Ψ̂r = CΨ̂∗r (22)
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automatically and it is required because of the mathe-
matical structure of the quantised Hamiltonian HBdG
in (17). Hence the eigenstates of this system, which
correspond to particles created by the γ†n defined by
(20) are superpositions of Majorana states.

However, whether the particle created by γ†n itself
is a Majorana fermion, depends on the nature of the
stationary state Φn(r). For arbitrary Φn(r), γ†n 6= γn
Fortunately in case of Majorana zero modes(MZMs),
the stationary state itself satisfies the Majorana con-
dition which leads to the corresponding annihilation
operator to be Hermitian. MZMs are a special case
of Majorana fermions that occur at zero energy, i.e
En = 0. By taking the complex conjugate of (19) and
multiplying the charge conjugation matrix C, we can
see that Φc(r) = CΦ∗(r) is a stationary state with
energy −En. Now consider a state with zero energy:

HBdGΦ′0(r) = 0 (23)

By charge conjugation symmetry, Φ′c0 (r) also has 0 en-
ergy. Thus we can define a state Φ0(r) = 1√

2
(Φ′c0 (r) +

Φ′0(r)) and it must have zero energy too. Moreover,
it is clear that Φ0(r) = Φc0(r) which can be written in
terms of individual components,

u0↑r
u0↓r
v0↑r
v0↓r

 =


−v∗0↓r
v∗0↑r
u∗0↓r
−u∗0↑r

 (24)

The Bogoliubov annihilator corresponding to this state
can be found by plugging Φ0(r) into (20) which gives
us

ψ̂0 = i

∫
ddr

[
u∗0↑(r)cr↑ + u∗0↓(r)cr↓

−v∗0↑(r)c†r↓ + v∗0↓(r)c†r↑

]
(25)

Clearly, ψ̂0 = ψ̂†0 and hence it represents a Majorana
fermion.

Interestingly it turns out that as long as there is a
single zero energy mode separated from other states
through a finite gap, it is topologically protected[3].
This is because the zero mode cannot acquire a non-
zero energy E by any continuous deformation of the
Hamiltonian that does not close this gap. If it did
by the charge conjugation symmetry another mode
with energy −E will appear. The Unitary evolution
of states however does not permit one mode to trans-
form into two modes.

IV. TOY MODELS

The discussion in the previous section sufficiently
motivates how Majorana zero modes might arise in
topological superconductors. The important question
that remains to be answered is how to design a Hamil-
tonian and subsequently an experimental setup that
would allow a single unpaired MZM to be observed.
In an attempt to solve this problem Kitaev proposed
an exactly soluble one dimensional model system con-
sisting of spinless fermions [8] that serves as a useful

paradigm for experimental search of MZMs. Due to
the fact that the model comprises of spinless fermions,
it had been initially viewed as somewhat un-physical.
However, it has been realized more recently that in
the presence of spin-orbit coupling and the Zeeman
field real electrons can in fact behave essentially like
spinless fermions.

We consider spinless fermions hopping between the
sites of a 1D lattice described by the Hamiltonian:

H =
∑
j

[
−t
(
c†jcj+1 + h.c.

)
− µ

(
c†jcj −

1

2

)

+
(

∆c†jc
†
j+1 + h.c.

)]
(26)

where ∆ represents the nearest-neighbor pairing am-
plitude. We must notice the close similarity between
the Bogoliubov-DeGennes Hamiltonian in (15) and the
Kitaev Hamiltonian. This suggests that ∆ is the anal-
ogous to SC order with spinless fermions. Henceforth
we shall assume for the sake of simplicity that ∆ is real
and consider a chain with N sites and open boundary
conditions. We now transform the Hamiltonian (26)
into the Majorana basis using (9) to obtain,

H =
i

2

∑
j

[
−µγj,1γj,2 + (t+ ∆)γj,2γj+1,1

+(−t+ ∆)γj,1γj+1,2

]
It turns out that this Hamiltonian describes two

physically distinct phases. First, consider the case
∆ = t = 0. The Hamiltonian becomes

H =
i

2
(−µ)

∑
j

γj,1γj,2 = −µ
∑
j

(
c†jcj −

1

2

)
The ground state consists of all fermion states at site
j either occupied (µ > 0) or empty (µ < 0) and this is
clearly a topologically trivial phase.

Next we consider the case ∆ = t and µ = 0. Now
the Hamiltonian takes the form

H = it

N−1∑
j=1

γj,2γj+1,1

To find the ground state of this Hamiltonian we define
a new set of fermionic operators that combine Majo-
rana modes of neighbouring sites:

aj =
1

2

(
γj,2 + iγj+1,1

)
, a†j =

1

2

(
γj,2 − iγj+1,1

)
for j = 1, 2 . . . N − 1. These live on nearest neighbor
bonds of our 1D chain. In terms of these new fermions
we have

H = 2t

N−1∑
j=1

(
a†jaj −

1

2

)
(27)

The ground state of this Hamiltonian for t > 0 is
the vacuum state |0〉 with energy Eg = −t(N − 1).
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a)

b)

c)

FIG. 1. Two phases of the Kitaev model, image taken
from [3] a) This depicts the trivial phase, where Majoranas
at each site can be thought of being bound into ordinary
fermions. b) This depicts the topological phase Majoranas
on neighbouring sites are bound, leaving 2 unpaired MZMs
at the ends. c) The phase diagram of the Kitaev chain in
µ − 2t plane; TSC denotes the topological phase and the
unshaded part denotes the trivial phase.

Notice that in (27) the Majorana modes γ1,1 and γN,2
do not occur. Thus the Majorana states localised at
the ends of the chain γ1,1 |0〉 and γN,2 |0〉 have ground
state energy. Although together they constitute a sin-
gle Dirac fermion, it is delocalised at the ends and
thus can be considered effectively unpaired. Hence we
have unpaired MZMmodes. Clearly this phase is topo-
logically relevant as there is a finite gap between the
ground state and excited states. For general µ and t,
we can solve the Hamiltonian (26) considering periodic
boundary conditions and moving to the momentum
space. We find that spectrum is,

E(q) = ±
√

(2t cos q + µ)2 + (∆ sin q)2 (28)

Except for the case µ = ±2t, the spectrum above gives
a gap between the two bands. These lines of zero gap
define two regions in the µ − 2t plane, as shown in

Fig.1. The topologically trivial phase where no MZMs
occur is represented by the region |µ| > |2t| in the
µ− 2t plane where as the second case where unpaired
MZMs are supported is depicted by |µ| < |2t|. At
the boundary µ = ±2t, a topological phase transition
occurs.

It is useful to reflect upon the importance of the spin-
less assumption of the Kitaev Model. It ensures that a
single zero-energy Majorana mode resides at each end
of the chain in its topological phase. Having regular
spin half fermions instead, merely doubles the degen-
eracy for every eigenstate of the Hamiltonian, so that
when |µ| < 2|t| each end supports two Majorana zero-
modes, or equivalently one ordinary fermionic zero-
mode. A slightly more complicated but exactly solv-
able toy model also exists in two dimensions. It is a
model of spinless 2D electron gas showing p + ip su-
perconductivity. It is in several ways a generalisation
of the Kitaev model and has the same key features[9].

V. CONCLUSION

In this article, we begin by outlining the theory of
how Majorana fermions arise from Dirac’s famous the-
ory of electrons. We then proceed to describe ideal
systems where Majorana states could be found. Then
we use the Bogoliubov-deGennes theory for supercon-
ductors to further demonstrate how excitations in su-
perconductors naturally behave as Majorana fermions.
Based on this foundation we introduce the concept of
Majorana zero modes. We then describe the famous
Kitaev model. The Kitaev model provides a paradigm
that makes experimental realisation of MZMs more
feasible. While an unambiguous observation of MZMs
is yet to be observed in labs, in 2010 and 2011 a few
remarkable papers [10–12] have shown how to map the
Kitaev model into actual systems using semiconduc-
tor nano wires coupled with s-wave superconductors.
They get over the key impediment in implementing
the Kitaev model - suppressing the spin degree of free-
dom of electrons, by using a strong spin-orbit coupling
along with Zeeman coupling. We refer the interested
reader to explore the details of these propositions in
[3, 9] and another Phys 502 project done in 2018 [13].
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